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Abstract
In the last three decades, carbon dioxide (CO2) emissions have shown a significant increase
from various sources. To address this pressing issue, the importance of reducing CO2 emissions
has grown, leading to increased attention toward carbon capture, utilization, and storage
strategies. Among these strategies, monodisperse microcapsules, produced by using droplet
microfluidics, have emerged as promising tools for carbon capture, offering a potential solution
to mitigate CO2 emissions. However, the limited yield of microcapsules due to the inherent low
flow rate in droplet microfluidics remains a challenge. In this comprehensive review, the
high-throughput production of carbon capture microcapsules using droplet microfluidics is
focused on. Specifically, the detailed insights into microfluidic chip fabrication technologies, the
microfluidic generation of emulsion droplets, along with the associated hydrodynamic
considerations, and the generation of carbon capture microcapsules through droplet
microfluidics are provided. This review highlights the substantial potential of droplet
microfluidics as a promising technique for large-scale carbon capture microcapsule production,
which could play a significant role in achieving carbon neutralization and emission reduction
goals.

Keywords: carbon capture, microcapsules, droplet microfluidic, high-throughput production,
carbon neutralization

∗
Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
2631-7990/24/032010+32$33.00 1

https://doi.org/10.1088/2631-7990/ad339c
https://orcid.org/0000-0003-3927-3797
mailto:ypchen@seu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/2631-7990/ad339c&domain=pdf&date_stamp=2024-4-4
https://creativecommons.org/licenses/by/4.0/


Int. J. Extrem. Manuf. 6 (2024) 032010 Topical Review

1. Introduction

Carbon dioxide (CO2) is a prominent greenhouse gas contrib-
uting significantly to global climate change [1]. CO2 emis-
sions come from various substantial sources, including fossil
fuel combustion [2–4], industrial activities [5] (e.g. steel and
mining industries), land-use and agricultural practices [6],
transportation [7], and building and construction [8]. Over the
past three decades, the mean growth rate of CO2 has been
gradually increasing, underscoring the significance of carbon
capture, utilization, and storage (CCUS) as a pivotal approach
to mitigate CO2 emissions [9–11]. Among the CCUS com-
ponents, carbon capture assumes primary importance as it
accounts for over 70% of the overall CCUS cost [12]. Thus,
it has become a focal point of extensive research efforts to
enhance efficiency and reduce the cost of carbon capture.

Microcapsules have emerged as an important tool for car-
bon capture. Especially, in recent years, droplet microfluidics
method that can precisely generate and manipulate droplets
inside microchannels provides a promising approach to create
the high-quality carbon capture microcapsules, as shown in
figure 1. It can be seen that droplets generated from micro-
fluidic devices are monodispersed, controllable and concent-
ricity, which provide the necessary and versatile templates
for the generation of carbon capture microcapsules. These
microcapsules can be further fabricated by using interfa-
cial polycondensation on the droplets or directly photocur-
ing the droplets. Subsequently, the microcapsules which have
absorbed CO2 can be heated in the regeneration process to
emit high-purity CO2 that can be compressed for storage or
utilization. It is worth noting that the generation performance
of droplets, including size, topological structure, through-
put and monodispersity, which is affected by the involving
microfluidic device configuration and hydrodynamics, dir-
ectly determines the characteristics of the produced micro-
capsules. For examples, with the same core diameter, CO2

capture capacity increases with decreasing shell thickness
[13]. Additionally, the mass transfer of CO2 and solution
was also affected by the microcapsule size, and the thermal
stability and CO2 absorption capacity can be adjusted by
controlling the core-shell volume ratio of the microcapsules
[14, 15]. Over the past two decades, various approaches
have been proposed to enhance the production rate of emul-
sion droplets, primarily focusing on including parallelized
microfluidic droplet generators [16–18] and splitting large
droplets into smaller batches [19, 20]. However, it is import-
ant to note that these methods necessitate precise fabrication
of microfluidic devices and delicate wettability modifica-
tions of microchannels, which are currently confined to the
laboratory development stage [21]. Therefore, it becomes
imperative to comprehensively review and summarize
the available high-throughput microfluidic approaches,
along with the fundamental microfluidic fabrication
methods.

This review focuses on the high-throughput production
of microcapsules for carbon capture using droplet micro-
fluidics (figure 2). It begins with an overview of different

microfluidic chip fabrication technologies, such as wet etch-
ing, soft lithography, hot embossing, capillary assembly, and
three-dimensional (3D) printing. It then discusses the micro-
fluidic generation of emulsion droplets and the relative hydro-
dynamic considerations that serve as the basis for achieving
microfluidic high-throughput production. Furthermore, a com-
prehensive assessment of the generation of microcapsules for
carbon capture via droplet microfluidics is provided, followed
by a forward-looking perspective on the potential for high-
throughput. By consolidating and evaluating these key aspects,
this review aims to provide an informed and practical guideline
for the selection of appropriate high-throughput microfluidic
approaches, thereby promoting progress toward the large-scale
utilization of microcapsules for carbon capture.

2. Microencapsulated solvents for carbon capture

Microcapsules designed for carbon capture commonly encap-
sulate a diverse range of solvents, including ionic liquids (ILs),
metal-organic frameworks (MOFs), and chemical absorption
solvents (figure 3). In the following section, an overview of the
distinctive characteristics of these solvents is presented.

2.1. ILs

ILs have garnered significant attention as promising candid-
ates for carbon capture, owing to their remarkable advant-
ages such as negligible vapor pressure, low energy loss, and
excellent thermal stability. As ionic compounds that maintain
a liquid state at room temperature, ILs offer a unique capture
mechanism reliant on weak interactions with CO2, primarily
through physisorption [34, 35]. Notably, the recycling process
of ILs entails low energy consumption, as their low thermal
absorption requires only 11 kJ·mol−1 [36]. Initially, ILs are
applied in post-combustion capture technology. However, it
should be noted that certain ILs can react with CO2 through
chemisorption, affecting CO2 capture. Additionally, the vis-
cosity of ILs reduces solvent losses but limits mass transfer,
resulting in low absorption rates. To address these challenges,
researchers have successfully synthesized task-specific ILs by
incorporating suitable moieties into conventional ILs, thereby
enhancing their absorption capacity. While detailed synthesis
methods of ILs have been previously summarized in reviews
[37–39], the focus of this review article will lie in exploring
the diverse applications of ILs, rather than delving extensively
into the synthesis procedures.

In recent studies, the utilization of ionic liquid in carbon
capture has been explored with promising results. Liu et al
[40] investigated the CO2 conversion efficiency of nanosheet
loading with ionic liquid and Co single atom, as shown in
figure 4(a-i). It demonstrated that the presence of ionic liquid
facilitates electron extraction, offering a feasible strategy for
CO2 conversion. Similarly, Vishwakarma et al [41] reported
on an interfacial catalytic reaction platform for carbon cap-
ture (figure 4(a-ii)), where immobilized ionic liquid catalysts
were used in a continuous-flow micro-reactor. This platform
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Figure 1. Schematic illustration of the application of carbon capture with microcapsules generated from microfluidic droplets. Reprinted
with permission from [22]. Copyright (2011) American Chemical Society. Reproduced from [23] with permission from the Royal Society of
Chemistry. Reprinted with permission from [24]. Copyright (2011) American Chemical Society. [13] John Wiley & Sons. © 2022 Wiley
Periodicals LLC. Reproduced from [25], with permission from Springer Nature. Reprinted with permission from [26]. Copyright (2011)
American Chemical Society.

effectively facilitated CO2 utilization and enhanced mass
transfer. For now, most of the ILs are still studied in the
laboratory because of the difficulty in the synthesis of high-
throughput of ILs and the high cost [37]. During the industrial
process, Chevron Company is a famous institution to use com-
mercial ionic liquid for the capture of CO2 [42]. The commer-
cial IL used in the industrial process by the Chevron Company
is [bmim] [acetate] with 14 wt. % water, which is able to
reduce CO2 greatly in a complex gaseous stream.

2.2. MOFs

MOFs represent a class of crystalline porous materials con-
structed from multi-metallic units called secondary building
units (SBUs) and organic linkers [48]. The final topology
structure of the material framework is predominantly determ-
ined by the SBUs, making them a critical factor in MOF
design. The structure of SBUs depends on several key factors,
including the types of metal ions, the structure of organic
ligands, the ratio of metal ions to ligands, and the types of
solvents [49]. The exceptional porosity and large surface area
of MOFs contribute to their high CO2 adsorption capacity,
surpassing that of disordered carbon materials which is less
than 2000 m2 g−1. Some MOFs exhibit surface areas reach-
ing 5000 m2 g−1 or even higher [50]. Moreover, the unsatur-
ated metal ligands of MOFs usually have a pH above 7, further
enhancing their CO2 adsorption capacity. For example, MOF-
74 demonstrates a remarkable CO2 adsorption capacity of up

to 6.25 mmol·g−1 at 25 ◦C and 1 bar [51]. To improve their
surface area, porosity, and thermal stability, the regulation of
orifice shape, orifice size, and the choice of materials can be
effectively employed [52]. Despite these advantageous proper-
ties, the practical industrial application ofMOFs is impeded by
their poor stability and tendency to form powders. Therefore, a
viable strategy to overcome these challenges involves combin-
ing MOFs with other materials such as metallic nanoparticles,
graphene, and metal oxides, which can enhance their stability
and facilitate industrial application.

Nandi et al [43] reported an ultra-microporous MOF,
with a structure shown in figure 4(b-i). This MOF exhib-
ited remarkable CO2/H2 selectivity and demonstrated CO2

is self-diffusivity. The unique ultra-microporous architecture
ensured exceptional stability, even in the presence of humid
gas streams. In another study, Kumar et al [44] investig-
ated the CO2 adsorption capabilities of five different mater-
ials (figure 4(b-ii)). The evaluation involved various tech-
niques, such as temperature-programmed desorption, thermo-
gravimetric analysis and mass spectrometry (MS). Among the
tested materials, MOFs, HKUST-1 and Mg-MOF-74, exhib-
ited relatively high adsorption capacities. However, these
MOFs showed sensitivity to humidity, presenting a challenge
for their future application in carbon capture. Furthermore,
Liang et al [45] presented a Cu (II) MOF characterized by
a high density of active sites (figure 4(b-iii)), which demon-
strated impressive CO2 adsorption performance, with a high
volumetric uptake of 171 cm3·cm−3 under ambient conditions.
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Figure 2. An overview of the themes discussed in this review, from microfluidic chip fabrication technologies to applications of droplet
microfluidics for carbon capture. Reproduced from [27] with permission from the Royal Society of Chemistry. Reproduced from [28], with
permission from Springer Nature. Reproduced from [29] with permission from the Royal Society of Chemistry. Reproduced from [30], with
permission from Springer Nature. Reprinted from [31], © 2020 Elsevier Ltd All rights reserved. Reproduced from [32] CC BY 4.0.
Reproduced from [33] with permission from the Royal Society of Chemistry. Reprinted from [14], © 2021 Institute of Process Engineering,
Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. [13] John Wiley &
Sons.© 2022 Wiley Periodicals LLC.

Zeolite 13X is one of the most common commercial MOFs
in the industrial carbon capture application. Especially, the
isostatic heat of adsorption for CO2 by the Zeolite 13X is
37.2 kJ mol−1, which is much higher than that of nitrogen and
methane [53].

2.3. Chemical absorption solvents

The chemical reaction with an alkaline solution has proven to
be an effective method for CO2 absorption, owing to the acidic
nature of CO2. This reaction leads to the formation of a weakly
bonded intermediate compound, which can subsequently be
regenerated [54]. The ideal chemical solvent for CO2 absorp-
tion exhibits several key characteristics, such as high reactiv-
ity with CO2, a large absorption capacity, high thermal stabil-
ity, low regeneration cost, minimal environmental impact, and
cost-effectiveness. Currently, commercial chemical absorp-
tion solvents used for the carbon capture are applied into
the post-combustion and pre-combustion capture technologies
[55]. These solvents are most used in industry for carbon cap-
ture. Monoethanolamine (MEA), one most used commercial

chemical absorption solvent, has a fast reaction rate with CO2

and its removal ratio of CO2 is able to keep high even at the low
CO2 concentration. However, the corrosivity and regeneration
energy requirement of MEA are high, which is unfavorable
for the industrial application [56]. Another chemical solvent,
Selexol, is able to capture CO2 in a combined cycle power
plant [57]. In addition, piperazine (PZ)-promoted potassium
carbonate (K2CO3), and concentrated aqueous PZ are also
belonged to the commercial solvents for the industrial carbon
capture applications [58].

Amine-based solvents are classified into primary, second-
ary, or tertiary, depending on the degree of nitrogen atom
substitution [59]. For example, MEA represents a typical
primary amine, characterized by one alkanol chain and two
hydrogen atoms bonded to a nitrogen atom. Primary and sec-
ondary alkanol amines exhibit rapid reactivity with CO2, form-
ing carbamates, while tertiary alkanol amines require the facil-
itation of the CO2 hydrolysis reaction to yield bicarbonates
[59]. The heat of the reaction involved with bicarbonate form-
ation is lower than that of carbamate formation, making ter-
tiary amines often blended with primary or secondary amines
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Figure 3. Microencapsulated solvents for carbon capture.

to reduce solvent regeneration costs. Despite MEA being a
relatively economical and well-established industrial techno-
logy, it faces certain challenges, including solvent degrada-
tion, high energy consumption during regeneration, and equip-
ment corrosion [60]. Therefore, exploring alternative solvents
with higher CO2 capacity and lower energy consumption is of
paramount importance.

Three classes of amine-modified sorbents based on their
respective preparation methods are summarized (figure 4(c-i))
[61]. Class 1 sorbents are prepared through physical impreg-
nation, while Class 2 sorbents are produced via covalent
tethering using silane linkage. Generally, Class 1 sorbents
exhibit higher CO2 capacity compared to Class 2 sorbents,
owing to their higher amine content. Class 3 sorbents, on the
other hand, are prepared through direct covalent tethering via
in-situ polymerization. In an insightful study, Gebald et al
[62] introduced a novel amine-based nano-fibrillated cellulose
and investigated its CO2 absorption/desorption process. The
material demonstrated exceptional stability over 100 cycles,
with a reduction in CO2 absorption capacity of less than 5%.

Sculley and Zhou [46] added zirconium content to the com-
plex amine-supported porous silica systems for carbon capture
(figure 4(c-ii)), which improved desorption kinetics effect-
ively. Furthermore, as shown in figure 4(c-iii), amine solvents
were combined with MOFs to realize the chemisorption of
CO2 [47].

In summary, the unique combination of low vapor pressure
and high thermal stability makes ILs highly advantageous for
applications in carbon capture.MOFs exhibit high surface area
and CO2 adsorption capacities, rendering them favorable can-
didates for carbon capture. Chemical absorption solvents, on
the other hand, are widely used in the industry due to their
cost-effectiveness. As a result, these three types of solvents
are commonly utilized in carbon capture processes. However,
besides the advantages, these solvents also have some certain
limitations, including restricted mass transfer and absorption
rates, which are summarized in table 1. It is benefit to enhance
mass transfer and improve absorption rates with the encap-
sulation of these solvents, so that droplet microfluidics is an
effective tool for carbon capture.
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Figure 4. Schematic illustration of the microencapsulated solvents: (a) ILs applied for carbon capture. (i) Illustration of the proposed photo
catalytic mechanism of CO2 photo conversion over IL/Co bCN. Reproduced from [40]. CC BY 4.0; (ii) an integrated gas-liquid microfluidic
system and overall process for carbon capture. Reproduced from [41]. CC BY 4.0. (b) MOFs applied for carbon capture. (i) A single-crystal
structure of MOFs generated using OLEX. From [43]. Reprinted with permission from AAAS; (ii) five materials investigated for their
ability to adsorb CO2. [44] John Wiley & Sons.© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (iii) the structure of acid-base
resistant MOFs for carbon capture. Reproduced from [45]. CC BY 4.0. (c) Chemical absorption solvents for carbon capture. (i) Three classes
of amine-modified sorbents; (ii) representation of an SBA-15 support with incorporated zirconium ions. [46] John Wiley & Sons.Copyright
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (iii) a metal–organic framework functionalized with structurally diverse
alcoholamines and alkoxyalkylamines. [47] John Wiley & Sons.© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Table 1. The summary and comparison of microencapsulated solvents for carbon capture.

Solvents ILs MOFs Chemical absorption

Absorption mechanism Physisorption (mainly) Physisorption Chemisorption
Stability Good thermal stability Poor stability Good stability
CO2 capacity Low High High
Cost Low energy consumption High Low
Advantages Solvents loss reduction;

Negligible vapor pressure
High surface area;
Porosity

Widely used into industry

Disadvantages Limited mass transfer; Powder statement;
Hard to be applied into industry

Solvents degradation;
High energy consumption;
Equipment corrosion

References [34–36] [49, 50] [59, 60]

3. Microfluidic chip fabrication technologies

The fabrication of microfluidic devices plays a fundamental
role in droplet microfluidics. A high degree of integration, spe-
cific geometric structures, and physicochemical features, such
as surface properties and basic materials, are all critical con-
siderations in the design ofmicrofluidic devices.When design-
ing microfluidic devices for droplet formation, it is important
to take into account the various characteristics of available
fabrication methods, such as transparency, channel wettabil-
ity, pressure resistance, cost, temperature resistance, andmore.
The important fabricationmethods, including wet etching, soft
lithography, hot embossing, capillary assembly and 3D print-
ing are introduced briefly.

In wet etching method, micromachined microfluidic
devices based on glass/silicon substrates are extensively util-
ized. These substrates possess several advantages, including
high thermal stability and effective solvent resistance, mak-
ing them suitable for use in high-temperature and organic
environments [63–65]. Additionally, the transparency of glass
facilitates the observation of droplet formation in the micro-
fluidic devices. However, the properties of glass and silicon
also present challenges during the preparation and application
process, such as brittleness and gas impermeability. The typ-
ical procedure of micromachining of glass/silicon is illustrated
in figure 5(a). The resulting microchannels are quasi-two-
dimensional, making them easy to fabricate in parallelized
microfluidic droplet generators. However, large-scale produc-
tion of glass and silicon microfluidic devices also requires
overcoming several impediments such as high costs and the
need for clean-room equipment.

Rapid prototyping is another widely used fabrication
method for the microfluidic device, with PDMS-based soft
lithography being the most commonly used approach. PDMS-
based soft lithography is notable for its speed and cost-
effectiveness, and the substrate can be reusable for mass pro-
duction and industrial applications [71]. The typical proced-
ure of PDMS-based soft lithography involves several steps
as shown in figure 5(b). The transparency of PDMS micro-
fluidic devices makes them favorable for experimental visual
observation as well. The entire fabrication process is carried
out under mild conditions because PDMS can be cured at

low temperatures and does not release hazardous substances,
making it a convenient and eco-friendly option. Nevertheless,
PDMS-based soft lithography also has its limitations. For
examples, the wettability of PDMS needs to be modified for
successful droplet formation, and the modified wettability is
not always long-lasting. Additionally, the bonding part can-
not withstand the high pressure in the microchannel of the
device, so there is a risk of fluid leakage when using a work-
ing fluid with high viscosity. Moreover, there are limitations in
the applications of the PDMS microfluidic devices for organic
materials owing to the swelling of PDMS and the deformation
of the microchannels [72–76]. Compared to the micromachin-
ing of glass/silicon, PDMS soft lithography is more widely
used for water-in-oil (W/O) droplet formation because of its
inherent hydrophobicity [77]. It is worth noting that PDMS-
based soft lithography is convenient for the mass production
of droplet generation since microfluidic devices are highly
replicable.

The hot embossing technology is often used to fabric-
ate microfluidic devices based on polymethyl methacrylate
(PMMA) for visualized droplet generation. PMMA is a widely
used amorphous thermoplastic [78]. The hot embossing pro-
cess involves heating the siliconmold and PMMAsheet, press-
ing the mold into the PMMA sheet to transfer the patterns,
cooling the pattern-carrying PMMA, and finally bonding a
transparent cover onto the PMMA substrate for visualization
(figure 5(c)) [79, 80]. Similar to PDMS, PMMA is naturally
hydrophobic, making it suitable for producing W/O emul-
sions without the need for surface modification. There is a
risk that PMMA can collapse during hot embossing, which
can affect the reliability of droplet generation. In particular, if
the reservoir in a step emulsification device collapses, the con-
finement gradient during droplet generation will be destroyed,
leading to emulsification failure. Therefore, although PMMA-
based hot embossing lithography is an available alternative to
PDMS-based soft lithography, it is currently less popular in
the laboratory.

Microfluidic devices fabricated by above methods are typ-
ically quasi-two-dimensional planar structures. Consequently,
the droplets generated in these microchannels can easily con-
tact with the channel walls, and in the worst case, collapse
and stagnate due to their better wettability than the continuous
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Figure 5. Schematic illustration of the process for fabricating glass microfluidic devices by (a) wet etching. Reproduced from [27] with
permission from the Royal Society of Chemistry. [66] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;
(b) soft lithography. Reproduced from [67]. CC BY 4.0; (c) hot embossing process: (i) conventional and (ii) roller to roller. Reprinted from
[68], © 2019 Elsevier Ltd All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 10th
International Conference of Materials Processing and Characterization, Reproduced from [69]. © IOP Publishing Ltd All rights reserved;
(d) capillary assembly: (i) capillaries with different structures; (ii) photo of capillary microfluidics assembly. Reproduced from [30], with
permission from Springer Nature. (e) 3D printing. Reproduced from [70]. © The Author(s). Published by IOP Publishing Ltd CC BY 4.0.
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phase. To avoid such problems, wettability modification of
themicrochannel is necessary, particularly duringmicrofluidic
droplet generation. However, selectively modifying specific
parts of microchannels in these microfluidic devices remains a
challenge. The 3D microchannels fabricated through the mod-
ular assembly method allow for the localized wettability treat-
ments to be performed separately on different modules, mak-
ing it easier to fabricate devices with multiple levels of droplet
generators. Currently, the most widely used modular assembly
method for manufacturing microfluidic devices is the glass
capillary-basedmethod, owing to its low cost, easy fabrication,
and simple operation. A typical counter-flow flow-focusing
microfluidic device is fabricated by nesting cylindrical glass
capillary tubes within a square glass tube with matched size,
which achieves good coaxial alignment for the preparation
of microscale emulsion droplets and other derived functional
materials (figure 5(d)) [81–83]. These devices can typically
withstand higher pressure. However, it is worth noting that the
structure of the capillary tip is still usually handmade via hot
drawing, which limits the reproducibility and scalability of the
microfluidic devices.

The use of 3D printing has gained popularity in recent
years as a technique for directly fabricating 3D structures
in a single step [84–86]. The 3D geometric information is
stored in a graphic program file and automatically processed
by a computer-controlled printer system, enabling accurate
and high-resolution fabrication with low time consumption
and cost. This technique is also environmentally friendly due
to the minimal production of redundant parts during the fabric-
ation process. Additionally, with the integration of industrial-
grade user interfaces and embedded control systems, the
commercialization of 3D printing technology has promising
development prospects. Among various available types of 3D
printing techniques, stereolithography (STL) is particularly
favorable for microfluidic device fabrication due to its abil-
ity to generate small and complex channel structures that are
difficult to realize using other methods [87, 88]. STL, an addit-
ive manufacturing process, involves slicing the 3D model of
STL format and printing the photosensitive resin layer by layer
using a laser beam [89–91]. As shown in figure 5(e), a lifter
moves the printing platform up and down, ensuring sufficient
curing time for the photosensitive resin. It is worth noting
that the cost of 3D printing increases significantly with the
miniaturization and complexity of microchannels structures.
Additionally, the availability of suitable photosensitive resin
for 3D printing is still limited, indicating that 3D printing tech-
nology is in its infancy yet [70, 92].

Herein, table 2 lists the summary and comparison of vari-
ous fabrication methods for the microfluidic devices used in
droplet generation, aiming to provide suggestions for appro-
priately performing the microfluidic device fabrication under
different conditions. In general, wet etching and soft litho-
graphy have proven to be suitable formanufacturing themicro-
fluidic devices for high-throughput droplet generation. Thus,
the following sections are mainly focused on these two meth-
ods. Ultimately, the selection of a suitable fabrication method
for microfluidic droplets generation should consider various

factors according to the specific experimental requirements
and application needs, such as cost, manufacturing difficulty,
reliability, applicability, and droplet formation performance.

4. Microfluidics for droplet generation

4.1. Single-phase droplets

Microfluidic droplet generation is a process that depends on
precise flow control of the different phases, which is closely
related to the microfluidic geometries used. Based on the
flow characteristics of different phases, microfluidic geomet-
ries are typically classified into five geometries: co-flow,
flow-focusing, T-junction, cross-flow, and step emulsification
(figure 6(a)). The first four geometries rely on the viscous
shear force to generate droplets, and are thus known as shear-
based geometries. In contrast, step emulsification achieves
droplet generation through a confinement change in the chan-
nel structure, offering a low-energy consumption approach
for droplet formation. Droplets with characteristics of monod-
isperse, controllable and concentricity are necessary versatile
templates for production of microcapsules. In order to gen-
erate the droplet templates with these characteristics, droplet
microfluidics is an effective technology. Hence, it is neces-
sary to investigate and understand the hydrodynamics of the
microfluidic droplet generation process, so as to manipulate
the generation of droplets. Note that, as for the understand-
ing of the hydrodynamics underlying the microfluidic droplet
generation, the hydrodynamics of single-phase droplet form-
ation process is the base for comprehension of the double
emulsion droplet formation process. Therefore, even though
the majority of the microcapsules are generated from the cur-
ing of double emulsion droplets, it is meaningful to intro-
duce the hydrodynamics of single-phase droplet formation as
follows.

4.1.1. Conventional microfluidic generation of single-phase
droplets. In co-flow streams, the dispersed phase and con-
tinuous phase flow in the same direction through the inner and
outer channels, respectively. The dispersed phase is pinched
off by the continuous phase due to the viscous forces, result-
ing in droplet formation. The minimum droplet size formed
in the co-flow stream can reach several hundred nanomet-
ers, while the most common size of droplets in references is
between 200 µm–1000 µm [93–96]. The generation frequency
of droplets in co-flow configurations typically spans from sev-
eral hundred Hz to tens of kHz. In the dripping regime, the
coefficient of variation (C.V.) of droplets is typically below
3%, indicating a state of monodispersity. During the drip-
ping regime, the viscous force imposed by the continuous
flow exceeds the interfacial tension, leading to the detach-
ment of the dispersed phase from the tip and the formation
of droplets. As the flow rate of the continuous phase increases,
the Capillary number of continuous phase (Cao) increases, res-
ulting in a reduction in droplet size. When Ca + We ≈ 1, a
transition from dripping to jetting occurs, revealing different
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Figure 6. Schematic illustration of microfluidic characteristics: (a) flow behaviors in different droplet generators: (i) co-flow, (ii)
flow-focusing, (iii) T-junction, (iv) cross-junction, (v) step emulsification. (b) The scale-up strategies for microfluidic process: (i) parallel
numbering-up the nozzles for dispersed phase and continuous phase; (ii) parallel numbering-up the nozzles for dispersed phase; (iii)
splitting the emulsion droplets. (c) The fluids distribution network in two common layouts: (i) ladder network and (ii) tree network.

jetting regimes determined by the distinct dominant forces
[97]. At high flow rates of the continuous phase, the dominant
force is the viscous force from the continuous phase, leading

to the formation of a narrow jetting regime. Conversely, at
high flow rates of the dispersed phase, dispersed phase inertia
becomes the dominant force, resulting in awide jetting regime.
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Further research indicates that jetting occurs whenWei > 1 and
Rei > 1, or when the Cai > 1 in the opposite case [98].

Similarly, in flow-focusing geometry, two immiscible flu-
ids flow coaxially with a small orifice configured. Under the
effect of hydrodynamic focusing, the dispersed phase is forced
through the orifice to facilitate droplet formation. The forma-
tion of droplets is influenced by various factors, including fluid
flow rates, geometrical parameters, and the fluids’ interaction
[99–101]. In most 3D flow-focusing devices fabricated by
the capillary assembly method, the fluids are induced in a
counter-flow condition [24, 102–104]. The fluids can also be
induced concurrently, for example, Takeuchi et al [105] fab-
ricated the symmetric flow-focusing device by the cast mold-
ing method. In quasi-2D flow-focusing devices, the fluids flow
in the same direction [106–109]. The minimum droplet size
in a flow-focusing device can reach hundreds of nanomet-
ers, similar to those in co-flow devices [106, 110]. However,
the common size of droplets formed in references is below
100 µm, which is smaller than that in co-flow devices with
similar geometric characteristics. This is due to the strong con-
finement of the flow-focusing orifice, which results in most
droplets being of the same magnitude as the orifice radius or
smaller [106]. The frequency of droplets generated in flow-
focusing devices is similar to that in co-flow devices. However,
the interface is unstable due to the continuous phase flowing
through the focusing orifice, resulting in abrupt velocity vari-
ations. Consequently, the C.V. of droplets produced by flow-
focusing devices is slightly higher than that produced by co-
flowing devices under the same flow conditions. The typical
C.V. of droplets produced by flow-focusing is still below 5%
satisfying the monodispersity requirement of most applica-
tions. In a 2Dmicrofluidic flow-focusing device, the dispersed
phase forms a spherical head due to the influence of interfacial
tension. However, when the droplet size exceeds the channel
depth, the spherical droplet becomes confined and takes on a
disc-shaped form. As the droplet continues growing, a balance
is reached between the detaching forces and the holding force
acting on the droplet. Under the circumstance that detaching
force surpasses the holding force, the interface of droplet col-
lapses to form a droplet.

In the T-junction flow category, two fluidsmeet at a junction
with a vertical angle. The buildup of pressure upstream leads to
a breakup once the dispersed phase obstructs the main channel
through which the continuous phase flows [111]. If the stream
of the continuous phase bypasses the dispersed phase, the sys-
tem is shear-dominated, where the dispersed phase is sheared
by the continuous phase [112]. The neck then breaks into
droplets, and the fluid tip retracts to the inlet due to the inter-
facial tension force [111]. K-junction flow [113] or V-junction
flow [114] are variants of the T-junction device that offer flex-
ible flow arrangement. The common droplet size in T-junction
devices ranges from 40µmand 500µm. In the dripping regime
of T-junction cross-flow, droplet size is mainly determined by
the viscous shear force, which is proportional to Cao.

In the cross-junction flow, the dispersed phase is flanked
by the continuous phase from two directions to form droplets.
The cross-junction flow is regarded as the flow-focusing flow

in some research, while the cross-section decreases in flow-
focusing flow, which is unchangeable in the cross-junction
flow [115–117]. In cross-junction flow, the fluid tip partially
plugs the exit due to the existence of a thin film of the con-
tinuous phase [118, 119]. The process of droplet formation is
affected by a mechanism in which the competition between
the shear stress and interfacial tension forces plays a dominant
role. This mechanism is similar to that in the T-junction device,
so this structure is difficult to classify as a flow-focusing
device. The droplet size is typically over 10 µm and is mainly
influenced by the channel structure, while the C.V. is below
2%. The angle between the continuous phase and the dispersed
phase is variable in cross-junction flow [120–122].

Monodispersity is generally guaranteed by adjusting flow
rates in these shear-based geometries in the dripping regime.
Compared with shear-based geometries, the step emulsifica-
tion device with optimized nozzles weakens the effect of fluid
flow rates. As mentioned above, the formation of droplets in
step emulsification is a low-energy input way, and the droplet
size is insensitive to flow rates [123, 124]. Hence, the step
emulsification device is widely used in the high-throughput
production of droplets [125].

In a step emulsification process employing a wedge-shaped
channel to connect a reservoir, the dispersed phase forms
a tongue-shaped interface within the wedge-shaped channel
[126]. As the interface enters the reservoir, the tip of the
bulb expands and connects with the neck through the liquid
thread in the nozzle. With the continuous phase flowing back
to the nozzle, the width of the neck gradually decreases until
the dispersed phase breaks into droplets. The bulb’s expan-
sion is driven by the Laplace pressure difference between the
high-curvature interface in the narrow channel and the low-
curvature interface in the reservoir, and the filling process is
controlled by the balance between viscous forces and surface
tension. The pressure difference is related to the curvature
difference of the liquid-liquid interface. As the bulb fills, its
curvature decreases, leading to a reduction in the internal pres-
sure. Consequently, the pressure drop increases, resulting in an
increasing flow from the neck into the bulb. When Qo exceeds
the flow flowing into the nozzle Qi, the neck width shrinks
to the critical value. The neck becomes unstable and collapses
quickly as soon as it detaches from the walls of the nozzle. The
size of the droplet is determined by the initial wetting regime,
and the contact angle of the fluid plays a crucial role.

4.1.2. High-throughput microfluidic generation of single-
phase droplets. The production rate for a single droplet
maker typically ranges from tens to hundreds of microliters
per minute, rendering it unsuitable for industrial applications
[127]. To address this limitation, the scale-up strategies for
microfluidic process, including the parallelization of micro-
fluidic droplet generation units [128] and multiple splitting
of emulsion droplets [129], have been proposed to enhance
productivity.

Individual and connected microfluidic droplet generation
units have been integrated into one device (figure 6(b-i)).
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This allows for independent regulation and minor disturb-
ance between units, resulting in products with different
compositions [130]. However, the cost and complexity of this
approach of integrating numerous stand-alone pumps limit the
practicality of this approach. An alternative strategy involves
distributing the dispersed phase in a multi-channel structure
(figure 6(b-ii)). This structure is more compact and benefi-
cial for minimizing the device. Due to the interconnection
between channels, the even distribution of dispersed phases
is vital in this configuration. One blocked channel will res-
ult in inhomogeneous fluid distribution, which may lead to
polydisperse droplets and is unfavorable for the reliability of
high-throughput droplet generation. In contrast to the par-
allelization strategy, multiple splitting of droplets involves
generating emulsion upstream, and then stepwise splitting
them through hierarchical junctions (figure 6(b-iii)) [131].
This passive breakup can be repeated without a significant
increase in C.V. until droplet radii decrease to approximately
the same order as the channel width, resulting in higher yield
and reliability [129].

Fluid distribution is critical for realizing mass production
at an industrial scale, as uneven flow rates can lead to vari-
ations in residence time, mass, and heat transfer [132]. The
multi-channel network is specifically designed to ensure even
flow rates in each unit, which is particularly important for
maintaining droplet monodispersity in shear-based geomet-
ries (figure 6(b)). Two common microfluidic channel layouts
are the tree-type and ladder-type networks (figure 6(c)). In the
tree-type network, the number of branch channels increases
by a factor of two between consecutive levels, resulting in
a total number of branches equal to 2n, where n is the level
of the tree [133]. Conversely, the ladder-type network con-
sists of several parallel branches connected to a main chan-
nel, and the number of branches is arbitrary. While the design
of the ladder-type network is more compact and less affected
by manufacturing deviations, the tree-type network is more
energy efficient. Therefore, it is important to carefully con-
sider the choice of the network when designing microfluidic
channels.

Flow-focusing generators and step-emulsification units are
suitable parallelization units for droplet generation at an indus-
trial scale. To minimize the C.V. of droplet size in parallel-
ized flow-focusing devices, Hashimoto et al [134] investigated
the intersectionmechanism among four coupled flow-focusing
generators, uncovering the compressibility of the dispersed
phase and variations at the flow-focusing orifices under pres-
sure. In a similar study, Li et al [135] explored the geomet-
ric coupling between integrated four parallel generators and
the influence of variations in the dimensions of microchannels
(figure 7(a)). Meanwhile, Kang et al [28] utilized a tree-type
network with three layers of fluid distributors in the prepar-
ation of nanoparticles to prevent aggregation and clogging,
which could lead to the failure of the device. Nisisako and
Torii [18] presented a circular arrangement module consist-
ing of 128 junctions, which integrated more droplet generator
units on one chip, resulting in reduced consumption of the con-
tinuous phase (figure 7(b)). The devices successfully produced

monodisperse droplets (C.V. < 4%) and were also applied to
generate biphasic Janus droplets for scale-up.

Parallelized multiple modular microfluidic reactors have
been successfully employed for the continuous generation of
polymer particles. However, the interaction between parallel
channels can affect the flow conditions in each unit when
multiple droplet generators share one inlet. To address this
issue, an additional 40 mm-long wavy channel was intro-
duced, resulting in lower C.V. of droplets generated compared
to a microreactor with a 6 mm-long straight channel at low
flow rates (figure 7(c)) [136]. Moreover, the microreactor with
the wavy channel did not exhibit a transition to the jetting
regime at an increasing flow rate, unlike the one with a straight
channel. During the experiment, the productivity was up to
51.2 ml·h−1 and the C.V. was less than 5%.

To achieve the required uniformity in parallelized devices,
quasi-2D devices are more suitable. Soft lithography based on
PDMS is commonly used for manufacturing parallelized flow-
focusing devices with a high throughput of emulsion droplets.
However, these devices are limited by operating conditions
such as temperature and pressure. Alternatively, a 3D etched
silicon wafer with 10 260 generators has been reported to pro-
duce polycaprolactone solid microparticles with a C.V.< 5%,
capable of operating at high pressure and temperature condi-
tions when the fabrication material is silicon and glass [137].

Compared to the flow-focusing generator, the step-
emulsification unit has shown superior droplet formation
quality, with droplet size being insensitive to flow rates [138].
Rayleigh-Plateau instability is crucial in droplet formation,
making it promising to achieve high-throughput produc-
tion based on the massive parallelization of multiple nozzles
[139]. Currently, step-emulsification devices with various
geometries are available, including the terrace, straight-
through, rectangular-shaped, and wedge-shaped configura-
tions (figure 8).

In a terrace-type step emulsification device, a terrace is
located between the inlet and the cavity [144]. The droplet
pinch-off location is on the terrace, which promotes pinch-
off due to the lower reflux resistance of the continuous
phase compared to step emulsification devices without a ter-
race. Wang et al [145] demonstrated a relationship between
droplet size and terrace width under conditions where the con-
tact angle is less than 150◦. The straight-through type step
device is derived from the membrane emulsification device.
Asymmetrical channels result in the generation of smaller
droplets and improve droplet monodispersity [141]. However,
producing droplets with a size of less than 10 µm requires
narrower orifices, which leads to the inactivation of most
orifices [146].

The research group led by Weitz has extensively investig-
ated different types of step emulsification devices for large-
scale droplet generation [142, 143]. A notable example is the
millipede device, which utilizes triangular nozzles to gener-
ate monodisperse droplets via static instability (figure 8(d))
[143]. At a dripping regime, this device could produce 40 l
of droplets with a diameter of 15 µm per hour, whereas the
production rate could reach up to 800 l per hour for droplets
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Figure 7. Schematic of parallelization of flow-focusing devices: (a) droplets formed in four integrated flow-focusing devices. Reproduced
from [135] with permission from the Royal Society of Chemistry; (b) schematic of planar microfluidic geometries for mass production: (i)
magnified view of 128 cross-junctions integrated on a chip, (ii) formation of arrayed monomer droplets (iii) size distribution of the droplets,
(iv) SEM image of microspheres. Reproduced from [18] with permission from the Royal Society of Chemistry; (c) a module consisting of
16 individual flow-focusing channels. Reproduced from [136] with permission from the Royal Society of Chemistry.

with a size of around 160 µm. To facilitate the transport of
droplets accumulating at the outlet, an open collecting chan-
nel along with buoyancy was implemented (figure 8(c)) [142].
This device could generate droplets with a wide range of
30 µm–1 000 µm and a production rate between 0.03 l h−1

and 10 l h−1.
In addition to the parallelization of microfluidic droplet

generation units, multiple splitting of emulsion droplets is also
a viable approach for scale-up. Droplet splitting methods can
be classified as active or passive. Passive splitting mechan-
isms involve breaking up droplets through deliberate fluidic
designs, without the need for external forces [20]. This method
utilizes microfluidic devices fabricated with high precision to
consecutively split monodisperse droplets into smaller ones
(figure 9(a)) [129].

The traditional passive splitting with T-junction splits one
large droplet into two daughter droplets, while novel multi-
furcating channels have been developed to enable adjust-
ment of the number and size of daughter droplets [19]. One-
to-five splitting microchannels were used to investigate the
effect of mother droplet size and channel lengths in the
experiment (figure 9(b)), highlighting the versatility of this

tool for sample splitting applications [20]. The precision of
microfluidic device fabrication was critical, and bypass chan-
nels were investigated for bubble splitting [147]. It demon-
strated that the C.V. of bubbles generated in the device with
bypass channels was significantly smaller than that in the
device without bypass channels. For the application of encap-
sulation of single cells with high throughput, multi-step split-
ting structures were used to split large droplets into small
ones, realizing the droplet generation frequency increasing
from 59 Hz to 1 300 Hz (figure 9(c)) [148]. Wu et al [149]
demonstrated that bifurcating angle of 90◦ was beneficial
for droplet splitting in the fractal tree-shaped network. The
effect of capillary number was explored for the droplet size
distribution.

4.2. Double emulsion droplets

4.2.1. Conventional microfluidic generation of double emul-
sion droplets. Double emulsion droplets, which consist of
three immiscible phases and exhibit diverse inner structures
and morphologies, are the cornerstone of fine emulsion pro-
duction technology [150, 151]. This technology shows great
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Figure 8. Schematic of parallelization of step-emulsification devices: (a) terrace step-emulsification device. Reprinted from [140], © 2017
Elsevier B.V. All rights reserved; (b) straight-through step emulsification device. Reprinted from [141], Copyright © 2007 Elsevier B.V. All
rights reserved; (c) rectangular-shaped step emulsification device. Reproduced from [142] with permission from the Royal Society of
Chemistry and (d) wedge-shaped step emulsification devices: (i) schematic illustration of wedge-shaped step emulsification device, (ii)
optical micrograph of a section, (iii) optical micrograph of a nozzle, (iv) cross-section of a nozzle. Reproduced from [143] with permission
from the Royal Society of Chemistry.

potential for manufacturing highly structured materials for
various industrial applications [152]. Therefore, it is crucial
to develop precise methods for generating double emulsion
droplets [153].

Double emulsion droplets can be generated by micro-
fluidics through the combination of the above single-phase
droplet generators in a one-step or two-step process. For
example, double emulsion droplets are generated by tan-
dem co-flow and flow-focusing devices in one-step and two-
step ways (figure 10). In one-step devices, the inner and
middle droplets are simultaneously generated in a coupled
co-flow or flow-focusing geometry, forming double emulsion
droplets in a single step (figure 10(a)). In two-step devices, the
inner-droplets are generated in the first-level co-flow or flow-
focusing geometry, then encapsulated by the middle phase
downstream into a double emulsion droplet in the second-
level geometry (figures 10(b)–(d)). Compared with two-step
devices, the one-step devices have lower requirements for
channel wall wettability modification due to the consistent

encapsulation of the inner phase and are particularly suitable
for generating double emulsion droplets with ultra-thin shells
[153]. Note that, flow-focusing, co-flow, and cross-junction
microfluidic geometries are feasible for generating double
emulsion droplets in either one-step or two-step ways, while
T-junction and step-emulsification geometries only allow for
two-step generation of double emulsion droplets in most flow
conditions due to the characteristics of the geometry of the
device (figures 10(e)–(h)).

4.2.2. High-throughput microfluidic generation of double
emulsion droplets. The strategies for generating high-
throughput double emulsion droplets are similar to those for
single-phase droplets, involving the parallelization of micro-
fluidic droplet generation units and multiple splitting of emul-
sion droplets. The appropriate parallelization units for double
emulsion droplet generation include flow-focusing generators
and step-emulsification units.
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Figure 9. Schematic of multiple splitting of emulsion droplets: (a) droplets formed at high dispersed phase volume fractions. Reprinted
figure with permission from [129], Copyright (2004) by the American Physical Society; (b) multiple splitting of droplets with
multi-furcating microfluidic channels: (i) droplets splitting set up, (ii) droplets split into two, three, and five daughter droplets. Reprinted
from [20], with the permission of AIP Publishing; (c) droplets consecutive splitting via multiple junctions. Reprinted from [148], Copyright
© 2015 Zhang-Run Xu. Published by Elsevier B.V. All rights reserved.

The double emulsion droplets generated in the coaxial
annular microfluidic platform are a two-step method using
parallel flow-focusing generators. As shown in figure 11(a),
the inner droplet in the upstream annular channel was emulsi-
fied in the downstream cross-junction to form double emul-
sion droplets. It is applicable for high throughput and con-
trollable production of single and double-emulsified droplets.
The annular channels were used to distribute fluids into the
droplet-forming units [154]. When Qi was 5 ml h−1, Qm was
20 ml h−1, and Qo was 500 ml h−1, respectively, the core
and shell droplet sizes were 88.7 µm and 147.2 µm, respect-
ively, with C.V.s of 5.7% and 2%. 3D distributors and col-
lection channels were used to connect the repeating droplet
generators, which enable precise control and mass produc-
tion of the microfluidic double emulsion droplets. The inner
droplets were immediately wrapped by the intermediate fluid
at the moment of generation and emulsified into double emul-
sion droplets, which is a one-step method to generate double

emulsion droplets as mentioned above. The device contained
15 droplet-forming units and was connected by three 3D
networks of distribution networks and a collection network
(figure 11(b)). It demonstrated that this device was capable
of producing double emulsion droplets with a C.V. of less
than 6% at a rate of 1 kg d−1 in a precisely controllable
manner [155].

Although parallelized flow-focusing devices have been
widely used for emulsion droplet generation, they may suf-
fer from potential issues such as channel clogging or pres-
sure fluctuation, which can result in deteriorated formation
processes and polydispersed droplets. It is worth noting that
monodispersed emulsions can be generated in step emulsi-
fication devices under steady-state conditions. In particular,
tandem step emulsification devices have been fabricated to
produce monodispersed double emulsion droplets, and the
effects of geometrical factors on their morphology, dimen-
sions, and structures have been investigated (figure 12) [63].
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Figure 10. The flow conditions of three phases in (a) one-step co-flow and flow-focusing device, (b) two-step co-flow and flow-focusing
device, (c) two-step co-flow device, (d) two-step flow-focusing device, (e) one-step cross-junction device, (f) two-step cross-junction device,
(g) two-step T-junction device, (h) two-step step-emulsification device to generate compound droplets.

By adjusting the ratio of the diameters of droplets formed
at the end of the first and second-step emulsification nozzles
(d1 and d2, respectively), various double emulsion droplets
with thin-shell, thick-shell, and multicore architectures could
be produced. The d1/d2 ratio was related to the step heights
ratio in the devices. Tandem emulsification has also been
applied in millipede devices, where the droplet diameter and
core size are related to the channel height [156]. Millipede

droplet makers, featuring 200 nozzles in a circular array, could
generate 80 drops per second, achieving a production rate of
20 ml·h−1.

Parallelizing the synthesis of double emulsion droplets
presents a significant challenge due to the complexity of the
required device and the high degree of uniformity needed
in manufacturing. One alternative way to realize the high
throughput is by splitting large droplets into smaller ones. As
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Figure 11. Schematic illustrations of (a) microfluidic chips with annular channels: (i) 144 cross-flow junctions, (ii) 72 droplet generators to
produce Janus droplets, (iii) 32 triple emulsion droplet generators. Reproduced from [154] with permission from the Royal Society of
Chemistry; (b) schematic of the design for microfluidic double emulsification device: (i) a microfluidic double emulsion droplets-maker
unit, (ii) parallelized double emulsion chip, (iii) micrograph of a unit, (iv) actual device. Reproduced from [155] with permission from the
Royal Society of Chemistry.

Figure 12. Parallelized step emulsification in tandem glass microfluidic devices: (a) the first step emulsification device, (b) the second step
emulsification device, (c) parallelized droplet makers and tandem arrangement of step emulsification device, (d) microcapsules created by
polymerizing double emulsion droplets. [63] John Wiley & Sons.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 13. Splitting three times in the emulsion device. Reproduced from [19] with permission from the Royal Society of Chemistry.

shown in figure 13, one double emulsion droplet was split three
times into eight identical, smaller drops, increasing throughput
by three times. Unlike the usual two-step process, the inner
droplets’ breakup in this one-step pinching is driven by the
outer droplets [19].

Currently, devices for high-throughput double emulsion
droplet generation are not widely available, and step emul-
sion or flow-focusing devices are commonly used in par-
allelized microfluidic droplet generators. Consistent droplet
generator manufacturing is essential to produce high-quality,
monodisperse droplets. In parallelized flow-focusing devices,
the outer and middle phase flow is regulated to control
double emulsion droplet generation methods, whether it is
a one-step or two-step process. The two-step method is
more commonly used in parallelized step emulsion devices.
Additionally, bifurcation structures and size optimization are
investigated for multiple droplet splitting. The symmetric
breakup of double emulsion droplets in the bifurcation ensures
monodispersity. The comparisons between of double emul-
sion droplets using high-throughput microfluidic production

methods are listed in table 3. However, some challenges
remain unresolved in microfluidics for droplet generation as
mentioned above. Concerning the single-phase droplet gen-
eration process, the relationship between microfluidic step
emulsification with different device structures and the size
of generated droplets remains uncertain, necessitating further
investigation through extensive experiments. Additionally,
the inherent hydrodynamics of microfluidic step emulsifica-
tion with different device structures introduce uncertainties
that hinder the exploration of high-throughput production.
Regarding the double emulsion droplets generation process,
one-step microfluidic step emulsification requires higher pre-
cision in manufacturing due to the consecutive step struc-
tures. On the other hand, the two-step method for generat-
ing double emulsion droplets relies on the cooperation among
multiple syringe pumps, which makes it time-consuming to
explore the suitable flow rates. In summary, future studies
should delve deeper into the experiments of microfluidics
for droplet generation processes to address these challenges
effectively.
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Table 3. The comparisons of double emulsion droplets using high-throughput microfluidic production methods.

Method

Qualities

Applicability ReferencesCore size Shell size C.V. (core) C.V. (shell) Yield

Two-step method
using parallel
flow-focusing
generators

88.7 µm 147.2 µm 5.7% 2.0% — Applied to the scale-up
production of single-phase
droplets, Janus droplets,
double emulsion droplets
and triple droplets.

[154]

One-step method
using parallel
flow-focusing
generators

104.2 µm 140.3 µm 5.7% 4.1% >30 tons per year Applied to the scale-up for
the manufacture of
precision particles and
capsules at the commodity
scale.

[155]

Two-step method
using parallel
flow-focusing
generators

64 µm–87 µm 90 µm — — 60 ml·h−1 Applied for the scaled-up
production of complex
emulsions with
well-controlled structural
parameters

[156]

Two-step method
using millipede
device

64–87 µm 90 µm — — 20 ml·h−1 Applied for the scaled-up
production of complex
emulsions with
well-controlled structural
parameters

[156]

Two-step method
using millipede
device

30 µm 70 µm — — 50 ml h−1 Applied for the
high-throughput
encapsulation of a wide
variety of chemicals while
providing the exquisite
control achievable through
microfluidics.

[63]

Multiple splitting 28 µm 43 µm 6% 6% 5 × faster than a
conventional drop
maker

Applied for the production
of small double emulsion
droplets.

[19]

4.3. Influencing factors for microfluidic droplet generation

Overall, the size, productivity and composition of the single-
phase droplets are manipulated by the following influenced
parameters. For the generation of single-phase droplet, the
flow rates of continuous phase and dispersed phase are
vital in shear-based microfluidic geometries. In the shear-
based microfluidic geometries, droplet size decreases with
the increasing flow rate of continuous phase, which leads to
an increment in the viscous shear and squeezing action. The
increase in the dispersed phase flow rate results in the large
front of the droplet head and larger pressure inside the droplet,
leading to the increment of droplet size [119]. However, the
variations of droplet size with dispersed phase flow rate may
be different because of the viscosities of dispersed phase and
continuous phase [98]. For now, the droplet size prediction
in shear-based microfluidic geometries is mainly based on the
balance between viscous and interfacial tension forces, while
in microfluidic step emulsification device, interfacial tension
plays a dominant role [157]. Therefore, droplets formation
process in themicrofluidic step emulsification device is mainly
influenced by the wall wetting effects, so that the microfluidic
device channel structure and contact angle of the fluid on the
channel wall play a crucial role in the droplet size [158].

Compared with single-phase droplets, three phases are
involved in the generation of double emulsion droplets. Hence,
the parameters metioned above need to consider the proper-
ties of three phases. For instances, the success rate for encap-
sulation of double emulsion droplets, the cores number, and
the droplet size is determined by the synthetically regulation
of flow rates of three phases [100]. Similarly, the genera-
tion of double emulsion droplets is effected by viscous and
interfacial tension forces, so that the size of double emulsion
droplets increases with viscosity ratio of middle phase and
outer phase [100].

On the other hand, it is worth noting that some non-
Newtonian fluids are usually used to produce the microcap-
sules via the droplet microfluidic method [159], which do not
follow Newton’s law of viscosity and have variable viscosity
dependent on stress [160]. As mentioned above, fluid viscos-
ity is a typical influencing factor to determine the characteristic
parameters of the microfluidic droplets generation. Therefore,
non-Newtonian fluids effects have also received attention in
the microfluidic droplets generation. For examples, it has
proved that elasticity of the non-Newtonian dispersed phase is
able to extend the thin thread neck of the dispersed phase dur-
ing the droplet formation in a microfluidic T-junction device.
As a result, the generation of droplet will be delayed or even
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resisted when compared with the Nowtonian fluids [161]. In
addition, with the increasingWe, the non-Newtonian rheology
changes the neck geometry in the jet regime, leading to the
increment of generated satellite droplets. Hence, the gener-
ated droplets with non-Newtonian fluids are polydispersed
and smaller on average compared with those generated with
Newtonian fluids [162]. In general, although non-Newtonian
fluids effects have been demonstrated to have a non-negligible
influence on the performance of the microfluidic droplets gen-
eration, there is still a long way to systematically clarify this
influence for the decision-making of droplets and the con-
sequent microcapsules.

5. Applications of droplet microfluidics for carbon
capture

The core-shell structure is a fundamental morphological char-
acteristic of the microcapsule, which can encapsulate either
a single core or multiple cores, referred to as mononuclear
or polynuclear, respectively. Highly permeable microencap-
sulated carbon sorbents have been developed for carbon cap-
ture applications (figure 14). Compared to neat liquid sorbents,
the mass transfer from the shell is only slightly lower, but the
absorption rate is increased by an order-of-magnitude due to
the enhancement of the surface area [25]. Fixed bed and fluid-
ized bed are the most commonly used reactor configurations in
gas-solid reactions. Therefore, high-throughput generation of
microcapsules is employed for industrial scale-up under oper-
ating conditions.

5.1. Ionic liquid microcapsules

ILs are a class of organic salts that exist in liquid form
at room temperature. Their low vapor pressure and high
thermal stability make them highly attractive to carbon cap-
ture applications. However, their high viscosity and sens-
itivity to water have limited their large-scale utilization.
Encapsulation of ILs in themicrocapsule is an efficientmethod
to address these challenges, as the ILs can be effectively con-
fined with loading efficiencies exceeding 80% and their per-
formance can be significantly improved in the applications
of CO2 handling, microreactors, and heavy metal extraction
(figure 15(a)) [163].

Compared with the neat ILs, the properties, including CO2

solubility, CO2 sorption, CO2 selectivity, recycling capacity
and regeneration, of encapsulated ILs are enhanced. With the
increasing surface area of encapsulated ILs, the solubility of
ILs increases.What’smore, the viscosity of the ILwas reduced
due to the use of encapsulated ILs, which improves the CO2

solubility. Hiraga et al [166] have demonstrated that the CO2

solubility is enhanced due to a coactive effect existing between
the molecular interaction and the ILs. It is effective to invest-
igate the adsorption isotherm of microcapsules so as to evalu-
ate absorption performance. Lemusa et al [167] reported that
high CO2 solubility of encapsulated ILs is related to the low-
est temperature, which is the main factor influencing the CO2

solubility. In addition, Kaviani et al [168] developed a single-
step non-solvent induced phase separation method to produce
microcapsules, resulting in higher specific surface area and
improved absorption rate and CO2 solubility. It was noted that
CO2 sorption process is evaluated by kinetics and described by
the pseudo-second-order model. The encapsulated ILs used in
fixed bed absorption were able to overcome the mass transfer
restriction of physical absorption. Wang et al [169] investig-
ated the sorption kinetic performance of encapsulated ILs in
carbon capture, proving that the sorption rate of IL microcap-
sules is much faster than neat ILs. In-depth investigations into
the mass transfer mechanism of encapsulated ILs lead to the
development of a kinetic model for CO2 uptake. Remarkably,
the CO2 capture kinetics of encapsulated ILs exhibit a 50-fold
increase compared to the neat liquid [170].

High CO2 selectivity is a worldwide research topic on
exploration of solvents and materials for carbon capture. It
was proven that CO2 selectivity is higher with the increas-
ing IL content in the microcapsules. Mohamed et al [171]
investigated the selectivity performance through encapsulated
ILs and computational study. The results indicated that CO2

selectivity increases with the high IL content in the zeolitic
imidazolate framework-8 (ZIF-8). Furthermore, the effect of
viscosity and the mechanism of CO2/CH4 selectivity using
encapsulated ILs was investigated by the calculations and sim-
ulations. In terms of recycling capacity of encapsulated ILs,
it is meaningful to check the compatibility and reversibility
[172]. For instance, Song et al [165] demonstrated that the
encapsulated ILs and phase-change ionic liquids (PCILs) have
higher CO2 capacities and superior stability compared to free
ILs or PCILs (figure 15(a)). Similarly, Santiago et al [164]
focused on the potential of encapsulated amino-acid-based ILs
(aa-ILs) in CO2 capture, given their low cost, abundant avail-
ability, and non-toxic biodegradability. Encapsulated aa-ILs
exhibited high CO2 absorption capacities and rates, making
them promising materials for future CO2 capture applications
(figure 15(b)). Notably, the capture-desorption of CO2 cycles
is accomplished without a significant decrease in successive
productivity. Infrared analysis revealed enhanced CO2 sorp-
tion capacity and CO2/N2 selectivity of the encapsulated ILs.
However, it is observed that the capacity slightly reduced by
about 0.104 wt% after eight recycling cycles [173]. Besides,
the CO2 absorption capacity grows up to a certain value and
then declines with the increasing recyclability cycles [172].
Stolaroff et al [33] produced microcapsules using three prom-
ising solvent/shell pairs with a microfluidic flow-focusing
capillary device, demonstrating a 3.5-fold enhancement in
CO2 absorption rate compared to the liquid film of the solvent
(figure 15(c)). Lemus et al [167] conducted a study on the CO2

absorption of encapsulated ILs at 0.1 MPa and 303 K, report-
ing a CO2 absorption capacity of 0.036 g g−1 IL. The modest
conditions were suitable for the regeneration of encapsulated
ILs, and it turned out that the successive capture-desorption
CO2 cycles are obtained without operation productivity loss.
Furthermore, the regeneration of ILs is easy because of the low
regeneration energy requirement [167]. It is worth noting that,
in recent research, various ILmaterials have been encapsulated
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Figure 14. Microcapsules for carbon capture.

Figure 15. Encapsulate ILs with droplet microfluidics: (a) encapsulation of ILs: (i) multiple advanced applications of encapsulate ILs, (ii)
the improvement of CO2 capacity, (iii) comparison of CO2 uptake capacity between encapsulated IL, agitated IL, and still IL. Reprinted
with permission from [163]. Copyright (2020) American Chemical Society. Reprinted with permission from [164]. Copyright (2018)
American Chemical Society; (b) encapsulation of aa-ILs: (i) SEM and (ii) TEM images of the carbon capsules to obtain aa-ILs, (iii) the
improvement of CO2 uptake in aa-ENIL compared to neat aa-ILs. Reprinted with permission from [165]. Copyright (2019) American
Chemical Society; (c) schematic of the microfluidic device for encapsulation of ILs: (i) microcapsules generated via the microfluidic
flow-focusing device, (ii) the droplet formation process, (iii) micrograph of generated microcapsules. Reproduced from [33] with
permission from the Royal Society of Chemistry.
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Figure 16. Encapsulate MOFs with droplet microfluidics: (a) the concept of encapsulating MOFs. Reprinted from [14], © 2021 Institute of
Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd; (b)
encapsulation of MOFs with microfluidic flow-focusing device: (i) schematic of the microfluidic system for encapsulated synthesis of
MOFs, (ii) micrograph of generated microcapsules via microfluidics, (iii) micrograph of generated microcapsules via the conventional
method. Reprinted from [14], © 2021 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V.
on behalf of KeAi Communications Co., Ltd; (c) the concepts in the synthesis of MOF films and preparation of hollow capsules. Adapted
from [182], with permission from Springer Nature.

for carbon capture applications, opening up new avenues for
improving the efficiency and sustainability of carbon capture
technologies [15, 174–176].

5.2. MOF microcapsules

The MOFs are highly porous materials with a large specific
surface area, formed by the coordination of metal clusters with
organic ligands [177]. Due to their high capture capacity and
selectivity, MOFs have become a popular choice for CO2 cap-
ture applications (figure 16(a)). For now, there have been some
researches devoted to the fabrication of hollow structured
MOF materials. For instance, Zhang et al [178] investigated
a hollow structured zeolitic imidazolate framework (ZIF-8-H)
nanosphere. It proved that the capacity of ZIF-8-H is favorable
for binding various sized substrates and it can be recovered
and reused without loss of catalytic activity. Furthermore,
spray-drying is a versatile method to assemble nanoMOFs into
spherical hollow structures [179]. Besides, most MOF adsorp-
tion mechanisms are based on physical adsorption, MOF syn-
thesis is a time-consuming process and not easily scalable for
large-scale production [180]. To overcome this challenge, a
novel MOF-based hybrid sorbent was developed and encap-
sulated within a glass capillary device (figure 16(b)) [14].

These microcapsules exhibit good recyclability and stability,
opening up a new approach for the research of controlled
hybrid sorbents. For instance, Hsieh et al [181] quantitat-
ively studied the effects of ligand concentration, synthesis
time, and temperature on MOF synthesis, which could be
beneficial for the development of MOF-based CO2 capture
applications. Additionally, Ameloot et al [182] investigated
the selective permeability of MOF layers in the shape of
hollow microcapsules, and found that the micropore size of
MOF crystallites was related to their selective permeability
(figure 16(c)). These hollow MOF capsules were generated in
a co-flowing stream and it was found that the monodispersity
of the generated microcapsules was critical to their perform-
ance. Microcapsules encapsulating MOFs exhibit small sizes,
facilitating minimum defects and maximum interfacial area
for efficient carbon capture. Yu et al [14] studied the synthesis
of a novel MOF-based hybrid sorbent, wherein they invest-
igated the characteristics of microcapsules containing MOFs
for carbon capture applicaitons. By employing a microfluidic
strategy, a series of MOFs with hierarchial hollow structures
were successfully generated with tunable sizes [183].

The characteristics, including CO2 uptake, CO2 selectiv-
ity, adsorption capacity, are used to evaluate the performance
of MOFs microcapsules on carbon capture. The selectivity of
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Figure 17. Encapsulate chemical solvents with droplet microfluidics: (a) encapsulation of chemical solvents for carbon capture: (i)
schematic illustration of the encapsulated liquid carbon capture process via the microfluidic flow-focusing device, (ii) optical image of cured
silicon microcapsules, (iii) optical images of microcapsules in flowing CO2 environment. Reproduced from [25], with permission from
Springer Nature; (b) encapsulation of K2CO3 for carbon capture: (i) schematic illustration of the encapsulated K2CO3 via the microfluidic
flow-focusing device, (ii) the color change of microcapsules before and after carbon capture, (iii) SEM images of capsules within different
shell materials. [13] John Wiley & Sons.© 2022 Wiley Periodicals LLC.

CO2/CH4 separation was improved by functionalizing MOFs
with amino groups [184]. The equilibrium selectivity for
selective adsorption of CO2 over CH4 can be over 10 based on
the MOFs with various unsaturated sites [185]. The commer-
cially available Cu3(BTC)2 MOF showed a selectivity of 4∼ 6
at 0.1∼ 3 bar [186]. Compared with a silica with high surface
area, a MOF replete with open magnesium site has an excep-
tional adsorption capacity up to 23.6 wt% CO2 at 0.1 bar and
296 K [187]. Among all the commercial adsorbents, zeolite
13X is the most effective adsorbent for CO2 separation [53].
Compared with zeolite 13X, the adsorption capacities are
higher in a magnesium-based MOF [51]. Furthermore, vari-
ous sites, such as open metal sites and Lewis basic sites,
are introduced into MOFs to improve the adsorption capa-
city. Liang et al [45] synthesized a Cu-MOF with high CO2

uptake and selectivity, which is able to be reused without loss
of adsorption capacity. The results demonstrated that these
microcapsules achieved higher efficiency and catalyst recyc-
lability, presenting a promising avenue for future applications
in assembling MOFs with novel hierarchical structures.

5.3. Chemical solvent encapsulation

Chemical absorbents, such as ethanolamine (MEA),
piperazine, and carbonate solutions, have been encapsulated

for carbon capture. Encapsulation of these absorbents in
microcapsules has been shown to increase the uptake rate
of CO2 and mass transfer when compared with the use of neat
fluid [188, 189]. It is worth noting that, MEA, which is most
used in a number of plants, is corrosive and it will degrade
during repeated regeneration cycles [190]. Hence, relying on
the characteristics of abundance and eco-friendly, carbonate
solutions are studied as an alternative to MEA solutions in
carbon capture. For instance, Vericella et al [25] employed a
core-shell motif to encapsulate potassium carbonate (K2CO3)
or sodium carbonate (Na2CO3) (figure 17(a)). The microcap-
sules demonstrated higher permeability than gas separation
membranes, and the CO2 absorption rate was increased by an
order ofmagnitude. The process of CO2 absorption-desorption
could be visually monitored with a pH indicator. It turned out
that the CO2 sorption capacity of encapsulated sodium car-
bonate is similar to that of MEA. Zhao et al [13] produced
stable microcapsules with CO2 solvents using flow-focusing
microfluidics (figure 17(b)). These microcapsules withstand
temperatures up to 300 ◦C and could be used for multiple
regeneration cycles. Wang et al [191] utilized a 3D flow-
focusing microfluidic device to produce microcapsules for
carbon capture, in which nanoparticle organic hybrid mater-
ials were encapsulated. The CO2 capture rate was enhanced
due to the specific surface area and enhanced mass transfer of
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microcapsules. Additionally, Shi et al [192] utilized KHCO3

as the form of carbon spheres for CO2 capture, which exhib-
ited superior CO2 capture performance with a CO2 uptake
of up to 4.26 mmol·g−1 at 25 ◦C and 1 bar. Rama et al [193]
used 2-amino-2-methyl-1-propanol (AMP) as the core sorbent
in microcapsules, demonstrating its high CO2 sorption capa-
city and its potential applicability in industrial settings. Finn
and Galvin [194] proposed a mechanistic model for mass
transfer and chemical reaction to predict microcapsule per-
formance under different scenarios. The model’s predictions
indicated that microcapsules containing sodium carbonate
solution show strong sensitivity and high CO2 sorption capa-
city. The comparisons of performance parameters of carbon
capture microcapsules fabricated via the droplet microfluidics
method are listed in table 4.

6. Conclusions and perspectives

The increasing emission of CO2 from various sources is draw-
ing attention toward CCUS strategies. Therefore, it is prom-
ising to explore the generation of carbon capture microcap-
sules via droplet microfluidics. This review has provided a
comprehensive overview of the progress and limitations of the
high-throughput production of carbon capture microcapsules
by microfluidics. The advancements in microfluidic device
fabrication, methods and hydrodynamics for droplet genera-
tion, and the application of high-throughput emulsion for car-
bon capture have been discussed. The main fabrication meth-
ods of microfluidic devices are wet etching using glass/sil-
icon substrates, soft lithography using PDMS, hot embossing
on PMMA, capillary assembly, and 3D printing technology.
Themethods and hydrodynamics of co-flow, T-junction, cross-
junction, and flow-focusing microfluidic droplets generation
have been studied in depth, including flow modes transition
and monodispersity of droplets in dripping mode. In addition,
the hydrodynamics of step emulsification for droplet genera-
tion have been demonstrated to have a close association with
the device geometries. This fundamental understanding of the
hydrodynamics of the microfluidic droplet generation process
is helpful for high-throughput droplet generation. The review
emphasizes the importance of both parallelized microfluidic
droplet generators and multiple splitting of droplet approaches
for achieving high-throughput production.

In the recent years, the carbon capture microcapsules gen-
erated via droplet microfluidics have aroused considerable
interset. However, there remain challenges and opportunities
to address for the future applications. Therefore, herein, the
most prominent research directions for microcapsules for car-
bon capture based on the droplet microfluidics are provided
on three significant aspects: (i) high-throughput production of
microcapsules; (ii) selectivity of materials for carbon capture
microcapsules; (iii) quality of microcapsules.

6.1. High-throughput production of microcapsules

Generally, microcapsules are synthesized using interfacial
polycondensation or photocuring droplets. As the templates

of microcapsules, double emulsion droplets generated from
microfluidic devices are monodispersed, controllable and con-
centricity, which are superior to those generated with bulk
emulsification. Although plenty of microencapsulated car-
bon sorbents via droplet microfluidics have been proven to
be effective for the carbon capture applications, the out-
put of microcapsules is not enough to satisfy the industrial
application. In order to increase the throughput of microcap-
sules based on the droplet microfluidics, parallelization of
microfluidic droplet generation units and multiple splitting of
emulsion droplets are effective. However, considering vari-
ous materials can be applied for carbon capture, the fabrica-
tion factors of microfluidic devices for high-throughput micro-
fluidic production of the microcapsules, such as cost, manipu-
lation, and stability, are taken into account. In general, until
now, the relevant researches involving the high-throughput
production of microcapsules for carbon capture have not been
really started yet.

6.2. Selectivity of materials for carbon capture
microcapsules

The materials selectivity of shell and core of microcap-
sules is essential for the applications of carbon capture. The
shell of microcapsules presents a primary protective func-
tion against environments. Furthermore, selective permeabil-
ity, waterproofing and biocompatibility of the shell are also
needed to be considered. The core of microcapsules is the
essential element because of its key role to make carbon cap-
ture functional in the application, and it will be isolated from
the external agents. Focusing on the application of carbon cap-
ture, the ideal chemical solvents enclosed into the microcap-
sules require the following characteristics: (i) high reactivity to
CO2; (ii) low regeneration cost requirements; (iii) high absorp-
tion capacity; (iv) high thermal stability; (v) reduced solvent
degradation; (vi) low environmental impact; (vii) low solvent
costs. For now, ILs, MOFs and chemical solvent have been
selected as the core materials. It is meaningful to explore other
materials, whose absorption kinetics will be increased due to
the encapsulation or the inherent characteristics such as cor-
rosive or highly viscous. The permeability of CO2 through the
cured shell material is also needed to be taken into account so
that the microcapsules can be used in cycles.

6.3. Quality of microcapsules

In order to evaluate the quality of microcapsules, the numbers
of C.V., shell diameter, and core diameter are used and illus-
trated in the available researches. For examples, Vericella et al
[25] generated microcapsules with a highly uniform diameter
of (600 ± 6) µm, wall thickness of (31 ± 1) µm and centri-
city. Wang et al [173] generated spherical microcapsules with
diameter of 38 µm. Yew et al [195] produced functional core-
shell microcapsules of uniform sizes with 600–720 µm, and
the C.V. with 0.97%∼ 3%. Especially, the monodispersity and
centricity of microcapsules are demonstrated to be beneficial
for the increment of surface area. However, the relationship
between the quality of microcapsules and the CO2 absorption
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properties has been far from being fully understood. It is also
wondering that whether the size of microcapsules will influ-
ence the CO2 absorption properties.

This review can trigger novel ideas for other applications
such as high-throughput generation of microcapsules for car-
bon capture, which is beneficial for the application of micro-
fluidic droplet technology, particularly in the industrial fields.
In the future, one challenge in mass production is the design
regulations and tactics for non-Newtonian fluid. The embodi-
ment of quality control in parallelized droplet generators for
the long-term future also needs to be investigated further.
In conclusion, the generation of high-throughput droplets is
an important link between theoretical research and industrial
applications.
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