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Abstract
Artificial neural networks are a valuable tool for radio-frequency (RF) signal classification in many
applications, but the digitization of analog signals and the use of general purpose hardware
non-optimized for training make the process slow and energetically costly. Recent theoretical work
has proposed to use nano-devices called magnetic tunnel junctions, which exhibit intrinsic RF
dynamics, to implement in hardware the multiply and accumulate (MAC) operation—a key
building block of neural networks—directly using analog RF signals. In this article, we
experimentally demonstrate that a magnetic tunnel junction can perform a multiplication of RF
powers, with tunable positive and negative synaptic weights. Using two magnetic tunnel junctions
connected in series, we demonstrate the MAC operation and use it for classification of RF signals.
These results open a path to embedded systems capable of analyzing RF signals with neural
networks directly after the antenna, at low power cost and high speed.

1. Introduction

Radio-frequency (RF) signals are widely used to convey information and there is an ever increasing demand
for their accurate and quick analysis. Recently, artificial neural networks have proven successful for many RF
processing applications such as signal classification [1], medical diagnosis [2–4], RF fingerprinting [5], ges-
ture sensing [6], radar applications [7] or aerial vehicle detection and identification [8]. Furthermore, they
perform better than conventional algorithms, which rely on feature extractors and complex analysis tools, in
terms of resilience to real-world conditions (noisy electromagnetic environment, imperfect RF components
or antennas, etc) [1]. However, processing RF signals with neural networks requires analog signal digitiza-
tion and training on CMOS (complementary-metal-oxide-semiconductor)-based hardware such as graphical
processing units, tensor processing units or dedicated application specific integrated circuits. This process
leads to millisecond delays and consumes hundreds of watts, limiting the deployment of RF oriented artificial
intelligence on embedded systems [9, 10].

The need for compact and energy efficient RF hardware has stimulated research on emerging technologies
which exhibit native RF dynamics. In particular, spintronic nano-oscillators can receive, transform and emit
RF signals [11–13]. They have been proposed as RF emitters and receivers for on-chip communication [14–16]
and can implement key operations for RF signal processing, such as spectral analysis [17, 18]. Furthermore,
they are promising building blocks for neuromorphic computing [19, 20]. They have been implemented as
neurons in feed-forward neural networks [21], reservoir computing [22–24] and synchronization-based com-
puting [25–27]. Recently, Leroux et al [28] have proposed using magnetic tunnel junctions as RF synapses to
perform the multiply and accumulate (MAC) operation, i.e., a weighted sum in hardware, directly on ana-
log RF signals. The MAC operation is a key operation of neural networks, but it is particularly sensitive to
the Von Neumann bottleneck because of the necessity to access memory for reading and writing the weights.
Using emerging technologies to perform the MAC operation with collocation of memory and computing is
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thus projected to offer a hundred fold improvement in energy efficiency [29–34]. Magnetic tunnel junctions
can be scaled down to tens of nanometers wide [35] and monolithically integrated into CMOS circuits [36].
Thus, their use as RF synapses provides a path for compact, fast and energy efficient classification of RF signals.
Leroux et al used analytical work and numerical simulations to demonstrate that this MAC implementation
could perform the classification of handwritten digits images encoded into the RF signals powers [28].

In this work, we experimentally demonstrate that magnetic tunnel junctions can be used as RF synapses
with tunable positive and negative weights. We further demonstrate experimentally the MAC operation on
two RF inputs with two synapses, and use this MAC to perform a 2D classification of RF signals.

2. Methods: using a single magnetic tunnel junction as an RF synapse

We first demonstrate that a single magnetic tunnel junction can act as a synapse and multiply an RF power by
a tunable weight, as schematized in figure 1(a). The device is a nanopillar magnetic tunnel junction stack
of 250 nm diameter, made of SiO2//5 Ta/50 CuN/5 Ta/50 CuN/5 Ta/5 Ru/6 IrMn/2.0 Co70Fe30/0.7 Ru/2.6
Co40Fe40B20/MgO/2.0 Co40Fe40B20/0.5 Ta/7 NiFe/10 Ta/30 CuN/7 Ru, where thickness are indicated in nm.
It consists of a pinned reference ferromagnetic layer (2.6 nm Co40Fe40B20), a tunnel barrier (MgO with RA of
8 Ω μm2) and a free magnetic layer (2.0 nm Co40Fe40B20/0.5 nm Ta/7 nm NiFe, where the CoFeB layer is there
to ensure good crystallisation and is fully coupled to the NiFe layer such that they can be considered a single
layer). The magnetization of the free layer is in a vortex state. When we inject an RF current through a magnetic
tunnel junction, the core of the magnetic vortex in the free layer can be driven into gyrotropic motion, pro-
vided the input frequency is near the resonance frequency of the vortex. The tunnel magnetoresistance effect
translates these magnetic oscillations into resistance oscillations. The mixing of the input RF current with the
resistance oscillations at the same frequency give rise to a dc voltage across the junction, called a spin-diode
voltage [12, 37]. Figure 1(b) presents this rectified voltage versus the input frequency f RF. We observe a charac-
teristic resonance curve around the resonance frequency (marked by a dashed vertical line). The amplitude of
the voltage increases proportionally to the input power PRF. By injecting a direct current in the strip-line placed
above the device, we generate a local Oersted field collinear to the easy axis of the junction, as schematized in
figure 1(a). This in-plane field pushes the core of the magnetic vortex away from the center of the magnetic dot.
The potential well in which the vortex core oscillates is thus deformed, which leads to a change in its intrinsic
resonance frequency. Figure 1(c) illustrates this phenomenon: we observe the resonant response of the device
shifts to the higher frequency as the injected current increases. To demonstrate the synaptic operation, we fix
the input frequency f RF at 346 MHz (marked by a dashed vertical line in figure 1(c)), which is within the reso-
nance window of the magnetic tunnel junction. Figure 1(d) presents the output voltage VDC versus the input
power PRF, for various dc currents in the strip-line. We observe that the measured voltage (dots) shows a linear
dependence (dashed lines) on the power PRF, with the proportionality factor dependent on the dc tuning cur-
rent, i.e. on the resonance frequency. As a consequence, the magnetic tunnel junction performs the operation:

VDC = PRF × W

where W = W
(
fRF − fres

)
is the synaptic weight, which is a function of the difference between the resonance

frequency and the input frequency. Tuning the resonance frequency allows us to tune the synaptic weight. In
order to successfully implement the synaptic operation, it is critical to be in the low power linear regime where
the resonance frequency does not vary significantly with the input power, which is the case here. In future
implementations, the tuning of the weight could be achieved in a non-volatile fashion by placing a memristive
device on top of the free magnetic layer and electrically controlling its resonance frequency [38]. Note that a
single device is sufficient to implement both negative and positive values of the weight, which is an advantage
over other synaptic nanodevices [30].

3. Results: demonstration of the MAC operation with a synaptic chain

In order to demonstrate the MAC operation, we connect by wire bonding two magnetic tunnel junctions in
series head to tail (MTJ 1 and MTJ 2), forming a synaptic chain, as schematized in figure 2(b). Figure 2 shows
the characterization of the synaptic chain submitted to a single RF signal. In figure 2(a) we plot the voltage
across the chain versus the input frequency f RF and observe two resonance peaks, indicated by yellow and green
zones, corresponding to MTJ 1 and MTJ 2, respectively. Figures 2(c) and (d) show the effect of applying dc
tuning currents I1 and I2 in the strip lines above MTJ 1 and MTJ 2, respectively. We observe that the resonance
frequencies of both MTJs can be tuned within intervals larger than 100 MHz. Figures 2(e) and (f) show the
voltage across the chain at fixed input frequencies f 1

RF = 174 MHz and f 2
RF = 540 MHz respectively (dashed

lines in figures 2(c) and (d) respectively) versus the input power, for different dc tuning currents. Fixing the

2
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Figure 1. (a) Schematic of a magnetic tunnel junction performing a multiplication operation on an RF power PRF. The synaptic
weight is controlled through the resonance frequency fres by application of a local magnetic field via direct current injection in a
strip-line placed above the device. (b) Rectified dc voltage generated by the magnetic tunnel junction versus the frequency of the
input RF signal, for various input powers. A vertical dashed line indicates the resonance frequency of the magnetic tunnel
junction. (c) Rectified dc voltage generated by the magnetic tunnel junction versus the frequency of the input RF signal, for an
input power of 2 μW and for various dc currents applied in the strip line. The vertical dashed line marks the frequency 346 MHz.
(d) Rectified dc voltage versus the input power for an input frequency of 346 MHz and for various dc currents applied in the strip
line. All measurements were taken with a 6250 Oe perpendicular magnetic field applied to the device.

frequency at f 1
RF = 174 MHz (resp. f 2

RF = 540 MHz) makes it possible to address MTJ 1 (resp. MTJ 2).
We observe that both MTJs perform the expected synaptic multiplication: the measured voltage (dots) can be
described by a linear model (dashed lines). The synaptic weights W1 and W2 (slopes of the fits) are color coded
and depend on the tuning currents I1 and I2.

We now test the capability of this chain of two synapses to perform the MAC operation on two RF inputs.
The inputs are two RF powers P1 and P2, carried by signals at frequencies f 1

RF and f 2
RF respectively. We sum the

two RF inputs using a power combiner and inject the resulting signal into the synaptic chain, as schematized
in figure 3(a). We measure the output voltage generated by the chain for different combinations of P1, P2, W1

and W2 (i.e. for different combinations of P1, P2, I1 and I2). P1 and P2 were each varied from 2 to 12 μW by
steps of 2 μW while I1 and I2 were each varied from 0 to 10 mA by steps of 2 mA. In figure 3(b) we compare
the measured voltage across the chain for each combination (blue dots) to the ideally expected MAC voltage
computed from single RF signal measurements (black line):

VMAC = P1 × W1 + P2 × W2

with W1 = W1

(
fRF

1 − fres
1
)

and W2 = W2

(
fRF

2 − fres
2
)
. For each combination of I1 and I2, the values of W1

and W2 are extracted from the linear fits of the single RF signal input characterization (shown in figures 2(e)
and (f)). We observe that the experimental voltage matches closely the ideal MAC voltage, with a slope of 0.99
and a root mean square error over all data points of 0.41 μV. In the next section, we evaluate the quality of this
MAC operation by using it for RF signals classification then compare it to a simulated noisy MAC.

3
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Figure 2. (a) Rectified dc voltage generated by the chain of two magnetic tunnel junctions versus the input frequency, for an
input power of 12 μW. The yellow and green zones qualitatively indicate the frequency windows of MTJ 1 and MTJ 2 respectively.
The voltage was smoothed with a moving average of ten points. (b) Schematic of the chain of two magnetic tunnel junctions
subjected to an RF signal. (c) and (d) Rectified dc voltage versus the input frequency, for an input power of 12 μW, and for
various values of I1 while I2 = 0 mA (c) and for various values of I2 while I1 = 0 mA (d). The vertical dashed lines mark the
frequencies f 1

RF = 174 MHz (c) and f 2
RF = 540 MHz (d). (e) and (f) Rectified voltage versus input power, for an input frequency

of f 1
RF = 174 MHz (e) and f 2

RF = 540 MHz (f), and for various tuning currents in the strip lines above both MTJs. The color
bars in (e) and (f) indicate the synaptic weight associated to each MTJ. All measurements were taken with a 3500 Oe
perpendicular magnetic field applied to the devices.

Figure 3. (a) Schematic of the MAC setup. (b) Measured rectified voltage (blue dots) and ideal MAC voltage (black line) versus
the ideal MAC voltage. Each dot corresponds to a (P1, P2 , W1, W2) configuration. All measurements were taken with a 3500 Oe
perpendicular magnetic field applied to the devices.

4. Discussion: using the hardware RF MAC for RF signal classification

We illustrate the utility of this MAC operation by a simple classification example, shown in figure 4(a). The
inputs are the powers P1 and P2 of RF signals at frequencies f RF

1 and f RF
2. We apply a MAC operation to

the inputs using the synaptic chain. If the measured output voltage is positive we classify the (P1, P2) input
as ‘class 1’ (blue squares), while if the voltage is negative we classify the (P1, P2) input as ‘class 0’ (red dots).
Each combination of weights defines a boundary in the 2D plane of axis P1 and P2, and therefore constitutes a
possible classification task. Here we first evaluate the classification accuracy for a classification task defined by a
fixed predefined combination of weights. Figure 4(b) shows the classification results for one classification task,
corresponding to the following weight configuration: W1 =−0.50 V W−1 and W2 = 0.23 V W−1 (achieved by
applying I1 = I2 = 0 mA). The dashed line is the boundary between the two classes expected from this weight
configuration. The assigned classes are labeled by the blue squares and red dots. For this classification task, the
experimental accuracy obtained—i.e. the proportion of correctly classified (P1, P2) inputs—is 100%.

Figure 4(c) shows the classification results for all fixed weight configurations, where each black dot cor-
responds to a classification task defined by a weight configuration. The y-axis is the proportion of correctly
classified (P1, P2) inputs while the x-axis is the root mean square error of the measured voltage compared
to the ideal MAC voltage, computed over all (P1, P2) inputs. We observe that there is a correlation between
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Figure 4. (a) Schematic of the performed 2D classification. A MAC operation with two weights is applied to input (P1, P2). A
threshold is applied to the resulting voltage: values above 0 are classified as ‘class 1’ (blue squares) and values below zero as ‘class
0’ (red circles). (b) Classification results for all (P1, P2) inputs for one weight configuration: the dashed line represents the
expected boundary between the classes 0 and 1, while the blue squares and red circles represent the class of each input as
determined by the experimental voltage value. (c) Classification accuracy versus the error to the ideal MAC voltage. Each black
circle corresponds to the accuracy of the experimental MAC for a given weight configuration (i.e. a target classification
boundary). Each red cross corresponds to the accuracy of the simulated noisy MAC for a given weight configuration (same as the
black circles). Each red cross accuracy is computed over all (P1, P2) inputs and average over 100 random trials for each input.

classification accuracy and error on the MAC operation: a more precise MAC operation provides more accu-
rate classification. However, we observe a large spread in classification accuracy for each average MAC error.
Indeed, the classification accuracy is mainly dictated by the error introduced by inputs close to the boundary
(shown as the black dashed line in figure 4(b)). This error is itself largely dependent on the values of P1 and
P2 (larger powers tend to lead to larger errors). This dependency of errors on inputs explains the observed
spread.

The mean accuracy averaged over all classification tasks (weight configurations) of our MAC operation is
93.9%. In order to better evaluate the suitability of this accuracy, we perform the same classification with a
simulated noisy MAC. We use the same inputs and weight configurations as for the experimental MAC. For
each (P1, P2, W1, W2) configuration, we simulate the noisy MAC output by a voltage drawn from a normal
distribution around the ideal MAC voltage. The standard deviation of the distribution is the mean square
error obtained from the experiment for this weight configuration. The red crosses correspond to the classifi-
cation results for the simulated noisy MAC. The overall accuracy for all the weights configurations is 93.6%.
The fact that the experimental MAC and the simulated noisy MAC provide similar accuracies shows that the
experimental MAC does not suffer from systematic errors and is indeed suitable for classification of RF signals.

5. Conclusion

We have experimentally demonstrated that a magnetic tunnel junction can act as an RF synapse able to perform
the multiplication of RF powers on analog RF signals, with tunable synaptic weights taking both positive and
negative values. We have also demonstrated that several synapses in series can perform the MAC operation,
which is at the core of artificial neural networks. We illustrate the application of our system by performing
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a simple classification task on RF signals. This RF MAC implementation leverages the fact that each synapse
is frequency selective, i.e. it only responds to RF signals in its resonance window. We expect this frequency
multiplexing scheme to lead to the simplification of architecture for large neural networks, as a single signal
combining all inputs can be sent to all synapses of a layer. These results were demonstrated here with vortex-
state magnetic tunnel junctions, but could be applied to any spintronic resonator. Variability in the diameter of
the devices will lead to variability in the resonance frequency of the synapses, which we expect to compensate
for during the learning process as long as the variation range is lower than the tunability range. In order to
classify RF signals from various sources for applications, it is critical to have resonators responding to a wide
range of frequencies. Vortex-state magnetic tunnel junctions can exhibit frequencies from tens of MHz to sev-
eral GHz [11], and uniform mode magnetic tunnel junctions or spin Hall oscillators could act as synapses
with frequencies up to tens of GHz [26, 39]. The same stack of materials can lead to resonators of different fre-
quencies, depending on the size and geometry of each device. Therefore, one could build an array of synapses
of different resonance frequencies, able to respond to, and classify, RF signals over the 50 MHz–50 GHz fre-
quency range in parallel. Magneto-electrical effects can also be used to tune synaptic weights in a non-volatile
fashion. This opens the path for compact, fast and energy efficient devices, allowing RF-signal classification in
embedded systems.
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