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Ballistic model of a graphene bilayer field-effect transistor (GBL FET) was developed. It incorporates the exact graphene bilayer electronic

spectrum reminding a ‘‘Mexican hat’’. The isotropic minimum shifted from the center of a band results in a conductance step at low temperature

which was so far known for one-dimensional conductors due to conductance quantization. At room temperature a GBL FET exhibits an extremely

high transconductance in ON-state. It makes a GBL FET promising for high-frequency analog circuits. We also point out to possibility of electron

localization inside the channel on the top of potential barrier. # 2011 The Japan Society of Applied Physics

1. Introduction

Carbon-based materials are intensively investigated with
prospects of their future application in electronics and
optoelecronics. Compared to graphene monolayer the
graphene bilayer (GBL) possesses a field-tunable bandgap.
Most of theoretical papers are just devoted to bandgap
engineering.1,4,6) Indeed, the gap could be much augmented
with increasing transversal electric field (� ¼ 0:2 eV at
1010 V/m1)).

Semianalytical models of a ballistic double-gate GBL
field-effect transistor (FET) were recently developed. In
ref. 2 the characteristics of GBL FET were derived using
the Boltzmann equation in two limits: ballistic transport
and strongly collisional transport. The transconductance of
GBL FET in ac and dc regimes was analyzed. However,
an electronic spectrum was simplified and considered as
parabolic one with a constant effective mass independent of
transversal electric field.

A semianalytical model of a ballistic GBL FET with an
exact spectrum was presented in ref. 3. However, the authors
paid no attention to the impact of GBL spectrum features on
FET characteristics. The latter is the main goal of the present
communication. In particular, we emphasize the unusual
filling of different branches of spectrum inside the channel
and existence of localized states which do not contribute to
current. All that makes the ballistic model of a GBL FET
non-trivial compared to conventional semiconductors and
graphene monolayer.

2. The Exact GBL Spectrum and Its Approximations

The dispersion law of bilayer graphene calculated in tight-
binding approximation is1)

" ¼ �
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with numerical values of parameters herein: �1 ¼ 0:39 eV,
v ¼ 8� 105 m/s, the parameter � (the levels assymetry)
being dependent on the transversal electric field. The outer
sign corresponds to electrons and holes, the inner sign
belongs to two branches of spectrum: the lower one, to
some extent, reminds a ‘‘Mexican hat’’ and the higher one

is a quite parabolic valley. The exact dispersion law for
electrons is depicted with solid lines in Fig. 1 for the
parameter � ¼ 0:2 eV. In the same figure there are also
depicted the parabolic approximation to the spectrum in the
vicinity of the band minimum (dashed line) and the
parabolic approximation with effective mass m ¼ 0:053me

employed in ref. 2 (dotted line). The exact curve has a
minimum at

pmin ¼ �

2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

1 þ�2

�2
1 þ�2

s
; ð2:2Þ

while the corresponding energy is

"ð pminÞ � "min ¼ �1�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ�2

p ; ð2:3Þ

therefore, the gap is

�g � 2"min ¼ �1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ�2

p : ð2:4Þ

Further we accept the parameter � to be equal to 0.2 eV.
To sustain this value the direct voltages of approximately
�10V must be applied to the top and back gates. At
the same time, the operational gate voltages may be much
lower.

Fig. 1. Electronic spectrum of bilayer graphene (solid), parabolic

approximation in the vicinity of pmin (dashed) and parabolic spectrum with

effective mass m ¼ 0:053me (dotted).
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3. Analytical Ballistic Model of GBL FET: Low Drain

Voltage, Low Temperature

An analytical model of a graphene bilayer field-effect
transistor was developed. For a while, we restrict our
discussion by infinitesimal drain voltages and low tempera-
ture to derive the analytical expressions for conductivity.
The transistor under consideration is sketched in Fig. 2. For
numerical evaluations we shall use the following parameters
of the transistor: the top gate oxide thickness is d1 ¼ 1 nm,
the back gate oxide thickness is d2 ¼ 10 nm, the permittivity
of top and bottom gate insulators is �1 ¼ �2 ¼ 4. The
relevant electrostatic equations are

E1d1 þ E2d2 ¼ VG;

�1E1 � �2E2 ¼ 4�enðVC; T Þ;
E2d2 ¼ VC;

8<
: ð3:1Þ

where E1 and E2 are electric fields under the top gate and
above the back gate, respectively, VG is a top gate potential,
the back gate potential is supposed to be equal to zero, n is a
sheet density of electrons in the channel, VC is a channel
potential. In fact, it determines the height of potential barrier
between source/drain and channel when they are sustained
at zero voltage. Evidently, the potential barrier height with
respect to the drain and source contacts is varied by applied
voltages. Taking into account that commonly a top gate
dielectric is much thinner than that of the back gate
(d1=d2 � 1) one arrives at the solution

VG ¼ VC þ 4�ed

�1
nðVC; T Þ: ð3:2Þ

Hereafter, the goal is to invert this equation, i.e., to obtain
the dependence VCðVGÞ. The calculation of density nðVCÞ
can be performed analytically for zero temperature T ¼ 0,
more strictly, for fairly low temperature when the inequality:
kT � eVDS is valid, where VDS is a source–drain voltage.
Before the immediate calculations one should pay attention
to an unusual phenomenon which can occur due to
peculiarities of GBL spectrum. For the sake of clarity we
discuss the situation when the Fermi level in source and
drain contacts is placed fairly above the cap. The states
of electrons belonging to the cap of Mexican hat can be
localized inside the channel although there is a potential
barrier instead of a potential well. In the case those states
contribute to the charge density but do not contribute to the
current. Electrons with sufficiently low energy belonging to

brims are backscattered from the potential barrier and return
to the contact. In Fig. 3(a) their motion along the dispersion
curve is indicated. The sign of group velocity defines the
direction of motion in space, zero velocity in extrema of the
dispersion curve corresponds to stationary points. Analo-
gously, electrons belonging to the cap are also backscattered
and return to the contact [Fig. 3(b)]. After a positive voltage
is applied to gates the electrons belonging to brim states in
the contact with fairly high energy surmount the barrier and
penetrate into the channel. The associated brim states inside
the channel become occupied after the transition time
elapsed. The cap states inside the channel can be occupied
after much larger time passed due to scattering of brim
electrons. The cap states are localized inside the channel.
Their motion to and fro along the dispersion curve is
indicated in Fig. 3(c). As we are accentuated on high
frequency behavior of GBL FET, further we suppose the
cap states to be empty inside the channel. In this case the
density is

nðVCÞ ¼ e

Z 1

pmin

2�gp dp

ð2�Þ2 fFð"ð pÞÞ; ð3:3Þ

where g ¼ 4 is the electronic degeneracy factor in graphene,
including spin and band degeneracy, and fF is the Fermi
distribution function. At T ¼ 0 one easily obtains

nðVCÞ ¼ e2

�h�
2v2

�
ð�� eVCÞ2 � "2min

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� eVCÞ2 � "2min

q �
: ð3:4Þ

It follows the above equation that when the chemical
potential � ‘‘touches’’ the bottom of the conductance band
the carriers fill the channel [see Fig. 4(b)]. If ð�� eVCÞ <
"min there are no carriers in the channel [and thus no
screening, see Fig. 4(a)]. Then eq. (3.2) gives rise to the
evident equality VC ¼ VG. For the sake of simplicity, we
suppose that the position of Fermi level in the channel
corresponds to the middle of a gap when zero voltage
is applied to the top gate (VG ¼ 0). The conductance is

Fig. 2. (Color online) Schematic view of a transistor under simulation.

Fig. 3. Motion of electrons along the dispersion curve: brim electrons are

backscattered from the potential barrier (a), cap electrons are backscattered

(b), and cap electrons are localized in the channel (c).
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caused by the contribution of electrons in a narrow energy
interval between Fermi levels of source �L and drain �R,
�L � �R ¼ eVDS. Among them only electrons with positive
group velocities should be selected. After that the formula
for the current caused by infinitesimal source–drain voltage
dVDS is

dj ¼ ehvx dni ¼ e

Z
vx>0

"2½�L;�R�

gvx
d2p

ð2�h� Þ2
: ð3:5Þ

Introducing the x-component of the group velocity as

vx ¼ d"

dpx
¼ d"

dp
cos �; ð3:6Þ

one easily arrives at the expression for the current

dj ¼ ge

ð2�h� Þ2
Z �=2

��=2

d�

Z pð�RÞ

pð�LÞ

d"

dp
cos �p dp d�

¼ 2ge2pðeVCÞ dVDS

ð2�h� Þ2
: ð3:7Þ

The conductance as a function of channel potential is

G ¼ e2

h

gkðeVCÞ
�

: ð3:8Þ

In general, the function kðeVCÞ ¼ pðeVCÞ=h� could be
manifold, but, as it was mentioned above, the states on the
cap are supposed to be empty. Equation (3.8) leads to a
conclusion that a conductance of a BLG FET exhibits a step
at eVC ¼ "min. An explicit analytical formula for the value of
step reads

�G ¼ e2

h

gkmin

�
: ð3:9Þ

For � ¼ 0:2 eV the wave vector kmin ¼ 4 nm�1 and the
conductance step is �G ¼ 1:25� 104 (�	m)�1. Worth
mentioning the conductance step is not restricted by the
conductance quantum as it is proportional to the channel
width.

GBL is a unique semiconductor with an isotropic
minimum shifted from the center of a band (kmin 6¼ 0). Just

this kind of minimum results in a conductance step at low
temperature. To our best knowledge, we firstly report about
a possibility of a conductance step in two-dimensional (2D)
systems. So far it was known only in one-dimensional (1D)
conductors (due to conductance quantization).

In general, the conductance is proportional to the product
of density of states and group velocity. Therefore, for 1D
conductors it is constant no matter what is a spectrum. For
2D conductors with isotropic spectrum the shifted minimum
is crucial for existence of a conductance step. All con-
ventional semiconductors (silicon, germanium, A3B5) pos-
sess anisotropic shifted minima. An isotropic parabolic
minimum in the center of band in 2D systems of common
semiconductors results in a constant density of states. For
graphene monolayer with linear spectrum the density of
states is equal to zero at the band edge. For both cases no
conductance step seems possible. One more feature of GBL
is that the density of states at the band edge in GBL reveals
a singularity "�1=2. It originates in both circumstances: a
shifted isotropic minimum and a parabolic spectrum in the
vicinity of it. Amazingly, this singularity is the same as in a
semiconductor carbon nanotubes, therefore, the behavior of
the GBL channel reminds, to some extent, that of an array
of nanotubes. The singularity may be also important for
optoelectronic applications of GBL structures.

Potentially, eq. (3.8) could be used for calculation of
conductance G with respect to an arbitrary gate voltage VG

at zero temperature. However, this problem requires the
solution of a 4th order algebraic equation.

4. Semianalytical Ballistic Model of GBL FET:

Arbitrary Drain Voltage, Arbitrary Temperature

In case of arbitrary temperature the Fermi–Dirac distribution
function is engaged in the expressions for the charge density
and current. Herewith, for fairly small gap and/or fairly
high temperatures the hole contribution to the current and
charge may become substantial. Therefore, the charge
density is

nðVC; T Þ ¼ 2

�h�
2v2F

Z 1

qmin

½ fFð"; VCÞ � fFð";�VCÞ�q dq; ð4:1Þ

where q ¼ pvF and the second term corresponds to holes.
If a finite drain–source voltage VDS is applied the system
of electrostatic equation (3.2) should be properly modified:

E1d1 þ E2d2 ¼ VG;

�1E1 � �2E2 ¼ 4�e 	 1
2
½nðVCÞ þ nðVC � VDSÞ�;

E2d2 ¼ VC;

8><
>: ð4:2Þ

where nðVCÞ is a density caused by electrons moving from
the source (left) contact, while nðVC � VDSÞ is a density
caused by electrons moving from the drain (right) contact.
The upgraded expression for current is

j ¼ 2eg

ð2�h� Þ2
Z 1

�1
½ fFð"; VCÞ � fFð"; VC � VDSÞ�pð"Þ d": ð4:3Þ

The lower limit of integration equal to �1 means that holes
are involved into consideration due to identity of electron
and hole spectra in graphene and its modifications. This
equation can be integrated numerically. For the infinitesimal
drain–source voltage one can make a substitution

Fig. 4. Band diagrams for the transistor: (a) OFF-state, (b) threshold,

(c) ON-state.
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fFð"; VCÞ � fFð"; VC � VDSÞ ¼ � dfF
d"

VDS ð4:4Þ

and obtain the conductance

G ¼ dj

dVDS
¼ 2e2gpmin

ð2�h� Þ2
½ fFð"min; VCÞ þ fFð�"min; VCÞ�

þ 2e2g

ð2�h� Þ2
Z 1

pmin

½ fFð"; VCÞ þ fFð�"; VCÞ�dp

ð4:5Þ
This equation consists of two parts. One of them attributes
to an isotropic shift of GBL spectrum. Just this part results
in existence of a conductance step (3.8). Evidently, it
eliminates when pmin ¼ 0. The second part survives for
unshifted parabolic spectrum "ð pÞ 
 p2. The dependencies
of conductance vs gate voltage GðVGÞ were calculated
numerically using eqs. (4.5) and (4.1) for different tempera-
tures: T ¼ 4, 77, and 300K (Fig. 5). The current vs gate
voltage curves jðVGÞ for the source–drain voltage VDS ¼
0:2V are presented in Fig. 6. The most striking feature of
those curves is a high transconductance near the threshold
voltage which is an item of the next section.

5. Transconductance

In fact, the transconductance gm of GBL FET at T ¼ 0 near
threshold is infinite for both shifted and unshifted parabolic
spectrum models although the strength of singularity is
different. The goal of this section is to prove that the shift
of the band minimum leads to an unusual dependence
of conductance gmðT Þ upon temperature: the common
law gm 
 T�1 is no more valid. To estimate the trans-
conductance analytically one can use the following
equations:

e�VC ¼ kT ; ð5:1Þ
gm ¼ @ID

@VG
� �GW 	 eVDS

�VG
; ð5:2Þ

where �VC denotes the shift of the Fermi level from the
bottom of the conductance band, W is the channel width,
and k is the Boltzmann constant. Equation (5.1) defines the
energy interval of the occupied electron states at T 6¼ 0

when the level of chemical potential touches the bottom of
the conduction band (i.e., at the threshold voltage). This is
just the case when the transconductance as a function of gate
voltage VG attains its maximum. The next step is to derive
the dependence of VC over VG. In comparison with general
equation (4.1) the task is much simplified owing to eq. (5.1).
In eq. (4.1) one should

. substitute "min þ�VC ¼ "min þ kT instead of VC;

. expand "ðqÞ in series of powers of (q� qmin);

. neglect the hole contribution.
After that the expression for the carrier concentration is

nðVC; T Þ ¼ 2

�h�
2v2

Z 1

qmin

1þ exp
ðq� qminÞ2
2mv2kT

� 1

� �� ��1

q dq;

ð5:3Þ
where m is the effective electron mass in the vicinity of
p ¼ pmin, defined by the following equation:

m ¼ �1ð�2
1 þ�2Þ3=2

2v2�ð2�2
1 þ�2Þ : ð5:4Þ

Equation (5.3) can be taken analytically. After substituting
its value to the eq. (3.2) one obtains

eVG ¼ "min þ kT þ 8e2d

�1h�
2

� lnð1þ eÞmkT þ 0:91qmin

ffiffiffiffiffiffiffiffiffiffiffiffi
2mkT

v2

r" #
; ð5:5Þ

where 0.91 is an approximate value of the integralZ 1

0

dt

1þ et2�1
: ð5:6Þ

Shortly, the value of smearing can be presented as

�VG ¼ aT þ b
ffiffiffiffi
T

p
;

where a and b are functions of both spectrum and structure
parameters. For the above mentioned structure parameters
we obtain (here T is expressed in eV)

�ðeVGÞ ¼ 4:266T þ 0:8775
ffiffiffiffi
T

p
; ð5:7Þ

dG

dVG
¼ �GðT ¼ 0Þ

4:266T þ 0:8775
ffiffiffiffi
T

p : ð5:8Þ
Two important conclusions originate from eqs. (5.5) and
(5.8):

. The influence of charge in the channel is important;

. The shift of spectrum minimum results in the term
proportional to

ffiffiffiffi
T

p
in eq. (5.8) which does not exist for

simplified parabolic spectrum.

Fig. 5. Conductance vs gate voltage: T ¼ 300 (solid), 77 (dotted), and

4K (dot-dashed).

Fig. 6. Current density vs gate voltage for VDS ¼ 0:2V: T ¼ 300 (solid),

77 (dotted), and 4K (dot-dashed).
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At room temperature both terms in eq. (5.8) turned out to be
of the same order of magnitude, while at low temperatures
the second one dominates. The next question examined was
the agreement between the analytical formula (5.8) and
numerical calculations based on the exact spectrum. In
advance, one could not expect a good agreement between
those two approaches because the assumption (5.1) is not
really rigorous. However, the result depicted in Fig. 7
demonstrates a good agreement between numerical (dots)
and analytical (dashed curve) calculations in spite of
apprehensions. A simple analysis reveals that the maximum
transconductance is an increasing function of the parameter
of level asymmetry � which is dependent on a transversal
electric field. However, � cannot surpass the interlayer
interaction constant �1. A comparison of conductance
calculated for exact GBL spectrum and its parabolic
approximation used in ref. 2 is presented in Fig. 8. Near
the threshold gate voltage there is a substantial difference
at low temperature and quite good coincidence at high
temperature. The mismatch for high gate voltage at any
temperature is attributed to almost linear behavior of exact
spectrum for high energy. For � ¼ 0:2 eV the transconduc-
tance dG=dVG at room temperature obtained via numerical
calculations is 63� 103 ��1 m�1 V�1. The analytical calcu-
lation based upon eq. (5.8) gives 55� 103 ��1 m�1 V�1.
This value is by an order greater than that for an ultrathin
body fully depleted silicon-on-insulator FET (5� 103

��1 m�1 V�1) which is regarded as the most prospective
in silicon electronics.5)

6. Conclusions

Analytical and semianalytical ballistic models of a field-
effect transistor for the exact graphene bilayer spectrum
were developed. Even at high transversal electric fields when
a band gap achieves 0.2 eV this type of transistor does not
reveal a sufficiently big ON/OFF ratio. However, its high
transconductance (� 5� 104 ��1 m�1 V�1 at room tem-
perature) opens prospects to applications in analog circuits.
Unlike to other ballistic field-effect transistors, the trans-
conductance could be much augmented at lower tempera-
ture. The conductance exhibits an abrupt jump at low

temperature near the threshold gate voltage. To our best
knowledge, graphene bilayer is a unique two-dimensional
material where a conductance step is possible. So far, such a
phenomenon was known only for one-dimensional con-
ductors due to conductance quantization. The step originates
in an isotropic minimum in spectrum shifted from the center
of band (Mexican hat). An attention was also paid to a
possibility of localization of electrons on a potential barrier
top inside a channel. Plasma oscillations in such a resonator
excited by a current seem plausible.
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