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Abstract
Vulnerability detection and safety of smart contracts are of paramount importance because of their
immutable nature. Symbolic tools likeOYENTE andMAIANare typically used for vulnerability
prediction in smart contracts. As these tools are computationally expensive, they are typically used to
detect vulnerabilities until some predefined invocation depth. These tools requiremore search time as
the invocation depth increases. Since the use of smart contracts increases rapidly, their analysis
becomes difficult using these traditional tools. Recently, amachine learning technique called Long
Short TermMemory (LSTM) has been used to predict the vulnerability of a smart contract. In the
present article, we present how to classify smart contracts into Suicidal, Prodigal, Greedy, orNormal
categories usingAverage Stochastic GradientDescentWeight-Dropped LSTM (AWD-LSTM), a
variant of LSTM.We reduced the class imbalance by considering only distinct opcode combinations
for normal contracts and achieved aweighted average F1 score of 90.0%. Such techniques can be
utilized in real-time to analyze a large number of smart contracts and to improve their security.

1. Introduction

‘Smart contract’ (SC), a term coined byNick Szabo in 1996 [1], is an extended idea of a blockchain. Smart
contracts are digitally written set of transaction protocols which are automatically executed during transactions
betweenmutually distrusted nodeswithout themediation of any centralized trusted authority. Recently,many
platforms have been used forwriting smart contracts like ContractOriented Language (COL), Ethereum, and
Rootstock (RSK) [2, 3]. The contracts for Ethereum arewritten in the EthereumVirtualMachine (EVM) and
programmed through a language called Solidity [4]. As these smart contracts hold virtual coins worth thousands
ofUSD, they are prone to vulnerabilities like bug implantation in contracts by attackers. There are few
incidences of such exploitations of smart contracts. For example, in June 2016, a decentralized investment fund
namedDAO (Decentralized AutonomousOrganization) lost approximately $70million due to the stealing of
over 3.6million Ether [5]. InNovember 2017, a security alert was issued by Parity Technologies, saying that their
parity wallet (multi-sig wallets)was affected due towhich $300millionwas frozen [6]. Presently, due to the
availability of high computing capabilities, machine learningmethods are nowbecoming a popular choice in
analyzing data fromdifferentfields, such as analyzing bio-medical image scans [7, 8], Satellite images [9],
materials characterization [10, 11], sharemarket [12], etc. There are several examples of the adoption ofmachine
learning tools for different types of security attack detection. Du et al [13] used a deep LSTMmodel for anomaly
detection in systems. Similarly, Shen et al [14]used RecurrentNeural Network (RNN) having a sequence
memory architecture for forecasting security events on a computer. Shin et al [15] used LSTM for the
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identification of functions in binaries. These examples indicate thatmachine learning tools can be used to
understand and improve the functioning of these cryptocurrency-based transactions. It will be interesting to
further explore the utility ofmachine learning to predict the vulnerabilities, if present in the smart contracts.
Some relevant key-concept generally used in this article, which are useful in understanding the intersection of
machine learning and smart contract are briefly discussed in supplementary S1 is available online at stacks.iop.
org/IOPSN/1/035002/mmedia. The four different categories, (a) Suicidal, (b)Prodigal, (c)Greedy and, (d)
normal SCs (discussed in supplementary S1.4) are classified usingAWD-LSTMmachine learningmodel
(discussed in section 2.2). In the presentmodel, we have combined a pre-trained encoder with the ‘customhead’
to increase the classification efficiencymotivated byULMFIT, which is used for theNLP application [16].

2.Methods

2.1.Data preparation
The SCdata that is analyzed in this article is obtained from thework of Tann et al [17]. They sourced the original
data fromGoogle BigQuery and removed the false-positives present in it [18] and usedMAIAN to obtain the
labels based on vulnerability [19]. This pre-processed dataset has 892913 addresses, labelled infive different
vulnerability categories as Type-1: Suicidal, Type-2: Prodigal, Type-3: Greedy, Type-4 normal SCs, andType-5:

Figure 1.AWD-LSTMmodel architecture: Block-A corresponds to the Languagemodel-like architecture. Block-B corresponds to the
Classification network. Blue arrows indicate that the weights of the encoder layer of Block-A are copied to the encoder layer of Block-
B.
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Prodigal andGreedy both, with the number of SCs falling under them are 5801, 1461, 1207, 884273, and 171
respectively. Of these, we have selected the first four types. SCs of Type-5were not considered as Type-5 is a
composite category and has relatively fewer SCswhichwill create huge class imbalance.When an SC is invoked,
a new address is appended, whereas the opcode combination remains unchanged so a single specific opcode
combinationwill refer tomultiple instances of addresses.We can reduce the computational efforts by
considering only the distinct combinations of the opcodes truly representing distinct situations.While there
were 892742 distinct addresses, only 34822were distinct opcodes combinations. To reduce class imbalance, the
opcode combinations for Types 1–3were retainedwhile for Type-4, only the unique combinationswere
retained. Sowe have analyzed 40,877 opcode combinations (Types 1–4 as 5801, 1461, 1207, and 32408,
respectively).

2.2.Model: AWD-LSTM
Formulti-class classification, we have usedAverage Stochastic Gradient DescentWeightedDropped Long Short
TermMemory (AWD-LSTM)model. The brief structural description of thismodel is given in the supplementary
S2.We have trained and validated this AWD-LSTMwith the input and output vectors having the same length.
Formulti-class classification, we have replaced the ‘decoder’ layer of AWD-LSTMby some fully-connected
layers, known as customhead. The encoder infirst block gets trained during the first phase and acts like a pre-
trained encoder for the second block. It is better than random initialization, and the networks already contains a
lot of semantic information about the input data.The high-level idea of the present protocol is to combine a pre-
trained encoderwith the ‘customhead’ to obtain a better classification: this ismotivated byULMFIT as
implemented for theNLP application as articulated in[16]. Theweights of the Block B (figure 1), copied from

Figure 2.Variation of F1 score on validation dataset with epochs.

Figure 3.Confusionmatrix for all categories for opcodes belonging to the test sets (a) usingAWD-LSTMmodel and (b)using random
guess.
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the pre-trained encoder in BlockA are frozen for initial 4 epochs. Thereafter, all theweights are unfrozen and the
whole network is trained. The training details of themodel can be found in the supplementary S3.

3. Results

Wehave analyzed the performance of AWD-LSTMmethod on the dataset of 40,877 opcodes by calculating the
accuracy, precision, recall, F1 score, and confusionmatrix (discussed in supplementary S4). The variation of F1
score during training (figure 2) indicates that themodel quickly achieve very high F1 score. Themodel is trained
for 132 epochs. The curve hasfluctuations but overall it increases for higher epochs. The values of these
parametersdifferentmetrics used for performancemeasurement of ourmod areel is tabulated in Table 1.

The diagonal elements of the confusionmatrix,C (C1,1, C2,2 , C3,3 , C4,4) obtained usingAWD-LSTM
method as well as using randomguess (figure 3), are the numbers of correctly classified SCs. The rest are the
misclassified SCs. The confusionmatrix depicts that themodel correctly classified aminimumof 74% for all
types except for Type-2. The prodigal vulnerability evades appropriate detection.Whether this is because of
some technical nature of the Type-2 vulnerabilities or due to someweakness in the present scheme is unclear and
deserves further investigation.

ReceiverOperating Characteristics (ROC) curve is the plot between true positive rate and false positive rate
of predictions from aneural network for various classes (figure 4). If the data point belongs to Type 1 and the
prediction is other thanType 1, it is considered as a false positive. TheAreaUnder Curve (AUC)metric indicates
the neural networks’ capability to distinguish between various classes. The best performance is observed for
Type-3 (AUC> 99%), while theminimum, observed for Type-2 (AUC> 98%), is still very good.

Figure 4.Receiver operating characteristics (ROC) curve.

Table 1.Values of differentmetrics obtained using AWD-LSTMmodel and randomguess.

Classification AWD-LSTM (%) RandomGuess (%) AWD-LSTM (%)
PerformanceMeasure Class-wise Class-wise WeightedAverage

Accuracy 91.3(Overall) 65.2 (Overall) —

Recall Score 74.5(Type-1) 14.1(Type-1) 91.0

19.1(Type-2) 3.6 (Type-2)
74.6(Type-3) 2.8 (Type-3)
97.9(Type-4) 79.2 (Type-4)

Precision Score 82.4(Type-1) 14.1 (Type-1) 90.0

65.6(Type-2) 3.6 (Type-2)
94.4(Type-3) 2.8 (Type-3)
92.6(Type-4) 79.2 (Type-4)

F1 score 78.3(Type-1) 14.1 (Type-1) 90.0

29.6(Type-2) 3.6 (Type-2)
83.3(Type-3) 2.8 (Type-3)
95.2(Type-4) 79.2 (Type-4)

Weachieved a higherweighted average F1 score than obtained in [17].
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4. Conclusion

The adaptation of pre-trained neural networks is increasing in diverse areas of deep-learning applications as they
are proven to be useful in achieving better performance. The idea is to combine a pre-trained encoderwith the
‘customhead’ (section 2.2) to obtain a better classificationmotivated byULMFIT. In the present article, we have
presented similar adaptation formulti-class classification for the SCswherewe have used two neural networks
where thefirst network learns a significant amount of semantic information about the input data helping the
second network to achieve better performance. Thismethod produces acceptable results with an accuracy of
91.0% and an F1 score of 90.0% inmulti-class classification of SCs. The highAUC indicates robust performance
of the algorithm for the detection of vulnerabilities in the SCs. The performance of AWD-LSTMmodel is
comparedwith the randomguessmethod and it is shown that themodel is far superior to the randomguess
method. Thismodel can be utilized for development of smart contract security threat detection tools which can
be scalable with the number of SCs. Though the detection performance of the currentmodel is acceptable, it
solely depends on how correctly the SCs used for training themodel are classified. Thus in future, the challenge
of producingmore number of accurately classified SCs need to be addressed in order to further improve the
efficiency of themodel.We also outlined the scope and direction for future research for improved performance.
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