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Abstract – Dynamics of magnetization domain walls (DWs) in thin ferromagnetic nanotubes
subject to weak longitudinal external fields is addressed analytically in the regimes of strong and
weak penalization. Exact solutions for the DW profiles and formulas for the DW propagation
velocity are derived in both regimes. In particular, the DW speed is shown to depend nonlinearly
on the nanotube radius.
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The problem of controlled manipulation of magneti-
zation domains in quasi–one-dimensional ferromagnetic
nanostructures is of paramount technological importance
in designing new-generation memory devices [1–3] and of
fundamental interest in the vibrant areas of micromag-
netics and spintronics. To date, substantial theoretical
progress has been achieved in understanding the dynam-
ics of domain walls (DWs) in nanowires and nanostrips
under the influence of applied magnetic fields [4–16] and
spin-polarized electric currents [11,12,16–20]. Neverthe-
less, the search for schemes and regimes allowing fast and
energy-efficient DW propagation actively continues.

Ferromagnetic nanotubes have been proposed as an al-
ternative device geometry for carrying and manipulating
DWs [21,22], and are attracting considerable attention not
only for applications [23,24] but also from the point of view
of basic theory and numerical simulations [25–30]. A key
advantage of the nanotube structure is greater DW stabil-
ity under strong fields [30] as compared to wire and strip
geometries [4,31], leading to a significant increase in the
DW velocity. A striking phenomenon is the dependence on
chirality; with the central DW vortex oppositely oriented
to the applied field, the DW motion exhibits a high-field
Walker-like breakdown, whereas breakdown may be sup-
pressed or even absent when the vortex is aligned with the
applied field [26–28].

Fig. 1: (Colour on-line) A sketch of a nanotube with an outer
radius R and an inner radius R−w. A point on the outer sur-
face of the nanotube is parametrized by the coordinate x along
its symmetry axis and the polar angle ψ. The unit vectors ex

(parallel to the symmetry axis), eψ (tangential to the surface),
and eρ (normal to the surface) form a right-handed triplet.

In this paper, we analytically address the DW dynam-
ics in thin ferromagnetic nanotubes under the action of an
external magnetic field and derive an explicit formula for
the DW propagation speed in the regimes of strong and
weak penalization. Our formula reveals a nonlinear depen-
dence of the propagation speed on the nanotube radius,
and may be used as a guide in devising new experiments.

We consider an infinitely long ferromagnetic nanotube
with an outer radius R and an inner radius (R − w)
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(see fig. 1). The magnetization distribution at a spatial
point x and time t is described by M(x, t) = Msm(x, t),
where |m(x, t)| = 1 if x ∈ Ω (the point belongs to the
nanotube region) and |m(x, t)| = 0 if x �∈ Ω (the point
lies outside the nanotube region). Here, Ms stands for the
saturation magnetization. The full micromagnetic energy
of the nanotube is given by [32]

E(m) = A

∫
Ω

|∇m|2dx + K

∫
Ω

[
1 − (m · ex)2

]
dx

+
μ0M

2
s

2

∫
R3

|∇u|2dx, (1)

where the magnetostatic potential u(x, t) satisfies

∇ · (∇u + m) = 0 for x ∈ R
3. (2)

Here, A denotes the exchange constant, K is the easy axis
anisotropy constant, μ0 = 4π × 10−7 Wb/(A · m) is the
magnetic permeability of vacuum, and ex is a unit vector
pointing along the symmetry axis (x-axis) of the nanotube
(see eq. (1)).

Within a continuum description, the time evolution of
the magnetization distribution is governed by the Landau-
Lifshitz (LL) equation [32]

∂m
∂t

= γm × H − αm × (m × H). (3)

Here, γ denotes the gyromagnetic ratio, α is a phenomeno-
logical damping parameter, and H is an effective magnetic
field, given by

H(m) = − 1
μ0Ms

δE

δm
+ Ha, (4)

where Ha stands for the applied (external) magnetic field.
Being interested in the dynamics of a magnetization do-
main wall (DW), we focus on solutions of eq. (3) subject
to the boundary conditions m(x, t) → ±ex for x → ±∞
(and x ∈ Ω).

We now address the case of a thin nanotube, such that
w � R. In this limit, the volume integrals in eq. (1)
can be approximately reduced to integrals over the sur-
face of a cylinder, and the stray-field energy can be ap-
proximated by an additional effective local anisotropy that
penalises the magnetization component in the radial di-
rection (see [33,34] for mathematical details of this pro-
cedure). Thus, rescaling the spatial variables, x = Rξ;
the micromagnetic energy, E = 2AwE ; and the effec-
tive and applied fields, H = [2A/(μ0MsR

2)]H and Ha =
[2A/(μ0MsR

2)]Ha, we approximate eqs. (1)–(4) by

E(m) =
1
2

∫
S

|∇Sm|2dσ +
κ

2

∫
S

[
1 − (m · ex)2

]
dσ

+
λ

2

∫
S

(m · eρ)2dσ (5)

and

H(m) = ∇2
Sm + κ(m · ex)ex − λ(m · eρ)eρ + Ha, (6)

Fig. 2: (Colour on-line) A sketch of a magnetization DW for
the case of λ � 1.

where κ = KR2/A and λ = μ0M
2
s R2/(2A). The integrals

in eq. (5) run over the surface of an infinitely long cylinder
of unit radius, and ∇S = ex

∂
∂ξ + eψ

∂
∂ψ represents the sur-

face gradient (and, accordingly, ∇2
S = ∂2

∂ξ2 + ∂2

∂ψ2 the sur-
face Laplacian). Consequently, rescaling the time variable
as t = [μ0MsR

2/(2γA)]τ , we rewrite the LL equation (3)
in the dimensionless form,

∂m
∂τ

= m × H − α

γ
m × (m × H). (7)

Equations (5)–(7), along with the boundary condition
m(ξ, τ) → ±ex as ξ → ±∞ specify the magnetization dy-
namics problem addressed in this paper. Throughout we
consider the regime κ = O(1), which corresponds to nan-
otube radii R comparable to the exchange length

√
A/K.

Below we consider the two limiting cases λ � 1 and λ � 1,
which correspond to K � μ0M

2
s (weak anisotropy) and

K � μ0M
2
s (strong anisotropy), respectively. In both

cases we provide exact, traveling-wave solutions of the LL
equation.

Strong-penalization case, λ � 1. In ferromagnetic
nanotubes with very large λ and applied fields of order 1,
the penalization term in the micromagnetic energy, eq. (5),
essentially forces the magnetization distribution m to lie
nearly tangent to the cylinder (see fig. 2). More specif-
ically, it can be shown that m = mt + λ−1mn, where
mt = (m · ex)ex + (m · eψ)eψ is tangent to the cylinder
and mn = (m · eρ)eρ (with |mn| ∼ O(1)) is normal to the
cylinder surface.

Resolving the effective field into its tangential and nor-
mal components Ht = (H · ex)ex + (H · eψ)eψ and
Hn = (H·eρ)eρ (both |Ht| and |Hn| being of order 1), we
rewrite eq. (7) as d

dτ mt = mt× (Ht +Hn)− α
γ mt× [mt×

(Ht +Hn))]+O(λ−1). Then, resolving this equation into
its tangential and normal components and keeping terms
of the leading order in λ−1, we obtain

d
dτ

mt = mt × Hn − α

γ
mt × (mt × Ht), (8)

0 = mt × Ht −
α

γ
mt × (mt × Hn). (9)
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Taking the cross product of both sides of eq. (9) with
mt, and using |mt|2 = 1 + O(λ−2) we obtain, to the
leading order in λ−1,

mt × Hn = −γ

α
mt × (mt × Ht). (10)

Finally, substituting eq. (10) into eq. (8), we conclude that,
in the limit λ → ∞ (or, more generally, in the leading
order in λ−1) the time evolution of m(ξ, ψ, τ) is governed
by the modified LL equation,

∂m
∂τ

= −
(

α

γ
+

γ

α

)
m × (m × Ht), (11)

where the magnetization distribution is restricted to be
tangent to the surface of the cylinder,

m = ex cos θ + eψ sin θ. (12)

In general, θ = θ(ξ, ψ, τ). A similar result has been ob-
tained for the effective dynamics in thin ferromagnetic
films [35].

We now assume that the applied magnetic field is di-
rected along the nanotube axis, Ha = Haex. Substituting
eq. (12) into eq. (6), taking into account the fact that
∂

∂ψeψ = −eρ and ∂
∂ψeρ = eψ, and discarding the compo-

nent of H along eρ, we obtain the tangential component
of the effective field,

Ht =
(
− sin θ∇2

Sθ − cos θ|∇Sθ|2 + κ cos θ + Ha

)
ex

+
(
cos θ∇2

Sθ − sin θ|∇Sθ|2 − sin θ
)
eψ. (13)

Consequently,

m × (m × Ht) =(
∇2

Sθ − (1 + κ) sin θ cos θ −Ha sin θ
)
(ex sin θ − eψ cos θ).

(14)

Thus, using the identity ∂
∂τ m = −(ex sin θ − eψ cos θ) ∂

∂τ θ
and eq. (14) in the left- and right-hand side of eq. (11)
respectively, we obtain

∂θ

∂τ
=

(
α

γ
+

γ

α

)(
∇2

Sθ − (1 + κ) sin θ cos θ −Ha sin θ
)
.

(15)

Equation (15) governs the dynamics of the mag-
netization distribution, given by eq. (12), subject to
the boundary conditions lim

ξ→−∞
θ(ξ, ψ, τ) = π and

lim
ξ→+∞

θ(ξ, ψ, τ) = 0. It can be straightforwardly verified

that this problem admits a family of exact traveling-wave
solutions

θ(ξ, ψ, τ) = Θ1

(
ξ − ξ0(τ)

)
, (16)

where the function

Θ1(ξ) = 2 tan−1 exp
(
−ξ

√
1 + κ

)
(17)

(or, equivalently, d
dξ Θ1 = −

√
1 + κ sin Θ1) determines the

spatial profile of the traveling wave, and

dξ0

dτ
= −

(
α

γ
+

γ

α

)
Ha√
1 + κ

(18)

gives the propagation velocity. In the original physical
coordinates, the propagation velocity reads

dx0

dt
= −

(
α

γ
+

γ

α

)
γRHa√

1 + KR2/A
. (19)

Equation (19) gives explicitly the nonlinear dependence of
the DW propagation speed on the nanotube radius. Thus,
in the anisotropic case (K > 0), our formula shows that
| d
dtx0| ∝ RHa for R �

√
A/K, and | d

dtx0| ∝ Ha for
R �

√
A/K. In the isotropic case (K = 0), however,

| d
dtx0| ∝ RHa at any nanotube radius.
Weak-penalization case, λ � 1. We now focus on the

case of a strongly anisotropic ferromagnetic nanotube for
which the penalization parameter λ is negligibly small. In
this case the magnetization distribution m is no longer
restricted to lie tangent to the cylinder and explores the
full unit sphere. Its time evolution is governed by the
LL equation (7) with the effective field approximated by
(cf. eq. (6))

H = ∇2
Sm + (κm · ex + Ha)ex. (20)

Substituting the Cartesian representation of the mag-
netization distribution, m = (cos θ, sin θ cos φ, sin θ sin φ),
into eqs. (7) and (20), we obtain a system of two coupled
nonlinear PDEs for the unknown functions θ = θ(ξ, ψ, τ)
and φ = φ(ξ, ψ, τ):

∂θ

∂τ
+

γ

α

∂φ

∂τ
sin θ =

(
α

γ
+

γ

α

)
F1, (21)

−γ

α

∂θ

∂τ
+

∂φ

∂τ
sin θ =

(
α

γ
+

γ

α

)
F2, (22)

where

F1 =
∂2θ

∂ξ2
+

∂2θ

∂ψ2
−

[
κ +

(
∂φ

∂ξ

)2

+
(

∂φ

∂ψ

)2
]

sin θ cos θ

−Ha sin θ, (23)

F2 = 2
[
∂θ

∂ξ

∂φ

∂ξ
+

∂θ

∂ψ

∂φ

∂ψ

]
cos θ +

[
∂2φ

∂ξ2
+

∂2φ

∂ψ2

]
sin θ.

(24)

As before, this system is to be solved subject to
the boundary conditions lim

ξ→−∞
θ(ξ, ψ, τ) = π and

lim
ξ→+∞

θ(ξ, ψ, τ) = 0.

As can be readily verified by a direct substitution, this
problem admits a two-parameter family of exact traveling-
wave solutions

θ(ξ, ψ, τ) = Θn

(
ξ − ξ0(τ)

)
, (25)

φ(ξ, ψ, τ) = nψ + Φ(τ), (26)
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Fig. 3: (Colour on-line) A sketch of the magnetization DW for
the case of λ � 1. The DW has the helicity index n = 1.

Fig. 4: (Colour on-line) Magnetization in a cross-section of the
nanotube for different helicities n. The case n = 0 corresponds
to a transverse domain wall [26].

with n ∈ Z. Here, the longitudinal profile of the DW is
given by

Θn(ξ) = 2 tan−1 exp
(
−ξ

√
n2 + κ

)
(27)

(or, equivalently, d
dξ Θn = −

√
n2 + κ sin Θn), the preces-

sion velocity by
dΦ
dτ

= −Ha, (28)

and the propagation velocity by

dξ0

dτ
= −α

γ

Ha√
n2 + κ

. (29)

In the original physical coordinates, the propagation
velocity reads

dx0

dt
= − αRHa√

n2 + KR2/A
. (30)

In eqs. (25)–(30), the index n measures the DW helic-
ity. That is, n counts the number of times that the mag-
netization vector turns about ex as the circumference of
the cylinder is traversed. A sketch of a DW with n = 1
is shown in fig. 3, and cross-sections for different n are
shown in fig. 4. It is interesting to note that DWs with
lower helicity (and lower free energy) propagate faster.
The maximal propagation speed | d

dτ ξ0| = (α/γ)|Ha|/
√

κ
is achieved for n = 0 and is independent of R. As in the

strong-penalization case (cf eq. (19)), eq. (30) gives the
full nonlinear dependence of the DW propagation speed
on the nanotube radius. We see that | d

dtx0| ∝ RHa for
R � n

√
A/K, while | d

dtx0| ∝ Ha for R � n
√

A/K.
In conclusion, we have conducted an analytic study of

the DW dynamics in thin ferromagnetic nanotubes sub-
ject to external longitudinal magnetic fields. We have
found explicit functional forms of the DW profiles and de-
rived explicit formulas for the DW velocity in the regimes
of strong and weak penalization, eqs. (19) and (30), re-
spectively. In the strong-penalization case, the magneti-
zation field lies nearly tangent to the nanotube, while for
weak penalizations, the magnetization vector may wrap
around the nanotube with any integer helicity index. The
DW propagation speed increases with the nanotube ra-
dius in a nonlinear way, and, in the weak-penalization
case, decreases with increasing helicity. Since for a typi-
cal ferromagnetic material α/γ � 1, DWs in the strong-
penalization case propagate much faster than those in
the weak-penalization case. It would be of consider-
able interest to extend this analysis to the intermediate
regime, where chirality-dependent breakdown phenomena
have been observed, and the DW profile is known to de-
pend on the applied field. In accord with previous studies,
we would expect the finite width of the nanotube to play
a role.
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[22] Kläui M. et al., Phys. Rev. Lett., 94 (2005) 106601.
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