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A practical secret-key-distribution protocol using general phase fluctuations is described. A preshared key is assumed and is used only inside a

transmitter and a receiver. The probabilistic property of signal-light fluctuations works with the preshared key to produce a difference in bit-error

rate between a receiver and an eavesdropper. Using the difference, new secret keys are generated information theoretically although a preshared

key is used. The probabilistic property of signal-light fluctuations is essential in this protocol, and classical fluctuations as well as quantum

fluctuations are applicable. Because signal states are classical, the system becomes tolerant of loss and amplification.
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1. Introduction

Quantum cryptography, founded by Bennett and Brassard,
has been widely studied and has given rise to interest beyond
a specialized research area because it provides extremely
high security.1,2) In addition to the original idea of using a
single photon, methods using an Einstein–Podolsky–Rosen
state3,4) or continuous quantum variables5,6) have been
proposed and demonstrated. These methods guarantee secret
key distribution between two authenticated participants
(Alice and Bob) based on so-called no-cloning theory7,8) or
the uncertainty principle of quantum mechanics. Although
quantum cryptography is well established theoretically, its
practical use is limited because a quantum state is not
tolerant of loss and amplification. Although the idea of a
quantum repeater was proposed to circumvent this limita-
tion, its technology is not very easily applied.9)

Quantum cryptography has established a valuable position
in the sense that it gives unconditional security, and conven-
tional cryptography gives computational security. However,
do we necessarily need unconditional security? Because
quantum cryptography is limited in practical use, we need
to balance attainable security with practical convenience.
In conventional cryptography, a seed key is normally used,
and an eavesdropper, hereafter referred to as ‘‘Eve’’, cannot
decrypt it very easily thanks to its computational complex-
ity. In this case, the most potentially serious problem is
that a decryption algorithm may be found at any time. If
cryptography did not allow Eve to use a more efficient
decryption method than a brute force attack against the seed
key, then the cryptography would have the highest security
among seed-key systems, and the security level of the
cryptography would definitely be evaluated quantitatively.
For example, we assume a seed key of 128 bits. When the
one-process time for checking a key is 1 ns, the brute force
attack requires on average 1022 years. If we could establish
such a cryptographic system that operates in realistic
circumstances, it would create a method different from
quantum and conventional cryptography. This report de-
scribes a method for this aim using the probabilistic property
of general phase fluctuations.

Secure communications are possible information theoret-
ically when the mutual information IðX; YÞ between Alice

and Bob is greater than the mutual information IðX; ZÞ
between Alice and Eve.10–13) Very simply, this is achieved
when Bob’s bit error rate (BER) is less than Eve’s.
References 10–13 assume that Eve’s channel is independent
of Bob’s and that they have independent fluctuations. Based
on this assumption, information-theoretic security is ob-
tained due to the fluctuations on Eve’s side. These references
principally assume free-space communications. Instead, we
consider fiber communications in this report, where only a
channel should be assumed, and we do not adopt the
assumption in refs. 10–13. In this case, how can we produce
this difference between Bob and Eve? Quantum–mechanical
properties can achieve it, and quantum cryptography enables
just that. However, we want to achieve it using general phase
fluctuations, which are classical fluctuations as well as
quantum fluctuations, from a practical point of view. One
candidate to support this idea is using a preshared key. The
importance of the preshared key has already been mentioned
in ordinary quantum cryptography as a tool for authentica-
tion.14) We aim to use the preshared key more actively. In
this sense, Hwang et al. proposed determining a basis by
using a preshared key.15) However, when the preshared key
is repeatedly used, a complete single-photon state is required
as a carrier. Yuen proposed using a pseudo-random number
generator together to determine a basis.16) In this case,
the effectiveness of the quantum fluctuations is required. In
these methods, the preshared key itself directly determines
a basis; therefore, the quantum nature is required to preserve
the advantage of Bob. Instead, this paper describes a
new protocol where a preshared key is used only inside
a transmitter and a receiver, and a transmission basis is
determined randomly. The receiver extracts meaningful
signals by means of the preshared key. Here, signal-light
fluctuations are essential because if this protocol is deter-
ministically processed, the difference between IðX; YÞ and
IðX;ZÞ is simply the information of the preshared key, and
a new key is never generated. We can break out of this
dilemma to some extent by using the probabilistic property
of signal-light fluctuations. When the preshared key is used
only to make Bob more advantageous in BER than Eve,
information theory, where the difference between IðX; YÞ
and IðX; ZÞ produces a secret capacity, is applicable. The
important thing is the probabilistic property originating in
signal-light fluctuations; therefore, the quantum nature is not
necessarily required if the probabilistic property is sufficient.�E-mail address: tatsuya.tomaru.yq@hitachi.com
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Although a preshared key is required, the key generation
itself is processed information theoretically; therefore, the
security level of this method is beyond that of computational
complexity, but is less than that of information-theoretic
security because a preshared key is used. In other words, this
method provides a new category of intermediate security
between quantum and conventional cryptography.

2. Protocol

We assume binary phase coding using two bases.
Phase coding involves not only phase-shift keying but also
differential-phase-shift keying. Alice and Bob share a series
of bases according to a preshared key. The schematic
difference in the situation between Bob and Eve is shown
in Fig. 1. Bob, who knows a basis, q- (a) or p-axis (b),
detects a binary signal with a low BER. However, Eve, who
does not know the basis, sees a four-valued signal, and her
BER is relatively high because of overlapped fluctuations.
The difference in the BER produces a secret capacity.

Eve is assumed to be able to eavesdrop on all signals that
are communicated between Alice and Bob in most advanta-
geous conditions. This means that Eve can eavesdrop on
signals just near the transmitter. We consider this Eve’s
simple eavesdropping only in the following because we treat
fluctuations classically. In quantum cryptography, an inter-
cept-resend attack is considered as a basic attack. Because
this type of attack changes a quantum signal state, this type
of analysis is important in quantum cryptography. However,
Eve can eavesdrop on all classical signals without disturbing
them. If Eve intercepted and resent classical signals
completely as information in phase space, it would be the
same as simple eavesdropping. If Eve intercepted and resent
classical signals with a four-value decision, Bob’s BER
would increase because Bob can potentially make a binary
decision for the original signals. The increase in BER allows
Alice and Bob to guess the existence of Eve by checking
Bob’s BER; therefore, simple eavesdropping is the most
powerful strategy for classical signals. Collective attacks and
coherent attacks, which are important attacks in quantum
cryptography,2,17) also cannot be beyond the simple eaves-
dropping strategy for classical signals.

The overall rough picture of the secret key generation
process is as follows:

1. Alice and Bob share a series of bases determined by a
preshared key.

2. Alice sends binary random numbers with random
binary bases.

3. Bob detects four-valued signals, judges random bases,
and checks them with shared bases.

4. When a random basis coincides with the shared basis,
the random-number datum is treated as a signal. When
the random basis does not coincide with the shared
basis, the random-number datum is treated as a dummy
signal.

5. Alice and Bob distill a secret key from raw
random-number signals through privacy amplifica-
tion.18,19)

This rough picture does not consider bit errors, so it is
incomplete. The important point is that Eve sees the random
numbers with random bases. However, Bob can extract
random-number signals using shared bases held inside a
receiver.

A complete protocol is schematically shown in Fig. 2, and
an example of random-number signals is shown in Fig. 3.
A transmitter includes three random-number generators
(RNGs), and the transmitter and receiver preshare two
seed keys (SKs). The output of ‘‘RNG1’’ is used as a raw
random-number signal, which is encrypted with ‘‘SK2’’,
is error-correcting-coded, and is held at ‘‘buffer 1’’. The
output of ‘‘RNG2’’ is used as a dummy signal and is held
at ‘‘buffer 2’’. ‘‘RNG3’’ determines the transmission basis.
When the output of RNG3 coincides with the shared basis
determined by SK1, a random number held at buffer 1 is
transmitted. When the output of RNG3 does not coincide
with the shared basis determined by SK1, a random number
held at buffer 2 is transmitted. Although SK1 is essential,
SK2 is not necessarily essential. The sum of SK1 and SK2
determines the size of the SKs.

At the receiver, two quadratures, i.e., the q-axis compo-
nent, Iq, and the p-axis component, Ip, are measured with
double homodyne detectors. A binary decision on each basis
is directly done through the sign of Iq and Ip. A four-value
decision is done through arctanðIp=IqÞ. Bob first judges a
signal basis based on the result of the four-value decision.
When the judged basis coincides with the shared basis
determined by SK1, then Bob treats the datum as a signal.
When the judged basis does not coincide with the shared
basis determined by SK1, then Bob treats the datum as a
dummy. However, many judgment errors occur because Bob
determines a basis from a four-valued signal. This basis-
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Fig. 1. (Color online) Binary signals in phase space. A crescent

indicates fluctuations in a signal state. (a) Binary signal states on q-axis

basis. (b) Binary signal states on p-axis basis. (c) Eve, who does not

know signal bases, sees four-valued signals.
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judgment error means that a dummy bit is treated as a signal
or that a correct signal bit is omitted as a dummy. For
example, in the basis-judgment error case in Fig. 3, the sixth
bit, which is underlined, is an incorrect extra bit. In this case,
the data bits following the basis-judgment-error bit become
errors with a probability of 0.5 because of the extra bit.
Then, because the bit errors become successive, Bob can
identify the region including the basis-judgment-error bit,
using a parity check function incorporated in an error-
correcting code. As a simple example, a parity of successive
five bits is inserted in the sixth bit in Fig. 3, which is written
in italics. When a basis-judgment error occurs, the parity bit
shifts because of the extra bit, and the following parity
bits have a probability of becoming wrong of 0.5. These
successive errors teach Bob the region including the basis-
judgment error. Although Fig. 3 shows a quite simple error-
correcting code to demonstrate how a basis-judgment error
causes an effect on parity bits, powerful forward error-
correcting codes should be incorporated in an actual
system.20)

Bob now knows the existence of a basis-judgment error
and the region that includes the error. Although an error-
correcting code can correct bit errors on definite bases, it
cannot correct a basis-judgment error. Bob must find the
exact position of the basis-judgment error exhaustively bit-
by-bit. Bob omits a bit in the region and checks the parity, or
he retrieves a bit that was originally omitted as a dummy and
checks the parity. Repeating these omission and retrieval
processes for all the bits in the region, Bob finds a raw
random-number bit stream that gives a low BER. Through
this retrieval process, the basis becomes definite and the
signal judgment is reduced to being binary, not four valued.
This fact is essential because the principle of obtaining the
secret capacity is that Bob makes a binary decision from a
binary signal and that Eve makes a binary decision from a
four-valued signal. In the basis-retrieval process, Bob does
not consume secret capacity. He uses only parity bits that are
necessarily incorporated as a basic tool. The retrieval
process is done exhaustively.

Through the basis-retrieval process, Bob obtains signals
that are judged binary. He decodes the binary signals to
error-corrected signals based on the original function of the
error-correcting code. Bob furthermore decodes them with
SK2. He now obtains raw random-number signals that
are the same as the output of RNG1. The secret capacity is
estimated from the BERs of Bob and Eve according to the
standard information theory, described in the next section.
A new secret key is obtained through privacy amplification
in the transmitter and the receiver to the full extent of
the secret capacity. Finally, secret communications are
achieved with one-time-pad cryptography using the new
secret key.

This protocol has two important points. The first is that a
basis is randomly determined and that the preshared key
is held inside the transmitter and the receiver. The trans-
mitted random signals with random bases never reflect the
preshared key in the key-generation process. Eve can never
obtain meaningful information in this stage. This advantage
is achieved in exchange of discarding half of the transmitted
data. The second is that the basis becomes definite through
the exhaustive basis-retrieval process using parity checking.
This process makes Bob more advantageous in BER than
Eve. In other words, the probabilistic property of signal-light
fluctuations works to the advantage of Bob and not Eve
due to the definiteness of the basis. This probabilistic
property and privacy amplification generate a new key. If
the privacy amplification is sufficient, Eve’s information
becomes asymptotically zero. Alice and Bob cryptograph-
ically communicate with each other using the generated new
key through a public channel. In this stage, the preshared
key-related information is first opened. If Eve performs,
for example, the chosen plane-text attack in this stage, she
obtains the information of the generated new key. However,
if the privacy amplification is sufficient, Eve cannot correlate
the generated key and the information on the random signals
that Eve might have obtained in the key-generation process.
Eventually, Eve cannot obtain the information on the
preshared key.

1 1 0 1 0 0 0 0 1 1 0 1 1 0 0
Transmitter

0 1 0 0 1 1 1 0 1 0 0 0 1 0 0
1 1 0 1 0 1 0 1

0 0 1 00 1 1
0 3 2 0 3 1 1 0 3 2 0 2 3 0 2

Shared basis
(SK1)

Random basis
(RNG3)
Signal
Dummy
Transmitting

Receiver
1. Without basis-judgment error

Receiving
Random basis
Shared basis
Signal

0 3 2 0 3 1 1 0 3 2 0 2 3 0 2
0 1 0 0 1 1 1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1 0 1 1 0 0

1 1             0 1    0    1 0 1

2. With basis-judgment error
Receiving
Random basis
Shared basis
Signal

0 3 2 0 3 0 1 0 3 2 0 2 3 0 2
0 1 0 0 1 0 1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1 0 1 1 0 0

1 1       0 0 1    0 1 0 1

Fig. 3. (Color online) Example of random-number signals operated based on this protocol. Transmitter: A signal or dummy signal is transmitted using

a random basis. Basis ‘‘0’’ indicates a q-axis basis, and basis ‘‘1’’ indicates a p-axis basis. Signals are transmitted as four-valued signals because of

binary signals on two bases, which are defined in Fig. 1(c). An arrow shows the coincidence of a shared basis with a random basis. The signal is

transmitted only in this case. A parity bit, which is the exclusive OR of the preceding five bits and is written in italics, is inserted in the sixth bit in the

series of signals as a simple example. The encryption with ‘‘SK2’’ is skipped. Receiver: When the basis judged from a received four-valued signal

coincides with the shared basis, the bit is treated as a signal. If no basis-judgment error occurs, random-number signals are recovered. If a basis-

judgment error occurs, the recovered random-number signals become completely wrong after the misjudged bit. The sixth bit, which is underlined, is

misjudged as an example.
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3. Secret Capacity

This protocol treats four-valued signals in the transmission
stage. Although signal states are four valued, the signals
themselves are binary. In this report, we call them four-
valued-state signals. When the channel capacity for the four-
valued-state signals is Cf , the mutual information between
Alice and Eve is given by

IðX;ZÞ � Cf : ð1Þ

Because Alice and Bob know the preshared key K, the
mutual information between them becomes conditional, i.e.,
IðX;Y jKÞ. Bob transforms the four-valued-state signals into
real binary signals through the basis-retrieval process using
the preshared key and parity checking in the receiver.
Because Bob makes binary decisions as a result, the mutual
information IðX; YjKÞ can be described by channel capacity
Cb for the binary signals. When the amount of information
�C is expended in the basis-retrieval process, the mutual
information IðX;Y jKÞ is given by

IðX; YjKÞ � Cb � �C: ð2Þ

The secret capacity is given by Cs ¼ max½IðX; Y jKÞ �
IðX;ZÞ�, and when a binary symmetric channel is assumed,
the secret capacity is given by

Cs ¼ hðpfÞ � hðpbÞ � �C; ð3Þ

where hð�Þ is the binary entropy function, and pf and pb

are BERs for four-valued-state and binary signals.11,12)

A basis-retrieval process using parity checking, described
in §2, is done with parity check symbols inherently involved
in an error-correcting code. Therefore, the basis-retrieval
process does not use special information except for the
ordinary parity check symbols for bit correction. For this
reason, �C should be zero for an appropriately designed
error-correcting code.

As described in eq. (2), secret capacity Cs of eq. (3)
is generated using the preshared key K. If the preshared
key directly determined bases, the preshared key could
only be used once. However, this protocol determines the
bases randomly, and the preshared key is used only inside
a transmitter and receiver. It is only used to make the mutual
information conditional and is not the origin of secret
capacity Cs. The probabilistic property of signal-light
fluctuations generates secret capacity Cs. This fact allows
for the repeated use of the preshared key.

The BERs for binary and four-valued-state signals are
estimated as follows: We assume a signal ‘‘0’’ on a q-axis
basis. Phase fluctuations are assumed to be sufficiently larger
than the quantum fluctuation, so we can treat the measure-
ment classically. When the probability phase distribution
of signal ‘‘0’’ is given by Pð�Þ, the BER for binary signals pb

is given by

pb ¼
Z ��=2
��

Pð�Þ d� þ
Z �

�=2

Pð�Þ d�: ð4Þ

Eve must make a binary decision from a four-valued-state
signal. When signals ‘‘0’’ and ‘‘1’’ on each axis are assumed,
as shown in Figs. 1(a) and 1(b), Eve judges a four-valued
‘‘0’’ or ‘‘1’’ signal in Fig. 1(c) as ‘‘0’’ and a four-valued ‘‘2’’
or ‘‘3’’ signal as ‘‘1’’. This judgment corresponds to a method

using the so-called ‘‘Breidbart basis’’, mentioned in ref. 21.
In this case, the BER for four-valued-state signals pf is given
by

pf ¼
Z ��=4
��

Pð�Þ d� þ
Z �

3�=4

Pð�Þ d�: ð5Þ

When probability distribution is given by

Pð�Þ ¼
ffiffiffiffi
2

�

r
1

��
exp �2

�

��

� �2
" #

; ð6Þ

the BER is concretely estimated as a function of fluctuation
��. Figure 4(a) plots pb and pf with respect to ��. For
example, when we set 25� for ��, we get pb ¼ 6:0� 10�13

and pf ¼ 1:6� 10�4, leading to a factor of 108 between
Bob and Eve. The plot of BERs can be translated to the
entropy of information, and these are shown in Fig. 4(b).
Quantity Cs

0, defined by Cs
0 ¼ hðpfÞ � hðpbÞ ¼ Cs þ �C,

gives an offset secret capacity but is nearly the secret
capacity because �C should be zero. The plot of Cs

0 almost
overlaps with the plot of hðpfÞ, and it hardly depends on
hðpbÞ, as shown in Fig. 4(b). In this estimation, fluctuations
are intentionally introduced once to control BER. We must
consider extra noise added in a real channel, where Eve
should be assumed to be able to detect signals without
the extra noise just near the transmitter. In this case,
hðpfÞ, which corresponds to the equivocation of Eve, is
not changed, but hðpbÞ, which corresponds to the equivo-
cation of Bob, is increased. However, if the extra noise is
no larger than the intentional fluctuations, secret capacity Cs

is not affected by the extra noise because Cs
0 is almost

solely determined by hðpfÞ. The extra noise is concretely
estimated in §5.
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Fig. 4. (Color online) (a) Plots of BER with respect to fluctuations ��,
assuming Gaussian fluctuations. pf and pb correspond to BERs of Eve

and Bob. (b) BER is translated to equivocation. The difference between

two equivocations gives Cs
0, which is the sum of secret capacity Cs and

�C.
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The secret capacity monotonically increases as fluctuation
�� increases, and it saturates at �� ¼ 60�. When we consider
only the secret capacity, the optimum fluctuations might be
�� ¼ 60�. However, hard basis-retrieval processing is re-
quired in a receiver in this case. In addition, an appropriate
BER exists, depending on an applied error-correcting code.
Practical optimum fluctuations will be determined by using
the tradeoff between these factors.

4. Discussion

We discuss the meaning of fluctuations. When we treat
fluctuations classically, even if a signal state is probabilisti-
cally distributed in phase space, the state itself is determin-
istic according to classical physics. This characterizes the
difference between classical and quantum fluctuations
because quantum fluctuation remains uncertain until the
corresponding observable is measured. However, this pro-
tocol uses only the notion that signal states are probabilisti-
cally distributed in phase space, and it does not matter
when a signal point in phase space becomes definite. The
important thing is that errors are intentionally introduced,
and they make Bob more advantageous than Eve. Therefore,
classical fluctuations are applicable to this protocol. An
analogy is found in quantum cryptography, too, where
intentional errors increase the performance of quantum
cryptography.17,22)

As repeatedly mentioned, the probabilistic property
of phase fluctuations is essential in this protocol because
the difference in BER between Bob and Eve produces the
secret capacity. Although Bob judges a basis with certainty
through the basis-retrieval process, the signal is still a point
in phase space according to the phase fluctuations. Bob sees
the point as a binary signal, and Eve sees it as a four-valued-
state signal. This is the origin of the secret capacity. Another
essential point of this protocol is that the preshared key is
used only inside a transmitter and receiver in a new-key
generation process. The preshared key is never reflected
in transmission signals. However, after privacy amplifica-
tion, the new secret key is used in cryptographic public
communications. If the privacy amplification is not enough,
some secret information leaks statistically. Therefore,
sufficient privacy amplification is important, and the privacy
amplification should be done with as long of a bit length as
possible to reduce statistical fluctuations. The problem of
statistical fluctuations is common in probabilistic phenom-
ena, including ordinary quantum cryptography. The dis-
cussed security is assuredly asymptotic behavior.

This protocol generates new keys information theoret-
ically using fluctuations under the condition of using a
preshared key. Although a preshared key is used, the
key-generation process itself is information theoretic, and
the conditional secret capacity of eq. (3) is obtained. The
security should be beyond that of computational complexity
due to the probabilistic property of the fluctuations, because
computational complexity is a security level, where Bob and
Eve are assumed to have completely the same information
except for a seed key and no probabilistic properties are
included. From this point of view, this protocol belongs to a
new category. We must establish the information theory on
the new category to describe it thoroughly. That is beyond
the scope of this report and is a future subject. According to

the concrete consideration in this report, this protocol
requires making a new category.

Because the new protocol assumes a preshared key,
it might be categorized as ‘‘a key growing protocol’’.14)

However, because the new key generation is processed
information theoretically under the condition of using a
preshared key, we call it ‘‘a key generation protocol’’ in this
report.

Ideal phase fluctuations are antisqueezing.23,24) We may
more easily use fluctuations of a laser diode (LD) operated
near its threshold, where phase fluctuations are large.
Alternatively, we have a selection where fluctuations are
superimposed at a phase modulator on an ordinary LD
output. The concrete protocol in this report is one achieve-
ment, which may be modified through a practical system
design.

5. Applicability to Long-Haul Transmission

Although Eve is not affected by the extra noise added in a
real channel due to the assumption, Bob is affected. We
estimate an example of the extra noise and discuss its effect
on the secret capacity. In this report, classical states are
assumed, and they can be amplified. Based on this fact,
we consider long-haul transmission because it is a good
example of showing the practicality of this protocol, and the
extra noise can be estimated. The principal limiting factor in
long-haul transmission is amplified spontaneous emission
(ASE). The ASE increases phase noise directly, and the
amplitude noise of the ASE is transformed to phase noise
through the Kerr effect of optical fibers.25) We roughly
estimate two kinds of phase noise. The dispersion of optical
fibers is assumed to be properly managed.

We assume an amplifier of gain g. When input signal light
is amplified, fluctuations are equally amplified, and ASE
noise is added. When the two quadrature fluctuations input
are �a1 and �a2 and when the vacuum fluctuation is �a0, the
amplified fluctuations are given based on the input-output
relation of an amplifier26,27) by

�a02i ¼ g�a
2
i þ �ðg� 1Þ�a2

0; i ¼ 1 or 2; ð7Þ

assuming a Gaussian distribution. Here, we added the
excess noise factor �, which is the population inversion
factor.25,28,29) The noise figure NF, which is the ratio of the
input signal-to-noise ratio to the output signal-to-noise
ratio, of an erbium-doped fiber amplifier (EDFA) is given
by NF ¼ 2� when the input average photon number �nn per
signal and the gain g are sufficiently larger than 1.28,29) A
phase-fluctuated signal state is crescent-shape distributed
in phase space, as shown in Fig. 1. To estimate the phase
fluctuations roughly, we approximate the phase fluctuations
using the phase quadrature fluctuations. In this case, the
input phase fluctuations are given by �a2=

ffiffiffi
�nn
p

. An amplifier
increases signals and fluctuations equally and adds ASE
noise. Thus, the phase fluctuations become

��0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�a2

2 þ �ðg� 1Þ�a2
0

p
ffiffiffiffiffi
g �nn
p : ð8Þ

We assume that a transmission system consists of N spans
of fiber length L, i.e., the total fiber length Ltotal is NL, and
that transponder amplifiers have the same gain. A signal
with an average photon number of �nn0 is output from a
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transmitter and is attenuated according to the relation �nn ¼
�nn0e
��x in the fiber transmission. We assume that the output

signal state has significantly larger fluctuations than vacuum
fluctuation, and we assume that the vacuum fluctuation
superimposed through the loss process of fiber transmission
is negligible.27) In this case, the phase quadrature fluctua-
tions �að0Þ2 output from the transmitter are attenuated
according to �a2 ¼ �að0Þ2 e

��x=2, similar to the signal, and
the original phase fluctuations �að0Þ2 =

ffiffiffiffiffi
�nn0

p
are conserved

in the loss process. A transponder amplifier increases
the attenuated signal intensity �nn0e

��L to the original intensity
�nn0, and the relation g ¼ e�L is satisfied. The transponder
amplifier also increases the attenuated signal fluctua-
tions �að0Þ2 e

��L=2 and adds ASE with gain g according to
eq. (7). Thus, the phase fluctuations is expanded toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�að0Þ2

2
þ �ðg� 1Þ�a2

0

p
=
ffiffiffiffiffi
�nn0

p
. The loss and amplification

processes are repeated N times, and the total phase noise
becomes

��N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�að0Þ22 þ N�ðg� 1Þ�a2

0

q
ffiffiffiffiffi
�nn0

p : ð9Þ

This is the direct ASE noise effect for phase fluctuations.
Next, we estimate phase fluctuations transformed from

the amplitude fluctuations. We define n2 as the nonlinear
refractive index of an optical fiber, Aeff as the effective mode
field area of the optical fiber, �0 as the free-space wave-
length, and P0 as the power of signal light. The nonlinear
phase shift per unit length caused by the Kerr effect is
ð2�n2=�0AeffÞP0 	 k2P0. The power P0 is given by hc �nn=�0T
using the duration T of a signal state, where h is the
Plank constant and c is the speed of light. The power
fluctuation �P is 2hc

ffiffiffi
�nn
p
�a1=�0T . The phase fluctuations

per unit length caused by the Kerr effect are k2�P. Again, we
assume that the vacuum fluctuation superimposed through
the loss process of fiber transmission is negligible, then the
amplitude quadrature fluctuations �að0Þ1 output from a trans-
mitter are attenuated according to the relation �a1 ¼
�að0Þ1 e

��x=2. The phase fluctuations caused by the Kerr effect
in the first span are given by

�’ð1Þ ¼
Z L

0

k2�P dx ¼ k2
2hc

ffiffiffiffiffi
�nn0

p

�0T

1� e��L

�
�að0Þ1 	 K�a

ð0Þ
1 :

ð10Þ
The amplitude fluctuations output from the mth transponder
amplifier are given by

�aðmÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�að0Þ21 þ m�ðg� 1Þ�a2

0

q
: ð11Þ

The phase fluctuations caused in the mth span are
�’ðmÞ ¼ K�aðm�1Þ

1 . The total phase fluctuations of N spans
are given by

�’total ¼
XN
m¼1

�’ðmÞ: ð12Þ

These are the phase fluctuations transformed from the
amplitude fluctuations through the Kerr effect.

We concretely evaluate two kinds of phase fluctuations
using eqs. (9) and (12). We assume a total fiber length Ltotal

of 10,000 km, one span of fiber length L is 80 km, i.e., the
number N of amplifiers is 125, the NF of an amplifier is
5 dB (� ¼ 1:58), the output intensity from a transmitter is
�4 dBm, the transmission rate is 10 GHz, the duration T

is 50 ps, and the fiber loss is 0.2 dB/km, i.e., gain g is 40.
For example, when the original phase fluctuations at the
transmitter ��0 are 25�, the fluctuations are expanded to
��N ¼ 26:6� according to eq. (9), considering �a0 ¼ 1 that
is consistent with eq. (6). When n2 and Aeff are 2:6�
10�20 m2/W30) and 85 mm2, respectively, then k2 is 1.2
rad/W/km, and K is 7:3� 10�5 rad. We assume that the
amplitude fluctuations at the transmitter are those of a
coherent state amplified with the gain g that is equal to that
of a transponder amplifier. In this case, the total phase
fluctuations �’total are 30.9� according to eq. (12). Because
��N in eq. (9) is the phase fluctuations themselves and �’total

in eq. (12) is the phase fluctuations transformed from
amplitude fluctuations, ��N and �’total are fluctuations of
different freedoms. Thus, the total phase fluctuations of the
two are given by ð��N2 þ �’total

2Þ1=2, i.e., 40.8�.
When phase fluctuations increase from 25 to 41�, Bob’s

BER increases from 6:0� 10�13 to 1:1� 10�5, according
to Fig. 4(a). However, because the increased BER is still
lower than Eve’s BER of 1:6� 10�4 at �� ¼ 25�, as shown
in Fig. 4(b), the secret capacity is obtained even if phase
fluctuations increase from 25 to 41�. This result indicates
that this protocol using phase fluctuations is tolerant of
extra noise corresponding to a 10,000-km transmission. We
showed only a concrete example, but the tolerance against
extra noise is generally understandable in Fig. 4(b).

6. Applicability of Error-Correcting Codes

This protocol uses an error-correcting code as an important
element. The secret capacity of eq. (3) is the so-called
Shannon limit except for term �C. We must use an
appropriate error-correcting code to obtain the secret
capacity. Recent progress with error-correcting codes has
been remarkable, and the performance of error correction
approaches the Shannon limit, e.g., low-density parity-check
(LDPC) codes.31,32) Figure 5 shows schematic performance
curves of error-correcting codes at a code rate. The BER
after an error-correcting process depends on the raw BER.
We assume using a code that has near Shannon-limit
performance. An LDPC code is representative of it. Because
existing error-correcting codes do not assume performing
the basis-retrieval process, the amount of information �C is
zero for the existing error-correcting codes. BER pb, which
corresponds to that for Bob, must be less than the threshold

C
or

re
ct

ed
 B

E
R

S/N

Raw BER
pf pt

S pt
n pb

Near Shannon-limit code (e.g. LDPC)

Ordinary code

pf’ pt
o pb’

Fig. 5. Schematic performance curves of error-correcting codes at a

code rate. When the raw BER is less than the threshold bit-error rate, i.e.,

pt
S, pt

n , or pt
o, then the corrected BER asymptotically approaches zero.
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BER pt
n of the near Shannon-limit code to make Bob’s error

correction, where pb is determined by including extra noise
in a transmission channel. BER pf , which corresponds to
that for Eve, must be more than the threshold BER pt

S for
the Shannon limit to obtain secret capacity information
theoretically. When these two conditions are satisfied, the
secret capacity for this protocol is obtained. Because BERs
pb and pf differ by multiple digits, as shown in Fig. 4(a),
these two conditions are easily satisfied if the used error-
correcting code has a near Shannon limit performance.

In estimating the secret capacity under the condition of
using an error-correcting code, we should assume that Eve
obtains the information of the Shannon limit determined by
BER pf because it gives the maximum amount of informa-
tion for a given BER. However, Bob cannot obtain the
information of the Shannon limit determined by pb. Here, we
first focus our attention to a code that has the Shannon-limit
performance in Fig. 5. When the raw BER is less than the
threshold BER pt

S, then the corrected BER asymptotically
approaches zero. This means that the amount of information
Bob obtains is constant at a lower BER than at the threshold
BER; therefore, the amount of information Bob can obtain
is determined by pt

S. A similar situation is applicable
for a near Shannon-limit code. However, the amount of
information is not determined by pt

n, but by pt
S because the

Shannon limit imposes bounds on it when a code rate
is given. Therefore, when we estimate the secret capacity
under the condition of using an error-correcting code, pb is
replaced by pt

S in eq. (3). Threshold BERs pt
S and pt

n are
the same order, and we can adjust the difference between pb

and pt
n, for example, in no more than one digit through a

system design. Because pf and pb differ by multiple digits,
we can achieve the condition pf 
 pt

S. In this case, the
secret capacity is determined almost solely by Eve’s BER, as
mentioned in §3. For example, when the phase fluctuations
�� at a transmitter are 25�, the secret capacity is 2:3� 10�3,
according to Fig. 4(b), which corresponds to a key gener-
ation rate of 11.5 MHz for a 10-GHz transmission rate,
where we considered discarding half the transmitted random
numbers and we set �C to zero. The secret capacity is
the value for an asymptotic behavior. To avoid statistical
leakage to Eve, privacy amplification should be strength-
ened. In this case, the key generation rate of 11.5 MHz
is reduced according to the strength of the privacy
amplification.

We assumed phase fluctuations of 25� as an example.
If we choose phase fluctuations of 45�, then the secret
capacity gives a key generation rate of 800 MHz for a 10-
GHz transmission rate, although a hard exhaustive basis-
retrieval process is required. Therefore, the key generation
rate varies widely depending on a system design. In this
discussion, we assumed phase fluctuations arbitrarily. How-
ever, an appropriate BER exists depending on the applied
error-correcting code, although the appropriate BER can be
designed to some extent. Optimum fluctuations should be
determined by considering these factors, and a key gener-
ation rate will be determined according to the optimization.

We mention the possibility of using an ordinary error-
correcting code that does not have very high performance.
When conditions pf > pt

S and pt
o > pb

0 are satisfied, where
pt

o is the threshold BER of the ordinary error-correcting

code, and pb
0 is the BER for binary signals, similar to pb,

then the secret capacity is always obtained. Because the
condition pt

o > pb
0 is inevitably satisfied to enable commu-

nications between Alice and Bob, the question is in the case
of pf < pt

S. In this case, the secret capacity based on eq. (3)
is not obtained. However, if pf

0 > pt
o is satisfied, where pf

0

is the BER for four-value-state signals, similar to pf , then
Bob is more advantageous in the error-correcting perform-
ance than Eve, according to Fig. 5. However, we cannot
use the general formula of eq. (3). To use this advantage,
we must formulate an equation corresponding to eq. (3),
depending on the concrete error correcting code.

We discussed error-correcting codes in two cases, i.e.,
whether they were near the Shannon limit or not, from
a viewpoint of secret capacity. We did not mention the
structure of error-correcting codes. However, the structure
is important to obtain better performance in this protocol
because this protocol needs to perform an exhaustive basis-
retrieval process, which is not considered in existing
error-correcting codes. An error-correcting code should
be optimally designed by taking the exhaustive basis-
retrieval process into account in the future to make this
protocol more efficient.

7. Summary

A practical secret key generation protocol that uses a
preshared key and general phase fluctuations was described.
New secret keys are generated information theoretically
using phase fluctuations under the condition of using the
preshared key. The security level of this protocol is less than
that of information-theoretic security because a preshared
key is used, but it is more than that of computational
complexity due to the probabilistic property of the fluctua-
tions. From this point of view, the protocol belongs to a new
category. The condition to obtain the secret capacity in
this new category is that relations pf > pt

S and pt > pb are
satisfied, where pt is the threshold BER of a used error-
correcting code. Even if relation pf > pt

S is not satisfied,
if relation pf > pt > pb is satisfied, Bob is more advanta-
geous than Eve. However, a formulation for the secret
capacity is needed in this case, depending on the used error-
correcting code. Because this protocol uses signal states
classically, the signal light is tolerant of loss and amplifi-
cation, satisfying the required conditions in realistic com-
munication systems. For example, long-haul transmission of
10,000 km is possible.
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