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Dispersion behavior of guided waves in hollow cylinders (cylindrical waves) was evaluated theoretically and experimentally.
Observed dispersion behavior suggests an assignment, different from the traditional one, of longitudinal (L-), flexural (F-) and
torsional (T-) modes which are consistent with Lamb waves and shear-horizontal (SH) mode waves. The L- and F-modes of the
cylindrical waves have characteristics which are asymptotic to Lamb waves and to waves in a solid cylinder. Experimentally,
wide-band cylindrical waves in aluminum pipes were generated using a laser-ultrasonic method. Wavelet transform of the
cylindrical wave signals was utilized for time-frequency analysis in order to compare them with the theoretical dispersion
curves. For the L(0, 1), F(1, 1), F(2, 1), L(0, 2), F(1, 2) and F(2, 2) modes of the cylindrical waves, which were efficiently
excited, theoretical and experimental dispersion curves agree with each other.
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1. Introduction
Hollow cylinders have many industrial uses, such as,

hydraulic and pneumatic control lines, heat-exchanger and
steam-generator tubes, chemical plant piping and oil and gas
pipelines, etc. Various terms are used for these cylinders de-
pending on their size and purpose, but we call all of them a
pipe. To ensure pipe reliability, ultrasonic testing has been uti-
lized effectively both before and during service and some test
procedures with cylindrical waves have been developed.1–10)

Cylindrical waves, or guided waves in hollow cylinders, are
anticipated to play more prominent roles for ultrasonic and
acoustic emission (AE) inspection of pipes. However, their
use is limited at present due to the complexity of multi-mode
waves and the presence of circumferential modes. Quantita-
tive analysis of these waves needs to be extended to the level
of bulk waves and surface or plate waves.

Gazis11) provided the theoretical basis of cylindrical waves
and his characteristic frequency equation is useful for a
computer-aided calculation of velocity dispersion. Many ex-
perimental studies followed. Fitch12) generated several kinds
of longitudinal (L-) and flexural (F-) mode cylindrical waves
using a pair of narrow-band piezoelectric transducers and ver-
ified the experimental results in comparison with the theo-
retical dispersion of cylindrical waves. Silk and Bainton1)

showed that the generation efficiency of the L(0, 1) mode,
an equivalent to the A0 mode Lamb wave, was larger than
that of the L(0, 2) mode, an equivalent to the S0 mode Lamb
wave. This feature is similar to the generation efficiency of
Lamb waves. Alleyne and Cawley2) showed that the relation
between the flaw size in the circumferential direction and re-
flection coefficient of the L(0, 2) mode was essentially lin-
ear. They also devised3) a transduction system for the genera-
tion of cylindrical waves utilizing 8 or 16 separate transducers
around the circumference of a pipe, and succeeded in the se-
lective generation of the F(8, 1) mode. Up to 100 m propaga-
tion of the L(0, 2) mode through butt welds and holding brack-
ets was also confirmed4) in an actual chemical plant piping
(76 mm, schedule 40). This long distance propagation is due
to a low energy leakage of the cylindrical waves. Loweet al.
showed5) a mode conversion from the L(0, 2) mode to F(1, 3)
mode13) due to a slit-type flaw and determined the conversion
ratio as a function of slit depth using both experimental and
finite element methods. Greenspon theoretically treated6,7)

2. Velocity Dispersion of Hollow Cylindrical Guided
Waves

2.1 Modes and dispersion curves
Phase velocity of the cylindrical wave is deduced from

the wave equation described in cylindrical coordinates with
a stress-free boundary condition at the inner and outer sur-
faces of a pipe.11) The cylindrical wave is divided into three
modes due to the vibration phenomenon. These are L-, F-
and torsional (T-) modes. The L-mode is an axially symmet-
ric mode, which is often called as the breathing mode.14) The
F-mode has nonaxially symmetric vibration and the T-mode
is the wave, which has a relatively large displacement in the
circumferential direction. The three modes are described as
L(0,m), F(n,m) and T(n,m), wheren andm are the circum-
ferential and radial (thickness) mode parameters, respectively.
Schematic illustrations of circumferential modes are shown in
Fig. 1. The number of nodes and loops in the circumference
is represented by 2n.

Meitzler15) and Zemanek16) classified all the high order
modes in the circumference into the F-mode. In their classifi-
cation, the T-mode has only the circumferential fundamental
mode (n = 0) and the modes with nonzero n are considered
as the F-modes. We propose here that then-parameter of the
T-mode is not limited to zero. By separating the higher or-
der T-modes (with non-zeron-values) from the F-modes, we
can consistently correlate the higher order T-modes as modes

the cylindrical waves that leak their energy into an outside
liquid. Similar theoretical computation was also reported by
Roseet al.8) It was shown experimentally that the attenuation
of the L(0, 1) mode due to liquid loading9) or a wet insula-
tor2) around the pipe was larger than that of the L(0, 2) mode.
Nishinoet al.10) reported a new source location method of AE
signals in a pipe, using a single transducer at the pipe end,
which was based on the group velocity difference of L(0, 1)
and F(1, 1) modes at a certain frequency.

In this paper, modal analyses of the cylindrical waves
were considered based on the velocity dispersion. The ve-
locity dispersion curves of the cylindrical waves and Lamb
waves are compared for several modes. Wide band excita-
tions of the cylindrical waves with a laser ultrasonic method
and time-frequency analysis utilizing the wavelet transform
were conducted for experimental verification.
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coupled only with shear horizontal mode (SH) waves at their
cut-off frequencies (the so-called longitudinal shear waves in
ref. 11). The cut-off frequencies of the modes are calculated
from the following frequency equation.11)

J ′n(kta)Y
′
n(ktb)− J ′n(ktb)Y

′
n(kta) = 0, (1)

whereJn, Yn, kt , a andb are 1st and 2nd kind Bessel functions
of n-th order, wave number of bulk shear wave, and outer and
inner radii of the pipe, respectively. Table I shows the several
lower order cut-off frequencies of the modes (using aluminum
data for calculation). These values will be compared to the
frequencies, at which the phase velocity of the T-mode takes
an infinite value.

By adopting the presence of the higher order T-modes, the
three modes (L-, F- and T-modes) can be interpreted due to
the wave propagation phenomenon. The L- and F-modes have
a very similar manner to the Lamb wave and the T-mode cor-
responds to the SH mode plate wave. That is to say, L- and
F-mode are the guided waves mainly consisting of the bulk
longitudinal and the bulk shear-vertical (SV) waves, and the
T-mode mainly consists of the bulk SH wave.14,17) In the new
classification, the two mode parameters,n andm, are simply
related to vibration phenomena. When them-parameter takes
an odd or even number in the L- and F-modes, the vibration
in the wall direction takes asymmetric or symmetric behav-
ior, respectively. In addition, the modes labeledm = 1 and
2 (the L(0, 1), F(n, 1), L(0, 2) and F(n, 2) modes), which are
equivalent to the A0 and S0 modes of the Lamb wave asymp-
totically approach the Rayleigh wave velocity (2840 m/s for
aluminum) at a high frequency. This feature is based on the
same reason why the A0 and S0 modes of the Lamb wave take
the Rayleigh wave velocity at a high frequency.17) That is to
say, the lowest two fundamental modes in the thickness di-
rection in the Lamb and cylindrical waves take the Rayleigh
wave velocity at a high frequency. This was not the case in
the previous classification;15,16) the Fp(n, 2) mode (subscript

Fig. 1. Cross-sectional illustrations of circumferential vibration modes.

Fig. 2. Phase (a) and group (b) velocity dispersions of the L- and F-modes
cylindrical waves propagating in a 5-mm-diameter and 1-mm-thickness
aluminum pipe.

Table I. Cut-off frequencies of fundamental and high order Torsional
modes.

Radial mode Circumferential mode parameter:n

parameter:m 0 1 2 3 4

1 — 224 486 726 961

2 1534 1556 1619 1720 1854

3 3047 3058 3089 3140 3210

4 4565 4571 4592 4626 4676(kHz)

p denotes the previous classification) is asymptotic to the bulk
shear wave velocity, while the Lp(0, 1), Lp(0, 2) and Fp(n, 1)
modes take the Rayleigh wave velocity at a high frequency.
The Fp(n, 2) and Fp(n, 3)modes are classified into the T(n, 1)
and F(n, 2) modes in our classification scheme, which pro-
vides consistency in the physical meaning. The particle dis-
placement of the F(1, 2) mode (or Fp(1, 3) mode in the pre-
vious assignment) was calculated and had symmetric distri-
bution in the wall direction.5) This result also supports our
classification scheme.

Figures 2(a) and 2(b) show phase and group velocity dis-
persions of the several lowest L- and F-modes of the cylin-
drical waves for an aluminum pipe of 5 mm diameter and
1 mm thickness (cl = 6400 m/s,ct = 3040 m/s). Thick dotted
curves in Fig. 2 indicate the A0, S0 and A1 Lamb wave dis-
persion curves for a 1-mm-thick aluminum plate, where plate
thickness is equal to the wall thickness of the pipe consid-
ered. When the thickness/diameter (t/d) ratio of a pipe is the
same, the shape of the dispersion curve is identical regardless
of the changes int or d. However, the horizontal frequency
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axis has to be adjusted. Thus, the horizontal axis in Fig. 2 is
normalized by the product of frequencyf (in kHz) and wall
thicknesst (in mm). This behavior is common to that of the
Lamb wave dispersion curves.18)

Phase and group velocity dispersion of the T-mode (in-
cluding the higher order circumferential modes) is shown in
Fig. 3. Dispersion curves of the T-mode are relatively sim-
ple because of coupling mainly with the bulk SH wave, but
several modes of group velocity dispersion are not monoton-
ically increased. The T(0, 1) mode is not dispersive because
the bulk SH wave is only coupled along the axial direction of
the pipe. Phase and group velocities of all the T-modes are
identical to the bulk shear wave velocity at largeft values on
the horizontal axis.

Note that the phase velocity starts to increase sharply as the
frequency approaches the cut-off frequency, given in Table I.
There is no energy flow along the axial direction at the cut-off
frequency. Only the standing waves in the thickness direction
exist. This nature is also equivalent to one of the Lamb wave
features.

2.2 Variation of dispersion curves for different thick-
nesses/diameters

We consider, next, effects of thickness/diameter (t/d) ra-
tio on the dispersion curves of the lowest two L-modes.
Figures 4(a) and 4(b) show the phase and group dispersion
curves of the L(0, 1) and L(0, 2) modes of aluminum pipe for
t/d = 1/2, 1/3, 1/5, 1/10 and 1/16, respectively. Note thatt/d
ranges from zero to 1/2 and thatt/d = 1/2 represents a solid
cylinder. Dispersion relations of the A0 and S0 mode Lamb
waves propagating in an aluminum plate are also shown by
thicker solid and dotted curves in Figs. 4(a) and 4(b), respec-
tively. With decreasingt/d values (thinner walled or larger
diameter pipes), the dispersion curve of the L(0, 1) mode ap-
proaches that of the A0 mode Lamb wave in a plate whose
thickness is equal to the wall thicknesst of the pipe. Simi-
larly, the dispersion curve of the L(0, 2) mode approaches that
of the S0 mode Lamb wave. Whent/d diminishes (= > 0),

Fig. 3. Theoretical dispersion of phase (solid curves) and group (dot-
ted curves) velocities of the T-mode cylindrical wave propagating in a
5-mm-diameter and 1-mm-thickness aluminum pipe.

Fig. 4. Phase (a) and group (b) velocity dispersions of the L(0, 1) and
L(0, 2) modes for different thickness/diameter of pipes. The dispersion
curves of the cylindrical wave gradually approach the Lamb wave disper-
sions.

L(0, 1) and L(0, 2) modes coincide with the A0 and S0 mode
Lamb waves because the waveguide is no longer a cylinder
but a plate. The dispersion relations of the cylindrical wave
were found to have a characteristic feature intermediate be-
tween the guided waves propagating in a solid cylinder and a
plate.

As shown in Fig. 4(b), the maximum group velocity of
the cylindrical wave is dependent ont/d. Whent/d > 1/5
(for the case of an aluminum pipe; this value depends on the
longitudinal and shear wave velocities), the L(0, 1) mode at
ft = 0 has the maximum group velocity. This velocity is

the so-called bar velocity,vbar = ct

√
(3c2

l − 4c2
t )/(c

2
l − c2

t ).
For t/d < 1/5, the L(0, 2) mode plays the dominant role in
determining the maximum group velocity, which is a func-
tion of t/d as shown in Fig. 4(b). Fort/d = 0, the max-
imum group velocity is equal to the sheet wave velocity,

vsheet = 2ct

√
1− (c2

t /c
2
l ), of the Lamb wave. This feature

suggests a possibility of estimating the wall thickness of the
pipe from the primary wave velocity measurement.19)

2.3 Comparison between cylindrical waves and Lamb
waves

Similarities between the theoretical dispersions of the
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Fig. 5. Phase (a) and group (b) velocity dispersions among the L(0, 1)
mode cylindrical wave (5 mm diameter, 1 mm thickness), A0 (1 mm plate
thickness) and S0 (5 mm plate thickness) mode Lamb waves. The L(0, 1)
mode asymptotically approaches the A0 mode Lamb wave and takes a sim-
ilar manner of the S0 mode Lamb wave in a relatively low frequency range.

Fig. 6. Phase (a) and group (b) velocity dispersions among the F(1, 1)
mode cylindrical wave (5 mm diameter, 1 mm thickness), A0 (1 mm plate
thickness) and A0 (5 mm plate thickness) mode Lamb waves.

minum pipe of 5 mm diameter, 1 mm thickness and 1000 mm
length was used as a specimen. A Q-switched Nd:YAG pulse
laser (Continuum, NY60) was employed to excite cylindri-
cal waves. Laser wavelength, beam diameter, pulse duration
and energy were 1064 nm, 5 mm, 5 ns and 10 mJ, respectively.
The laser beam was tightly focused on the center of the wall
thickness at the pipe end by a single plano-convex lens with
a focal length of 50 mm (see Fig. 7). The circumferential
beam position was at an angleθ from the reference posi-
tion. In the setup, laser excitation utilizes the plasma effect20)

and a compressive moment is driven at the irradiated posi-
tion. The cylindrical waves were detected by a heterodyne
Mach-Zehnder laser interferometer (BMI, SH-140) having a
20 MHz flat bandwidth with a frequency-doubled Nd:YAG
CW laser as a probe beam. The position of the probe beam
was fixed atθ = 0◦ in the circumference andz = 300 mm
in the wave propagation length from the pipe end in all ex-
periments. Detected signals of the cylindrical waves were

cylindrical and Lamb waves are examined for the L(0, 1) and
F(1, 1) modes. Figures 5(a) and 5(b) show the phase and
group velocity dispersions (solid lines) of the L(0, 1) mode
of aluminum pipe of 5 mm diameter and 1 mm wall thickness.
Dispersion curves of the S0 and A0 Lamb waves for 5-mm and
1-mm-thick plates are also given as dotted curves in Figs. 5(a)
and 5(b), respectively. The L(0, 1) mode is axially symmet-
ric and takes uniform displacement along the circumference
on the entire pipe. However, the wall itself vibrates anti-
symmetrically, similar to the A0 Lamb wave. Therefore, the
dispersion of the L(0, 1) mode is similar to that of the S0 Lamb
waves for a 5-mm-thick plate in the low frequency range,
while it asymptotically approaches the dispersion of the A0

mode propagating on a 1-mm-thick plate in the higher fre-
quency range, in lieu of approaching the S0 mode, as shown
in Figs. 5(a) and 5(b). In contrast to this L(0, 1) mode behav-
ior, the F(1, 1) mode produces the pipe vibration of antisym-
metrical nature; that is, the entire pipe segment moves up and
down. Additionally, the pipe wall translates similarly without
thickness changes. Thus, the F(1, 1) mode asymptotically ap-
proaches the two dispersion curves of the A0 mode. In the low
frequency range, the dispersion curves of the F(1, 1) mode
and A0 mode Lamb waves propagating on a 5-mm-thick plate
merge together. In the high frequency range, the dispersion
curves of the F(1, 1) mode and A0 mode Lamb waves propa-
gating on a 1-mm-thick plate tend to coincide. These trends
are shown in Figs. 6(a) and 6(b).

The above observation indicates that the dispersion relation
for the phase velocity of the L(0, 1) and F(1, 1) modes has the
characteristics that are bounded by the two Lamb wave dis-
persions of plates with the thickness identical to the diameter
or the wall thickness of the pipe. The dispersion relation for
the group velocity can be similarly considered, except that the
cylindrical velocity swings out in the intermediate frequency
range.

3. Experimental Verification of Dispersion Behavior
The dispersion behavior of the cylindrical waves is evalu-

ated experimentally and compared to theoretical prediction.
Laser ultrasonic methods were utilized for wide band excita-
tion20) and for detection21) in the experiment. Schematic illus-
tration of the present experiment is shown in Fig. 7. An alu-
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recorded using a digitizer (Tektronix, RTD720A) with a 40 ns
sampling interval.

In the first experiment, the position of the excitation laser
beam was fixed atθ = 0◦. Figure 8 shows a typical time
domain signal of the cylindrical waves detected. We can di-
vide the signal into two regions on the basis of arrival time
of the bulk shear wave. The boundary between the two re-
gions located at 98.7µs is shown as a vertical line in Fig. 8.
From the calculated group velocity data in Fig. 2(b), the
initial fast-arrival region consists of the components of the
L(0, 1), L(0, 2), F(1, 2), F(2, 2), L(0, 3), F(1, 3) and F(2, 3)
modes, because their group velocities are higher than the bulk
shear wave velocity (3040 m/s). Large amplitude and low fre-
quency components characterize the following slow-arrival
region starting at∼110µs. Other higher frequency modes
are present as well. The slow-arrival region is mainly due to
the F(1, 1) mode vibration as shown in the following time-
frequency analysis. Those arriving at 100–110µs correspond
to the L(0, 1), F(1, 1) and F(2, 1) modes. Gray-scale repre-
sentation of wavelet coefficients for the time domain signal
(Fig. 8) as functions of both group velocity and frequency is
shown in Figs. 9(a)–9(c). The wavelet coefficients are rep-
resented in the range of 0 to−15 dB in Figs. 9(a) and 9(b)

Fig. 7. Schematic illustration of the experiments. Diameter and thickness
of the aluminum pipe were 5 mm and 1 mm, respectively. Propagation
lengthz of the cylindrical waves were set to be 300 mm.

Fig. 8. Time domain signal of the cylindrical wave propagating along a
5-mm-diameter and 1-mm-thickness aluminum pipe. Arrow indicates ar-
rival time of bulk shear wave (ct = 3040 m/s).

and in the range of 0 to−10 dB in Fig. 9(c). Gabor function
was used as the mother-wavelet to calculate the wavelet coef-
ficient.22) The corresponding propagation time is also shown
in the right axis in Fig. 9. The peak power of the wavelet co-
efficient was located at 52.3 kHz of the F(1, 1) mode and was
set to be 0 dB for relative comparison. To compare with the
theory, the L(0, 1), F(1, 1), F(1, 2), F(2, 1), F(2, 2) and F(3, 2)
modes of theoretical dispersions are superimposed on the ex-
perimental results in Figs. 9(b) and 9(c). Dispersion curves of
the T-modes are omitted in Fig. 9. This is because the laser
interferometer has only the sensitivity for out-of-plane dis-
placement and cannot detect the T-modes. The experimental
results coincide well with the theoretical velocity dispersions.
The F(1, 1) mode was the most efficiently excited wave in
the present experiment. However, generation efficiency for
each mode is strongly dependent oninitial-value-problemof
cylinder wave generation,e.g. time and spatial distributions
of a generation source. The amplitude of the L(0, 1) or F(2, 1)
mode was the next largest (larger than−10 dB from the peak),
and that of the L(0, 2), F(1, 2) or F(2, 2) mode took a value be-
tween−15 dB and−10 dB.

The cylindrical waves generated by laser irradiation at five
different circumferential positions (θ = 0, 45, 90, 135 and
180◦) are shown in Fig. 10. Both the amplitudes and polar-
ities of the fast-arrival region including peak a were almost
independent ofθ . In contrast, the polarity of large amplitude
portions especially peak b, primarily due to the F(1, 1) mode,
changed atθ = 90◦ and the amplitude was the smallest at
θ = 90◦ (in fact, buried in other unidentified high-frequency
modes). This is because the out-of-plane displacement of the
F(1, 1) mode in the circumference is represented by a cosine
function. Figure 11 shows a schematic illustration of F(1, 1)
mode vibration in a cross-sectional view. When the irradia-
tion positionθ takes a value of 0◦ or 90◦, the maximum or
minimum amplitude, respectively, of vibration is obtained by
the laser interferometer. Figure 12 shows the amplitude ra-
tio of peak b to peak a [or F(1, 1)/L(0, 1)] as a function ofθ .
Closed circles indicate experimental data. Atθ = 90◦, the er-
ror bar is inserted because no clear peak was detectable. The
solid curve represents 8.8 cosθ . Coefficient 8.8 was deter-
mined by least-squares-fit for the experimental results. This
fit shows good agreement between the experiment and theory.

4. Conclusion
We evaluated the theoretical dispersion of the cylindrical

waves and showed characteristics of the phase and group ve-
locity dispersions.
(1) The higher order circumferential T-modes are defined

and a rationalized classification scheme of the L-, F-
and T-modes is proposed. It is shown that the L- and
F-modes are the guided wave equivalent of the Lamb
wave, and the T-mode is the guided wave equivalent of
the SH mode plate wave.

(2) Various modes of the cylindrical wave had characteristic
features bounded by those of the guided wave propagat-
ing along a solid cylinder and plate or by the Lamb wave
modes.

Wide-band excitation of the cylindrical waves was ex-
perimentally carried out using the laser ultrasonic methods.
Time-frequency analyses of the cylindrical waves using the
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wavelet transform were used to verify the theoretical disper-
sion curves. Experimental dispersion agreed well with the
theoretical dispersion for the L(0, 1), F(1, 1), F(2, 1), L(0, 2),
F(1, 2) and F(2, 2) modes of the cylindrical waves.
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