
Japanese Journal of Applied
Physics

     

A Finite-Difference Time-Domain Technique for
Nonlinear Elastic Media and Its Application to
Nonlinear Lamb Wave Propagation
To cite this article: Naoki Matsuda and Shiro Biwa 2012 Jpn. J. Appl. Phys. 51 07GB14

 

View the article online for updates and enhancements.

You may also like
Elastic metamaterials for guided waves:
from fundamentals to applications
Jeseung Lee and Yoon Young Kim

-

Mixed third harmonic shear horizontal
wave generation: interaction between
primary shear horizontal wave and second
harmonic Lamb wave
Shengbo Shan and Li Cheng

-

Mode-mixing-induced second harmonic A0
mode Lamb wave for local incipient
damage inspection
Shengbo Shan and Li Cheng

-

This content was downloaded from IP address 18.119.111.9 on 06/05/2024 at 07:14

https://doi.org/10.1143/JJAP.51.07GB14
https://iopscience.iop.org/article/10.1088/1361-665X/ad0393
https://iopscience.iop.org/article/10.1088/1361-665X/ad0393
https://iopscience.iop.org/article/10.1088/1361-665X/ab1fce
https://iopscience.iop.org/article/10.1088/1361-665X/ab1fce
https://iopscience.iop.org/article/10.1088/1361-665X/ab1fce
https://iopscience.iop.org/article/10.1088/1361-665X/ab1fce
https://iopscience.iop.org/article/10.1088/1361-665X/ab7e37
https://iopscience.iop.org/article/10.1088/1361-665X/ab7e37
https://iopscience.iop.org/article/10.1088/1361-665X/ab7e37
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A finite-difference time-domain technique for nonlinear elastic media is proposed, which can be applied to analyze finite amplitude elastic waves in

solids. The kinematic and the material nonlinearities are considered, employing a general expression for the strain energy of an isotropic solid

containing the second- and third-order terms of the strain components. The accuracy of the proposed technique is demonstrated by comparison

with the analytical solution for the plane longitudinal wave propagation with finite amplitude. Two-dimensional simulations are performed to

demonstrate the effectiveness of this formulation for Lamb waves. First, numerical simulations without the nonlinear effects are carried out, and

the spectral peaks obtained from the calculated waveforms are shown to agree well with the theoretical dispersion curves of Lamb waves. As an

example with the nonlinear effects, the harmonic generation in Lamb wave propagation is also demonstrated. The results show that the growth of

the second-harmonic mode occurs for an incident-wave frequency selected in accordance with the analytical phase matching condition.

# 2012 The Japan Society of Applied Physics

1. Introduction

There have recently been a number of studies of elastody-
namic problems using the finite-difference time-domain
(FDTD) method.1–6) This method is also referred to as the
velocity-stress finite-difference or staggered grid finite-
difference formulation,7) where Navier’s equations are
decomposed to a set of first-order partial differential
equations with respect to velocity and stress. The staggered
grid finite-difference formulation has practical advantage
for its stability and accuracy.8) Most of previous studies of
the FDTD simulation, however, assumed linear elastic
bodies. Recent research has demonstrated that nonlinear
features of ultrasonic waves can be used to evaluate the
material degradation sensitively.9–12) In this regard, it is
important to gain understanding of nonlinear response in
ultrasonic wave propagation. Especially, numerical methods
are indispensable for the analysis of guided wave modes
such as Lamb waves which are characterized by frequency-
dispersion and multiple-mode existence.

In the present study, a formulation to deal with finite
amplitude waves based on the FDTD method is presented.
The kinematic as well as the material nonlinearities are
considered in this formulation, employing a general expres-
sion for the strain energy of an isotropic solid containing the
second- and third-order terms of the strain components.

Some results of numerical simulation applied to Lamb
waves are shown based on this formulation. The dispersion
curves constructed by the numerical results are compared
to the analytical ones given by the Rayleigh–Lamb
frequency equations.13) Furthermore, in the situation where
a condition14) of phase matching of fundamental and
harmonic Lamb modes holds, cumulative harmonic genera-
tion is demonstrated as one of nonlinear effects in Lamb
waves.

2. Fundamental Equations of Nonlinear

Elastodynamics

To deal with finite amplitude waves, two sources of
nonlinearity should be taken into account: the material
nonlinearity and the kinematic nonlinearity. Accounting for

the contribution of the terms which are cubic in the strains,
the strain energy density W is given by

�0W ¼ 1

2
CijklEijEkl þ 1

6
CijklmnEijEklEmn; ð1Þ

where �0 is the mass density in the unstressed configuration,
Eij are the components of the Lagrangian strain tensor,
Eij ¼ 1=2ð@ui=@Xj þ @uj=@Xi þ @uk=@Xi @uk=@XjÞ, and Cijkl

and Cijklmn are the components of the second- and the third-
order stiffness tensors, respectively. The equations of
motion, the displacement-velocity relation, and the stress-
strain relation can be written by15)

�0
@vi
@t

¼ @Pij

@Xj
; ð2Þ

@ui
@t

¼ vi; ð3Þ

Pij ¼ Cijkl
@uk
@Xl

þ 1

2
ðCijklmn þ Cijln�km

þ Cjnkl�im þ Cjlmn�ikÞ @uk
@Xl

@um
@Xn

; ð4Þ
where Xi are the Lagrangian (or material) coordinates, vi the
velocities, ui the displacements and Pij the components of
a non-symmetric tensor known as the first Piola–Kirchhoff
stress tensor. When the solid is isotropic, the stiffness tensors
in eqs. (1) and (4) are given15) as

Cijkl ¼ ��ij�kl þ 2�Iijkl; ð5Þ

Cijklmn ¼ A

2
ð�ikIjlmn þ �ilIjkmn þ �jkIilmn þ �jlIikmnÞ

þ 2Bð�ijIklmn þ �klImnij þ �mnIijklÞ
þ 2C�ij�kl�mn; ð6Þ

where � and � are the Lamé elastic constants and A, B, and
C are the third-order elastic constants in isotropic media
used by Landau and Lifshitz,16) �ik is the Kronecker’s delta
and Iijkl ¼ ð�ik�jl þ �il�jkÞ=2.
3. Formulation of FDTD Scheme for Nonlinear Elastic

Media

3.1 Discretization

In this section we introduce a two-dimensional FDTD
scheme for finite amplitude elastic waves. Figure 1(a) shows�E-mail address: biwa@kuaero.kyoto-u.ac.jp
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the conventional FDTD staggered grid, where the nodes for
velocity and stress are only considered. For the nonlinear
problems considered in this paper, the time derivative of the
stress cannot be expressed only by the velocity gradients as
in the conventional FDTD formulation. For this reason, the
nodes of the particle displacements are also required in the
grid for nonlinear simulations as shown in Fig. 1(b). This
grid corresponds to the X1–X3 plane of the material
coordinates.

Also, the nodes of the stress tensor in the conventional
staggered grid should be replaced with those of the first
Piola–Kirchhoff stress tensor in this grid. Since the first
Piola–Kirchhoff stress tensor is generally not symmetric,
P13 and P31 are stored separately. Figure 1(b) shows the
schematic of the staggered grid for nonlinear simulations.

The stresses and the velocities in the conventional FDTD
scheme are alternately updated. In the FDTD scheme
with nonlinear effects, the displacements and stresses
ðu1; u3; P11; P33; P13; P31Þ are updated when the time step
index is integer and the velocities ðv1; v3Þ are updated when
it is half-integer. The updated displacements are given as
follows by discretizing eq. (3):

u1
n iþ 1

2
; j

� �
¼ u1

n�1 iþ 1

2
; j

� �

þ�tv1
n�1=2 iþ 1

2
; j

� �
; ð7Þ

u3
n i; jþ 1

2

� �
¼ u3

n�1 i; jþ 1

2

� �

þ�tv3
n�1=2 i; jþ 1

2

� �
; ð8Þ

where i and j are the indices of a grid point in the X1 and X3

direction, respectively. The superscript index n denotes the
time step and�t is its increment. By substituting the updated
displacements to eq. (4), the components of the first Piola–
Kirchhoff stress tensor are given by

P11
nði; jÞ ¼ c11u1;1

nði; jÞ þ c13u3;3
nði; jÞ

þ d1½u1;1nði; jÞ�2
þ d2½2u1;1nði; jÞ þ u3;3

nði; jÞ�u3;3nði; jÞ
þ d3f½u1;3nði; jÞ�2 þ ½u3;1nði; jÞ�2g
þ d4u1;3

nði; jÞu3;1nði; jÞ; ð9Þ
P33

nði; jÞ ¼ c11u3;3
nði; jÞ þ c13u1;1

nði; jÞ
þ d1½u3;3nði; jÞ�2
þ d2½u1;1nði; jÞ þ 2u3;3

nði; jÞ�u1;1nði; jÞ
þ d3f½u1;3nði; jÞ�2 þ ½u3;1nði; jÞ�2g
þ d4u1;3

nði; jÞu3;1nði; jÞ; ð10Þ

P13
n iþ 1

2
; jþ 1

2

� �
¼ c55 u1;3

n iþ 1

2
; jþ 1

2

� �
þ u3;1

n iþ 1

2
; jþ 1

2

� �� �

þ u1;1
n iþ 1

2
; jþ 1

2

� �
þ u3;3

n iþ 1

2
; jþ 1

2

� �� �

� 2d3u1;3
n iþ 1

2
; jþ 1

2

� �
þ d4u3;1

n iþ 1

2
; jþ 1

2

� �� �
; ð11Þ

P31
n iþ 1

2
; jþ 1

2

� �
¼ c55 u1;3

n iþ 1

2
; jþ 1

2

� �
þ u3;1

n iþ 1

2
; jþ 1

2

� �� �

þ u1;1
n iþ 1

2
; jþ 1

2

� �
þ u3;3

n iþ 1

2
; jþ 1

2

� �� �

� 2d3u3;1
n iþ 1

2
; jþ 1

2

� �
þ d4u1;3

n iþ 1

2
; jþ 1

2

� �� �
; ð12Þ

where commas are used to denote the partial derivatives with
respect to the material coordinates, whose discretized forms
are defined in eqs. (A�1) and (A�2) in the Appendix. The

coefficients c11, c13, c55, d1, d2, d3, and d4 are the linear
combinations of the second- or third-elastic constants in
isotropic media defined as follows:

(a)

(b)

Fig. 1. Geometry of (a) the conventional FDTD grid and (b) the FDTD

grid for nonlinear simulation.

N. Matsuda and S. BiwaJpn. J. Appl. Phys. 51 (2012) 07GB14

07GB14-2 # 2012 The Japan Society of Applied Physics



c11 ¼ � þ 2�;

c13 ¼ �;

c55 ¼ �;

d1 ¼ 3

2
� þ 3�þ Aþ 3Bþ C;

d2 ¼ 1

2
� þ Bþ C;

d3 ¼ 1

2
� þ �þ 1

4
Aþ 1

2
B;

d4 ¼ �þ 1

2
Aþ B: ð13Þ

Equation (2) gives the velocities of the next time step:

v1
nþ1=2 iþ 1

2
; j

� �

¼ v1
n�1=2 iþ 1

2
; j

� �

þ �t

�0
P11;1

n iþ 1

2
; j

� �
þ P13;3

n iþ 1

2
; j

� �� �
; ð14Þ

v3
nþ1=2 i; jþ 1

2

� �

¼ v3
n�1=2 i; jþ 1

2

� �

þ �t

�0
P31;1

n i; jþ 1

2

� �
þ P33;3

n i; jþ 1

2

� �� �
; ð15Þ

where the spatial gradients of the first Piola–Kirchhoff stress
tensor are defined in the Appendix [eq. (A�3)]. Using
eqs. (7)–(12), (14), and (15), we alternately calculate the
stresses and velocities according to when the time step index
is integer or half-integer, respectively.

The above discretization procedure applies to nodes in
the interior of the elastic solid. At the boundaries, the
computation of the stress components requires different
expressions of the displacement gradients from those for
the interior points given in the Appendix. Namely, at the
boundaries the central finite-differences are replaced by
certain forward (or backward) finite-differences using the
displacements of interior nodes.

3.2 Verification of the accuracy of nonlinear simulation

To confirm the accuracy of the proposed FDTD scheme
for nonlinear elastic media, we demonstrate a nonlinear
simulation of plane longitudinal wave propagation in
aluminum. Due to the one-dimensional nature of the
problem, each variable is computed at 20000� 1 grid
points, and the same numerical values are assigned to the

corresponding grid points located one-grid above and below
(Fig. 2). The longitudinal and transverse wave speeds of
aluminum are cL ¼ 6350m/s and cT ¼ 3130m/s, respec-
tively (� ¼ 56:0GPa, � ¼ 26:5GPa, �0 ¼ 2700 kg/m3),
and their third-order elastic constants are A ¼ �2:96�
1011 Pa, B ¼ �1:15� 1011 Pa, and C ¼ �9:35� 1010 Pa.17)

The excitation is made by imposing a continuous sinusoidal
displacement with the frequency 1.8MHz and the amplitude
10 nm to the left boundary. After collecting the computed
displacement waveforms at different spatial locations, we
obtain the displacement distribution u1ðX1; tÞ. The displace-
ment distribution is analyzed by two-dimensional Fourier
transform in the frequency–wave number plot UðK; f Þ,
where K and f are the wave number (inverse of wave
length) and the frequency, respectively. The two-dimen-
sional Fourier transform is calculated as

UðK; f Þ ¼
Z 1

�1

Z 1

�1
W �X1;�t

ðX1; tÞuðX1; tÞei2�ðKX1�f tÞ dX1 dt;

ð16Þ
where W �X1;�t

ðX1; tÞ is the following window function
centered at X1 ¼ �X1 and t ¼ �t,

W �X1;�t
ðX1; tÞ ¼

1

4
1þ cos

�ðX1 � �X1Þ
X

� �
1þ cos

�ðt � �tÞ
T

� �
exp � 3ðX1 � �X1Þ

X

� �2
� 3ðt � �tÞ

T

� �2( )
;

�X < X1 � �X1 < X and �T < t � �t < T

0; otherwise.

8>>>><
>>>>:

ð17Þ

In this analysis, we choose X ¼ 45mm and T ¼ 5 �s.
Figure 3 shows a result of the two-dimensional Fourier
transform analysis at �X1 ¼ 88mm, �t ¼ 26 �s. Because the

temporal and spatial widths of the window function are
finite, the peaks are not sharp but show some spread. We can
observe the second harmonic (3.6MHz) generated from the

Fig. 2. Schematic of the grid for plane longitudinal wave simulation.

Fig. 3. f–K distribution of the longitudinal wave simulation at the

propagation distance of 88mm. The color is based on natural logarithm of

the amplitude UðK; f Þ.
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fundamental wave (1.8MHz) in Fig. 3. The amplitude ratios
of the second harmonic and the fundamental wave are shown
in Fig. 4 as a function of the propagation distance X1. The
plotted points appear to align on a straight line. When fitted
by a quadratic function which passes through the origin, the
plots give the slope of 4:17� 10�4 m�1 at the origin.

A simple perturbation analysis15,18) shows that the long-
itudinal wave excited by u1ð0; tÞ ¼ u0 sin!t produces the
following wave containing the second harmonic component
as

u1ðX1; tÞ ¼ u0 sinð!t � kX1Þ

þ �

4

!u0
cL

� �2

X1 cos 2ð!t � kX1Þ; ð18Þ

� ¼ � 3

2
þ 2Aþ 6Bþ 2C

2�0cL
2

� �
; ð19Þ

where u1ðX1; tÞ denotes the particle displacement and
k ¼ !=cL. From eq. (18), the amplitude ratio of the second
harmonic and the fundamental components RðX1Þ is
proportional to the propagation distance X1. The amplitude
ratio RðX1Þ is written as

RðX1Þ ¼ �u0!
2

4cL2
X1 ¼ k0X1; ð20Þ

where k0 ¼ 4:16� 10�4 m�1 in the case of the 1.8MHz
longitudinal wave propagation in aluminum with the above-
mentioned parameters. The difference of the spatial slope of
the relative second harmonic amplitude obtained by the
numerical simulation and by the perturbation analysis is only
0.3%. Therefore, the proposed numerical simulation scheme
has enough accuracy in respect of the amplitude of the
second harmonic generation.

4. Application to Lamb Wave Propagation

Two examples of numerical simulations for Lamb wave
propagation are demonstrated, one without nonlinear effects
and one with nonlinear effects. Both examples are for a two-
dimensional cross section of an aluminum plate (2mm thick,
400mm long). A schematic of the simulation model is
displayed in Fig. 5. The grid size is �d ¼ 0:02mm and the
number of the grid points is 20000� 100. The size of time
step �t is 0.79 ns, which satisfies the stability condition.3)

The incident wave is excited from one side of the plate
by prescribing velocities and/or stresses. The zero-stress
formulation3,19) is applied to three other surfaces which are
assumed to be traction-free.

4.1 Example of linear simulation

A linear simulation based on the above formulation, omitting
the second-order terms of the spatial gradient of the particle
displacements in eqs. (9) to (12), is performed to confirm the
validity of the proposed technique. The excitation is given in
terms of the stress P11 at one surface of the model as shown
in Fig. 5. The excitation stress with the amplitude P0 is
expressed as

P11 ¼ P0AðtÞBðX3Þ: ð21Þ
The temporal waveform AðtÞ is a continuous sinusoidal
wave which initially increases its amplitude as Gaussian
function expressed as

AðtÞ ¼ exp � 3
t � tc
tc

� �2
" #

cosð2�f0tÞ (0 � t < tc),

cosð2�f0tÞ (tc � t),

8><
>: ð22Þ

where tc ¼ 6 �s. In order to perform numerical simulations
of symmetric and antisymmetric modes of Lamb waves
separately, the thickness profile of the excitation stress
BðX3Þ is given in the forms shown in Figs. 6(a) and 6(b).
The simulation was performed by increasing the frequency
f0 of the incident wave from 0.5 to 5.0MHz. The computed
snapshots of P11=P0 at different time steps are shown in
Fig. 7, for the antisymmetric-mode excitation at 3.0MHz.

Fig. 5. The configuration of the model of Lamb wave simulation used for

both linear and nonlinear simulations. The upper and the bottom sides of the

plate are free of stress.

(a) (b)

Fig. 6. Schematics of thickness profile of the excitation stress BðX3Þ
where d denotes the thickness of the plate, for the excitation of

(a) symmetric and (b) antisymmetric Lamb waves.

Fig. 4. (Color online) Variation of the relative amplitude of the second

harmonics with the propagation distance. The plotted circles are the result of

the numerical simulation. The solid line and the red dashed line are the

perturbation solution and the fitted function of the numerical results,

respectively.
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After collecting the computed surface displacement
waveforms at different spatial locations, the results are
analyzed by two-dimensional Fourier transform in the
frequency–wave number ( f–K) plot. The plotted points in
Fig. 8 denote the peaks of the f–K plot at �X1 ¼ 45mm,
�t ¼ 23 �s from the numerical simulation and the solid and
dashed lines are the theoretical dispersion curves given by
the Rayleigh–Lamb frequency equations. The plotted points
generated by the numerical simulation show good agreement
with the theoretical curves. The standard deviation of the
difference between the numerical simulation and the
theoretical dispersion curve is 1.4% in the wave number
for given frequencies. This indicates the validity of the
present FDTD technique.

4.2 Example of nonlinear simulation

While higher harmonics in dispersive Lamb waves do not
generally grow with the propagation distance, it is known
that certain special types of Lamb waves exhibit monotonic
growth of the harmonics with the propagation distance. The
fundamental wave and the second harmonic of these Lamb

wave modes have identical phase velocity, and therefore the
second harmonic Lamb wave grows monotonically with the
propagation distance as other elastic waves which have no
dispersive nature.20) Recently the authors derived four types
of the special Lamb modes14) which are expected to generate
higher harmonics in a cumulative manner. The four types
are identified as (i) Lamé modes, (ii) symmetric modes with
dominant longitudinal displacements, (iii) intersections of
symmetric and antisymmetric modes and (iv) extra Rayleigh
modes. As a specific example, the 1.8MHz S1-mode Lamb
wave satisfies the condition for (ii) in an aluminum plate
whose thickness is 2mm. Thereby we conducted numerical
simulations when S1-mode Lamb wave was excited with
the fundamental frequencies of 1.6, 1.8, and 2.0MHz. The
excitation is applied at one end of the plate in terms of both
velocities and stresses with their thickness profiles given by
an analytical Lamb wave solution at each frequency, with
the incident temporal waveform expressed as eq. (22) with tc
also 6 �s. The maximum amplitude of the thickness profile is
chosen so that the energy flux of the excited Lamb mode is
equal to that of the plane longitudinal wave with displace-
ment amplitude 10 nm. The simulation was performed with
nonlinear terms. The third-order elastic constants are the
same as those used in x3.2.

Figure 9(b) shows the result of the two-dimensional
Fourier transform at �X1 ¼ 100mm, �t ¼ 70 �s when the

Fig. 8. (Color online) f–K peaks of the numerical results and the

analytical dispersion curves by the Rayleigh–Lamb equations. The plotted

circles and crosses are the numerical results obtained by numerical

simulation of symmetric and antisymmetric modes of Lamb waves,

respectively. The solid and dashed lines are the theoretical dispersion curves

given by the Rayleigh–Lamb frequency equations.

Fig. 7. (Color online) The computed snapshots of P11=P0

(0 � X1 � 20mm) at the elapsed times (a) 4, (b) 6, (c) 8, (d) 10, and

(e) 12 �s.

(a)

(b)

Fig. 9. f–K distribution by the numerical simulation at the propagation

distance of 100mm, (a) without nonlinear effects and (b) with nonlinear

effects. The color is based on natural logarithm of the amplitude of UðK; f Þ.
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incident wave frequency is 1.8MHz. The corresponding
result for the linear case is shown in Fig. 9(a), obtained
with the same condition as Fig. 9(b) except that the
coefficients d1, d2, d3, and d4 are switched to zeros. Solid
and dashed lines in Fig. 9 denote the dispersion curves of the
linear theory. In Fig. 9(b), we can observe the second
harmonic (S2 mode, 3.6MHz) generated from the funda-
mental mode, which is not seen in Fig. 9(a). The amplitude
ratio of the second harmonic and the fundamental wave was
computed and shown in Fig. 10 as a function of the
propagation distance from the excitation area. The relative
amplitude of second harmonic from the 1.8MHz Lamb
mode increases linearly as a function of the propagation
distance, while those for other frequencies do not. This
shows that the cumulative second harmonic generation of
Lamb waves only occurs in special circumstances, and the
present numerical analysis gives its occurrence at the
theoretically predicted frequency.

5. Conclusions

A numerical formulation of the FDTD method for finite
amplitude ultrasonic waves has been presented. The
kinematic and the material nonlinearities are considered
employing a general form of the strain energy with the
second- and third-order terms of the strains. The simu-
lated results of Lamb waves based on this formulation
show good agreement with the theoretical dispersion
curves. With the proposed technique, the cumulative
second harmonic generation in Lamb waves can also be
simulated.

Appendix

The discretized expressions for the spatial gradients of
the displacements and the stresses are shown here, only
for nodes in the interior of the solid. Because the positions
of the nodes for P11 and P33 are different from those for
P13 and P31 in the staggered grid [Fig. 1(b)], we must
consider the spatial gradients of the displacements on
both kinds of positions. The spatial gradients of the
displacements u1;1, u3;3, u1;3, and u3;1 centered at ði; jÞ are
required to calculate P11 and P33, and those centered at
ðiþ 1=2; jþ 1=2Þ are required to calculate P13 and P31.
The gradients u1;1, u3;3, u1;3, and u3;1 centered at ði; jÞ are
expressed as

u1;1
nði; jÞ ¼ 1

�d
u1

n iþ 1

2
; j

� �
� u1

n i� 1

2
; j

� �� �
;

u3;3
nði; jÞ ¼ 1

�d
u3

n i; jþ 1

2

� �
� u3

n i; j� 1

2

� �� �
;

u1;3
nði; jÞ ¼ 1

4�d

�
u1

n iþ 1

2
; jþ 1

� �
þ u1

n i� 1

2
; jþ 1

� �

� u1
n iþ 1

2
; j� 1

� �
� u1

n i� 1

2
; j� 1

� ��
;

u3;1
nði; jÞ ¼ 1

4�d

�
u3

n iþ 1; jþ 1

2

� �
þ u3

n iþ 1; j� 1

2

� �

� u3
n i� 1; jþ 1

2

� �
� u3

n i� 1; j� 1

2

� ��
;

ðA�1Þ
where �d denotes the grid size.

On the other hand, the gradients u1;1, u3;3, u1;3, and u3;1
centered at ðiþ 1=2; jþ 1=2Þ are expressed as

u1;1
n iþ 1

2
; jþ 1

2

� �

¼ 1

4�d

�
u1

n iþ 3

2
; jþ 1

� �
þ u1

n iþ 3

2
; j

� �

� u1
n i� 1

2
; jþ 1

� �
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The spatial gradients of the first Piola–Kirchhoff tensor
required in eqs. (14) and (15) are discretized as
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Fig. 10. (Color online) Variation of the relative amplitude of the second

harmonics with the propagation distance.
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