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Abstract – Two identical dipolar atoms moving in a harmonic trap without an external magnetic
field are investigated. Using the algebra of angular momentum we reduce the problem to a simple
numerics. We show that the internal spin-spin interactions between the atoms couple to the orbital
angular momentum causing an analogue of the Einstein-de Haas effect. We show a possibility of
adiabatically pumping our system from the s-wave to the d-wave relative motion. The effective
spin-orbit coupling occurs at anti-crossings of the energy levels.
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Introduction. – We observe a remarkable progress in
experiments with ultracold quantum gases. Many are per-
formed with large number of atoms in a single trap. How-
ever, progress is also made at a level of a few atoms in a
trap. These experiments are performed with cold atoms
distributed between the wells of an optical lattice. This
way, with a help of tunable parameters of interaction, us-
ing the Feshbach resonances [1,2], and the properties of
the lattice itself, one can access in a controlled way vi-
tal models of condensed-matter physics (for a recent re-
view see [3]). Many experiments in optical lattices are
performed with the Mott insulator phase [4–6] where a
well-defined, small number of atoms is confined in every
well. Another set of a few atoms in a trap experiments is
offered by the setting available in Selim Jochim’s lab [7].
Detailed properties of such systems crucially depend on
the properties of atom-atom interaction. This interaction
is best tested if exactly two atoms are present. Early an-
alytic predictions for contact interacting atoms [8] where
positively verified in precise spectroscopic experiments [9].
New twist to the problem is introduced by the long-range
dipole-dipole (DD) interactions [10,11]. Although negligi-
ble in the early days of quantum gases experiments, dipole-
dipole interactions are getting more and more relevant
with the condensation of chromium [12,13], erbium [14–16]
and recently dysprosium [17–20]. The dipolar interaction
couples the spin degree of freedom with the orbital angu-
lar momentum. This leads to the well-known Einstein-de
Haas effect [21]. To observe this effect with chromium

atoms, where DD interaction is just a perturbation, prop-
erly resonant magnetic field strength must be used [22]. Of
course a direct coupling to the orbital angular momentum
is possible for sufficiently strong DD interactions. For
the large systems it has been noted using a conventional
mean-field approach [23]. It is the purpose of this letter
to present are exact analysis of the role of DD interac-
tions for two atoms trapped in a spherically symmetric
harmonic potential. Initially we introduce our theoretical
model. The simplicity of the harmonic potential allows
to separate the center-of-mass degree of freedom. The
relative-motion Hamiltonian remains spherically symmet-
ric. Utilizing this symmetry we may construct the energy
eigenstates using the angular-momentum algebra. What
remains is the set of coupled radial Schrödinger equations
linking components of the wave function corresponding to
orbital angular momenta differing by two units. We model
the radial component of the interaction by the dipolar ex-
pression modified by the infinite repulsive sphere at short
distances. Finally we present our results. We note the
anti-crossings of the energy levels as a function of the dipo-
lar coupling constant. This dependence may be tuned by
the change of the trapping frequency. The most striking
feature is the possibility of adiabatically pumping our sys-
tem from the s-wave to the d-wave relative motion.

Theoretical model. – Let us consider two identical
dipolar atoms (fermions or bosons) of a spin (a total angu-
lar momentum of an atom) f1 = f2 moving in an isotropic
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harmonic trap. The Hamiltonian of such a system can be
written as

H = −1
2
∇2

1 −
1
2
∇2

2 +
1
2
r2
1 +

1
2
r2
2 + V (r1 − r2), (1)

where r1 and r2 are the position vectors of the two atoms.
We are using harmonic-oscillator units, in which h̄ω is a
unit of energy and the characteristic size of the ground

state of the trap
√

h̄
mω is a length unit. An interaction

potential V (r1 − r2) is a sum of a short-range (SR) and a
long-range magnetic dipole-dipole interaction potentials.
We model SR potential as a spherically symmetric barrier
described later in the next section (for different SR mod-
els see, e.g. [8,10,11,24–26]). The magnetic dipole-dipole
interaction potential Vdd(r1 − r2) can be expressed in the
following form:

Vdd =
μ0(μBgj)2

4π |r1 − r2|3
[
F1 · F2 − 3 (F1 · n) (F2 · n)

]
, (2)

where n = r1−r2
|r1−r2| , μ0 stands for the vacuum magnetic

permeability, μB indicates the Bohr magneton, gj is the
Landé g-factor and F is the total angular momentum of
an atom (spin vector). Thus for the atomic spin quantum
number f half integer we have fermions and for f integer
we have bosons.

Foregoing Hamiltonian may be divided into two parts, a
center-of-mass part and a relative part, i.e. H = HCM +
HRel with

HCM = −1
2
∇R +

1
2
R2,

Hrel = −1
2
∇r +

1
2
r2 + VV dW (r)

+
gdd

r3
[F1 · F2 − 3 (F1 · n) (F2 · n)]

(3)

which can be diagonalized separately. Here R =
1√
2

(r1 + r2) is the center-of-mass coordinate and r =
1√
2

(r1 − r2) stands for the relative-motion coordinate1.
The strength of the dipole-dipole interaction is character-
ized by the gdd = μ0(μBgj)

2

8
√

2π
. The eigenvalues of the HCM

are simply that of the harmonic oscillator. In order to in-
vestigate the relative motion of the two atoms we observe
that the total angular momentum is conserved:

[F + L,Hrel] ≡ [J,Hrel] = 0, (4)

where J stands for the total angular momentum of the
system which is a sum of the total spin operator F =
F1+F2 and the orbital-momentum operator of the relative
motion of the atoms L. The spherical symmetry of the
system means that it is convenient to solve the relative-
motion problem in a total-angular-momentum basis. The

1Note the somewhat unusual factor of
√

2 introduced here for
symmetry.

eigenfunction of the system in the chosen basis can be
written as

Ψjmj
n (r) =

∑
l,f

ajmj lf
n ψjmj lf

n (r)

=
∑
l,f

ajmj lf
n φjlf

n (r) |jmj lf〉

=
∑
l,f

ajmj lf
n φjlf

n (r)
∑

ml,mf

ml+mf=mj

×C
jmj

lmlfmf
|lfmlmf 〉 . (5)

Here j denotes the total-angular-momentum quantum
number and mj the magnetic total-angular-momentum
number, l and ml stand for the orbital-momentum and
the magnetic orbital-momentum quantum numbers, re-
spectively. The total spin and its projection values are
indicated by f and mf and C

jmj

lmlfmf
denotes Clebsch-

Gordan coefficients [27]. Eigenfunctions are enumerated
by the n = 0, 1, . . . number and a

jmj lf
n indicate constant

coefficients.
Our goal is to derive the radial Shrödinger equations

for φjlf
n with given j, l, f . We are now interested in

the result of acting with the Vdd operator on the single
state ψ

jmj lf
n (r). Using spin operators properties it can be

shown that

Vddψ
jmj lf
n (r) =

gdd

r3

∑
l′,f ′

αll′ff ′ψjmj l′f ′

n (r) (6)

with the following selection rules:

l′ = l + Δl, Δl = 0,±2,

f ′ = f + Δf, Δf = 0,±2.
(7)

A value of the scalar coefficient αll′ss′ is expressed by a
product of Clebsh-Gordan coefficients determined by the
angular-momentum algebra.

The preceding result might be understood by the
fact that the dipole-dipole interaction operator is sym-
metric with respect to the exchange of the two parti-
cles. Thus it does not change a symmetry of the given
ψ

jmj lf
n (r). Knowing (6) we are able to find the radial

Schrödinger equation for the χjlf
n (r) ≡ rφjlf

n (r) by the
direct calculation

− 1
2

d2

dr2
χjlf

n (r) +
1
2
r2χjlf

n (r) +
l(l + 1)

2r2
χjlf

n (r)

+
gdd

r3

∑
l′,f ′

αll′ff ′χjl′f ′

n (r) = Ej
nχjlf

n (r), (8)

where Ej
n is an eigenvalue and the short-range potential

VV dW (r) is incorporated in the boundary conditions (see

the next section). Here
√

h̄5

m3ω is a unit of the gdd in the
harmonic-oscillator units.

As can be seen in (8) in order to find a χjlf
n (r) one has

to solve a system of the radial Schrödinger equations for
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Fig. 1: (Color online) Energy E0
n vs. gdd and expected value of orbital-angular-momentum operator 〈L2〉 for the n = 0, 1, 2

and atoms of spin f1 = f2 = 1
2
, 1, 3

2
, 21

2
. The black solid line represents the ground state, the red dashed dotted line and

blue dashed line indicate first and second excited states, respectively. The insets magnify the anti-crossing area. Note the
different horizontal scale for f1 = f2 = 21

2
. For the higher b values all presented effects appear for the higher gdd values with no

qualitative difference (see also fig. Ia in [33]).

a fixed total angular momentum number j. Note that the
number of equations in the system is determined by the
maximum value of the total spin: fmax = f1 + f2.

Results. – We are interested in solving the system of
the radial Schrödinger equations introduced in the previ-
ous section, in particular for the total angular momentum

j = 0. In order to accomplish this task we remind that the
interaction potential V (r1−r2) introduced earlier consists
of the short-range potential also. We use a simple model
of such a potential in the following form [26]:

VSR =

{
0, for r > b = 100 r0,

∞, for r ≤ b = 100 r0,
(9)
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Fig. 2: (Color online) Composition of eigenstates for different eigenvalues E0
n for the spin- 3

2
atoms. The blue dashed lines

indicate radial functions φ000
n (r) with the orbital quantum number l = 0 for the given value of gdd vs. radial variable r and the

red solid lines represent radial functions φ022
n for the given gdd with the orbital quantum number l = 2 vs. radial variable r.

Square, circle and cross stay for sets of eigenstates with the same composition of φ0ll
n (r) functions.

where r0 is the Bohr radius. We motivate our choice by the
fact that the scattering length a0 for a scattering process
of a single particle on an infinite spherically symmetric po-
tential barrier is equal to the radius of barrier, i.e. b = a0.
A value of b is determined by the numerical calculations
for the dysprosium atoms [28].

From the angular-momentum algebra we also deduced
that for eigenstate with j = 0 the total spin number is
equal to the orbital quantum number, i.e. l = f . Thus
for such states the corresponding coefficient matrix αll′ff ′

reduces to the αll′ matrix. We calculate them for the
various atomic spin values, i.e. f1 = f2 = 1

2 , 1, 3
2 and 21

2 .
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Our results can be found in the supplementary material
supplementary.pdf.

Knowledge of the αll′ff ′ coefficients allows us to solve
numerically the system of the radial Schrödinger equa-
tions of the form presented in (8). We used the multi-
parameter shooting method. We set the b = 0.04
in the harmonic-oscillator units which corresponds for
the dysprosium-like atoms at the trap frequency ω ≈
2π 2.8 kHz. For such a trap frequency the gdd = 0.0006
in the harmonic-oscillator units. Our system admits two
control parameters that may be changed by experimenters.
Note that the gdd in the harmonic-oscillator units depends
on the trap frequency as

√
ω, so it is tunable. One may also

change the scattering length a0 by the optical Feshbach
resonances [29–32], so that the b value in the harmonic-
oscillator units may be kept constant while one changes
the trap frequency.

In fig. 1 we present the eigenvalues E0
n with n = 0, 1, 2 as

a function of gdd for atoms with different spins. For atoms
with the spin f1 = f2 = 1, 3

2 and 21
2 we consider only so-

lutions for the even orbital-angular-momentum quantum
number l. In the case of odd l results are qualitatively
the same.

For spin 1
2 atoms the energy values rise very slowly as

gdd rises. The radial part of ψ0011
n (r) is simply the φ011

n (r),
so the expected value of the orbital-angular-momentum
operator 〈L2〉 is constant and equal 〈L2〉 = 2 for all n.

For the higher spin values we observe more complex be-
haviour. First of all, the energy values for n = 0, 1 and 2
are highly dependent on the value of gdd. For low values of
gdd eigenvalues vary slightly, then for higher values they
decrease rapidly. We observe also the presence of anti-
crossings between consecutive lines E0

n(gdd) accompanied
by changes of the 〈L2〉. This is due to changes in the struc-
ture of the radial part of eigenstates. From (8) we notice
that the radial part of the eigenstate is a linear combina-
tion of φ0ll

n (r) where in this case l ∈ {0, 2, . . . , 2 · f1}. As
the gdd rises the weight of each φ0ll

n (r) function varies, i.e.
the values of the a00ll

n coefficient vary. For instance, we see
that for low gdd the ground state consists of almost only
the s-state (φ000

0 (r)), whereas as we increase the trap fre-
quency, contributions of the functions with higher l grow.
The ground state starts to “rotate”. This feature resem-
bles the Einstein-de Haas effect [21], although it is caused
only by the internal spin-spin interactions between two
atoms without any influence of external fields.

Moreover, as values of a00ll
n for l > 0 grow and a0000

n de-
creases also mutual orientation between the atoms starts
to favour attractive regions of the DDI over repulsive re-
gions, which can be observed in the analysis of the angular
part of the eigenstates (see also fig. IIa in [33]). For the
spin f1 = f2 = 1

2 atoms, such a behaviour is impossible
as all three angular parts of the eigenstates are multiplied
by the same a0000

n φ000
n (r) expression which is almost being

unchanged as gdd rises. This fact explains qualitative dif-
ference between the dependence of the eigenvalues on gdd

for spin 1
2 and higher spin values.

Figure 1 also illustrates that the bigger atomic spin is,
the lower trap frequency is needed to observe above effects.
In addition, the effect of changes in the expected value of
orbital angular momentum is stronger for larger atomic
spin values. It seems that at least it is possible to check our
model experimentally using the system of the dysprosium
atoms with the 21

2 spin.
The nature of anti-crossings in fig. 1 can be explained

by Landau-Zener theory [34,35] as depicted in fig. 2. As
an example we used spin- 3

2 atoms. A composition of the
eigenstate corresponding to the eigenvalue En(gdd) is not
conserved along a given energy line, but it propagates
along straight lines upward or downward. This type of
effect was already observed by Kanjilal et al., although
for a simpler system consisting of two aligned dipoles [10].

Motivated by experiments under development [18,19,36]
we based our calculations on dysprosium parameters.
Our model of the dipole-dipole interactions between two
atoms reveals a non-trivial dependence of two atoms in a
harmonic-trap system on the trap frequency. We showed
that increasing ω the system undergoes an analog of
Einstein-de Hass effect. Such a behaviour is a result of
spin-spin interaction and its coupling to the orbital an-
gular momentum. We have also found the Landau-Zener
anti-crossings in the energy levels of the system. Our re-
sults may be checked experimentally for the dysprosium
atoms. Of course, proposed model is oversimplified in this
case as dysprosium atoms are not exactly spherically sym-
metric [28].
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