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Abstract
Three-dimensional (3D) printing, an additive manufacturing technique, is widely employed for
the fabrication of various electrochemical energy storage devices (EESDs), such as batteries and
supercapacitors, ranging from nanoscale to macroscale. This technique offers excellent
manufacturing flexibility, geometric designability, cost-effectiveness, and eco-friendliness.
Recent studies have focused on the utilization of 3D-printed critical materials for EESDs, which
have demonstrated remarkable electrochemical performances, including high energy densities
and rate capabilities, attributed to improved ion/electron transport abilities and fast kinetics.
However, there is a lack of comprehensive reviews summarizing and discussing the recent
advancements in the structural design and application of 3D-printed critical materials for
EESDs, particularly rechargeable batteries. In this review, we primarily concentrate on the
current progress in 3D printing (3DP) critical materials for emerging batteries. We commence
by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,
encompassing design principles, materials selection, and optimization strategies. Subsequently,
we summarize the recent advancements in 3D-printed critical materials (anode, cathode,
electrolyte, separator, and current collector) for secondary batteries, including conventional
Li-ion (LIBs), Na-ion (SIBs), K-ion (KIBs) batteries, as well as Li/Na/K/Zn metal batteries,
Zn-air batteries, and Ni–Fe batteries. Within these sections, we discuss the 3DP precursor,
design
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principles of 3D structures, and working mechanisms of the electrodes. Finally, we address the
major challenges and potential applications in the development of 3D-printed critical materials
for rechargeable batteries.

Keywords: additive manufacturing, 3D printing, rechargeable batteries,
electrochemical energy storage devices, lithium-ion battery

1. Introduction

Renewable fuels (such as, wind, solar, and hydroelectric
power) are essential for the current settings of an ecologically
friendly energy landscape due to the rising energy demands
and the decrease in the consumption of fossil fuels [1, 2]. As
examples of electrochemical energy storage devices (EESDs),
numerous batteries and multiple-type super-capacitors reveal
appreciable energy and power densities, great rate capabilit-
ies, and lengthy cycling lifetimes [3–5]. Due to the capacity
of storing and supplying electric energy and the accessibility
in varieties of forms, capacities, and power densities [6, 7],
rechargeable batteries have received substantial attention and
have been further researched. In order to enhance the electro-
chemical behaviors of batteries, lower their cos, and broaden
their use, significant research has been made into developing
new printablematerials, electrolytes, battery architectures, and
unique production technologies [8–10]. Nevertheless, elec-
trochemically active substances could be coated onto two-
dimensional (2D) current collectors during the normal bat-
tery production process, for example, the conventional planar
electrodes of lithium-ion batteries (LIBs). The electrochemical
performance could be negatively impacted by this strategy’s
potential to produce lengthy ions transport channels and small
interfacial surface active areas [11]. Fabricating thicker elec-
trodes, in particular, can considerably raise mass loadings of
material while maintaining rapid ions diffusion in order to
attain high energy densities and areal capacities. Moreover,
integrated batteries (containing anode, cathode, and electro-
lyte) are needed, which current battery construction processes
cannot achieve [12, 13]. Furthermore, creating 3D porous
structure with enlarged surface areas can accelerate electrode
reaction rate and ion transfer, meanwhile, efficient use of lim-
ited space in compact cell systems can result in shorter ion
diffusion paths, lower interface resistance and charge trans-
fer resistance. As a result, creating different kinds of elec-
trodes with 3D structures combined with different aperture
sizes using a controlled and producible technique remains a
substantial difficulty [14, 15].

Manufacturing method is critical for realizing perfect
EESD shapes and better electrochemical performance, and
the demand for sustainable and innovative manufacturing is
growing [16–18]. Additive manufacturing (AM), an industrial
manufacturing process, creates 3D things by layering active
materials directly from pre-designed drawings and proced-
ures by computer [19–22]. This technique, often known as 3D
printing (3DP), is a unique kind of fabrication methods that
allows for developing complex frameworks under a cheaper

cost than traditional processing techniques [16, 23, 24]. When
compared to conventional methods for batteries, 3DP pos-
sesses lots of notable advantages: firstly, enabling any desired
shapes to construct complex 3D architectures can be achieved;
secondly, the shapes and thickness of the electrodes can be
specifically regulated to acquire breath-taking areal and volu-
metric densities; thirdly, solid-state electrolytes (SSEs) with
high structural stability and safe operations are synthesized via
directly printing polymer or composite printing inks; in addi-
tion, lower manufacturing costs and environmental friendli-
ness make its application more widespread and universal [25].
Moreover, 3DP can drastically reduce unnecessary material
waste and may potentially improve efficiency because of the
less sophisticated fabrication processes. On the whole, 3DP
opens new doors for 3D-structured battery prototyping with
distinctive architectures and outstanding performance.

Considerable research efforts have been dedicated to mul-
tiple reviews summarizing and discussing 3D-printed EESDs.
However, limited attention has been given to the discus-
sion of 3D-printed anodes, separators/cathodes, electrolytes,
and 3D hosts, specifically focusing on ink formulation, elec-
trode structures, and optimization strategies for 3D electrode
structures. Capitalizing on the aforementioned advantages, we
present a comprehensive review of recent progress in crit-
ical materials and novel designs for 3D-printed rechargeable
secondary batteries (scheme 1). The review is organized into
three main sections. Firstly, we provide an overview of vari-
ous types of 3DP techniques employed for EESDs from 2013
to 2022, encompassingmethods, printablematerials, and types
of electrode structures (figure 1(a)). This section summarizes a
wide range of 3DP technologies, with particular emphasis on
their applications in the field of new energy. The discussion
includes polymer matrices used for printing, functionalized
materials, and common characteristic structures. Secondly, we
delve into several 3D-printed key materials in rechargeable
batteries, including cathodes, anodes, electrolytes/separators,
and current collectors. We extensively explore the details
of 3DP technology applied to electrode materials, structural
design, and reaction mechanisms. Finally, we conclude the
review by highlighting the challenges and future prospects of
3DP in the realm of rechargeable secondary batteries.

2. 3DP technology

3DP, also referred to as rapid manufacturing, involves the cre-
ation of digital model files based on the ‘discrete-stacking’
theory. It operates by printing materials, such as powdered
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Scheme 1. Diagram of this review of 3D-printed rechargeable secondary-batteries: 3DP techniques and critical components in EESDs.
Reprinted from [26], Copyright (2017), with permission from Elsevier. Reproduced from [27] with permission from the Royal Society of
Chemistry. [28] John Wiley & Sons. [© 2021 Wiley-VCH GmbH]. [29] John Wiley & Sons. [© 2018 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim]. [30] John Wiley & Sons. [Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. Reproduced from
[31] with permission from the Royal Society of Chemistry. [32] John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim].

metal or plastic, layer by layer under computer control to pro-
duce a three-dimensional (3D) object. Generally, 3DP techno-
logies can be categorized into the following types based on
their method and operating principle: (1) material extrusion
techniques (e.g. fused deposition modeling (FDM), fused fila-
ment fabrication (FFF), direct ink writing (DIW)); (2) powder
bed fusionmethods (e.g. selective laser melting (SLM), select-
ive laser sintering (SLS), electron-beam melting, direct metal
laser sintering); (3) light polymerization processes (e.g. ste-
reolithography (SLA), digital light processing (DLP), laser
cladding deposition); (4) material jetting approaches (e.g.
inkjet printing (IJP)); (5) binder jetting methods; and (6) sheet
lamination techniques (e.g. laminated object manufacturing
(LOM)).

Some reliable reviews [3, 33] have comprehensively sum-
marized the features of various 3DP technologies. Moreover,
the selection of appropriate 3DP materials is crucial as it
forms the foundation for the widespread application of 3D

technology. Different 3DP materials exhibit distinct charac-
teristics, but the mechanical properties, processing properties,
heat resistance, corrosion resistance, and chemical stability
of these materials significantly impact the progress of 3DP
technologies. Currently, there are several types of 3D print-
able materials available, including thermoplastics, light-cured
resins, ceramics, rubbers, metals, and other novel materials.
However, not all 3DP materials and technologies are suitable
for fabricating EESDs, particularly in the field of rechargeable
batteries. Furthermore, an important challenge in 3DP lies in
the preparation of ink, which directly influences the macro-
scale accuracy, micro-porosity, and electrochemical properties
of printed electrodes. The ink formulationmust satisfy specific
requirements, such as appropriate viscosity, high shear and
compression yield stress, controllable viscoelastic rheological
parameters, high solid content, and excellent electrical con-
ductivity. Achieving these characteristics in the ink is essential
for successful 3DP of electrodes.
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Figure 1. The development of 3D printing technologies in secondary batteries. (a) A timeline of 3D printing technologies, structures, and
materials for EESDs, and (b) the publications and trends on 3D printing and 3D-printed batteries from 2013 to 2022 (data from web of
science).

Different 3DP techniques also have notable drawbacks. For
instance, the FDM method involves a complex material pre-
paration process and high organic binder content, resulting in
electrodes with low specific energy and conductivity. DIW
suffers from low solid content, high rheological properties,
poor process stability, and challenges in forming thicker elec-
trode structures. IJP requires well-distributed particle sizes,
good fluidity, and stable chemical properties at high temper-
atures. Additionally, IJP technology has limitations in terms
of printing height and the inability to produce internal porous
structures. Therefore, our focus is on popular 3DP techniques
and critical materials used in rechargeable devices, allowing
for a comprehensive understanding of the characteristics and
advancements of various 3D-printed components in EESDs.
Table 1 provides a summary of different 3DP technologies and
printing materials. As an advanced material processing tech-
nology, 3DP offers numerous advantages in industrial manu-
facturing and has reached a high level of technological matur-
ity. In the academic realm, researchers have conducted extens-
ive investigations on 3DP, including the exploration of printing
materials from technical sources and practical applications,
particularly in the field of EESDs.

Binder jetting printing (figure 2(a)), in conjunction with
powder-bed and powder supply, enables the fabrication of
intricate structures [34]. During the production process,
a leveling roller uniformly distributes a micron layer of
powder from the powder supply onto the bed. Subsequently,
the printer head’s nozzle inkjets the binder onto the bed
powder, causing the powder to adhere to the adjacent
layer. The powder platform then moves downward along the

Z-axis, gradually constructing the desired structures layer
by layer.

Vat photopolymerization (figure 2(b)) utilizes a photopoly-
mer resin that undergoes selective curing in a vat through
active polymerization in the presence of a light source, such
as UV light. Specifically, SLA is a type of photopolymeriz-
ation printing technology that employs an ultraviolet (UV)
laser beam directed onto a vat filled with UV-curable pho-
topolymer resin. The resin located at the vat surface, where
the UV laser beam strikes, undergoes photochemical cur-
ing and solidification due to the UV light. Motor-controlled
mirrors are used to generate a pre-programmed single layer.
The build platform then lowers by a predetermined layer
height, and a moving blade applies a fresh coating of resin
on top of the resin tank. This process is repeated until each
layer is cured based on the model, resulting in the comple-
tion of the 3D object. Sheet lamination (figure 2(c)) involves
the assembly of cut sheets of materials such as polymers,
metals, or paper in a layer-by-layer fashion to create the
desired object. A mirror moves along the X and Y axes to dir-
ect the light source towards the sheet, while the build plat-
form moves along the Z axis to receive the stack of sheets
with the cut region. Each layer’s corresponding sheet is cut
using a laser or another cutting instrument to match a pre-
viously formed shape. Finally, the excess sheets along the
contour of the object are removed to reveal the finished
product.

Powder bed fusion (figure 2(d)) utilizes a powder bed and
a powder supply to selectively melt and fuse powder particles,
enabling the fabrication of complex structures. One of the
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Table 1. Comparisons of 3DP technologies for various rechargeable batteries.

Categories Methods
Main materi-
als Advantages Limitations

Main
applications References

Materials
extrusion

DIW Plastics;
Ceramic; Metal;
Composites

Low cost; simply
fabrication
process; material
flexibility; easy
operation

Inferior mechanical
Properties; high
requirement
of ink

LIBs; SIBs;
redox flow
batteries

[35–40]

Materials
extrusion

FDM Thermoplastics:
ABS; PLA; PC

Affordable cost;
high speed;
Simplicity

Weak mechanical
Properties; limited
active materials

LIBs; SIBs [21, 35,
41]

Powder bed
fusion

SLS Polymer based;
powder

High resolution;
no support;
structure needed

Exorbitant; Limited
mechanical
properties of object

LIBs; Al-air
batteries;
RFBs

[22, 35,
42, 43]

Powder bed
fusion

SLM Metal powders;
Metal alloy
powders

High utilization;
direct production
of metal parts

High cost; slow
printing speed

LIBs [17, 44,
45]

Vat
photopolymeri-
zation

SLA Photopolymers High efficiency;
high resolution;
high quality

Need photosensitive
additives; single
material

LIBs; super-
capacitor

[44–47]

Materials
jetting

IJP Metal
Conductive
polymers
Ceramics
Gel

High printing
precision; no
support structure
needed

Low surface quality
Sluggish printing
speed
Poor long-term
durability

LIBs
Zn-air batteries
RFBs

[17, 22,
48–50]

Binder jetting Binder
jetting

Any material in
particulate form
Metal powder
Ceramics
powder

Low
temperature; no
support materials

Limited mechanical
properties
Low surface quality

LIBs
RFBs

[17, 22,
51, 52]

Sheet
lamination

LOM Laminated sheets
Paper metal
Plastic

Fast forming;
affordable cost;
large size
samples

Weak mechanical
properties Design
limitations

LIBs [17, 53]

techniques employed in powder bed fusion is SLS, which
involves the fusion of a layer of powder particles along a
defined path using a high-energy source, such as a laser beam.
After the first layer has solidified, the build platform is lowered
to accommodate the next layer of powder particles. This pro-
cess is repeated until all the layers have been fused, and any
remaining unfused powder is removed, resulting in the desired
3D printed structure.

Directed energy deposition (figure 2(e)) utilizes a precisely
focused power source to simultaneously melt the substrate and
the material being added to the substrate melt pool. The build
platformmoves along theX, Y, and Z axes, while the print head
remains stationary. The print head creates a path of solidified
material, and as these paths intersect, they form the printed
layer. By overlapping these paths layer by layer, a complex
3D structure is formed.

Material extrusion (figure 2(f)) involves layering molten or
semi-molten polymer, paste, or polymer solution through a
printing head equipped with a nozzle or aperture. After depos-
iting the first layer, the print head or platform moves along the
Z-axis to enable the deposition of subsequent layers. DIW is

a form of material extrusion that begins with the development
of a viscoelastic ink with specific rheology. The desired 3D
structure is then constructed by extruding continuous fila-
ments placed on a building platform through a nozzle at a
controlled pressure. For DIW, it is crucial to develop an ink
with appropriate viscosity and elastic behavior, particularly
ensuring suitable yield stress behavior for successful print-
ing. Another common extrusion-based printing technology,
FDM, involves layering thermoplastic filaments that have been
heated to a semi-molten state at the nozzle tip before extru-
sion. The extrudedmaterial quickly solidifies on the build plat-
form at a lower temperature, forming a solid layer that is sub-
sequently built upon to create the final 3D object, guided by
CAM or CAD software.

In the material jetting technique (figure 2(g)), the mater-
ial and binder are combined at the printing head and dis-
persed into tiny droplets, which are selectively deposited
through an aperture onto the platform. The applied mater-
ial can be cured either by a light source or by the surround-
ing atmosphere, depending on the specific material being
used.
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Figure 2. 3D printing technologies categories: (a) binder jetting, (b) vat photo-polymerization, (c) sheet lamination, (d) powder bed fusion,
(e) directed energy deposition, (f) material extrusion and (g) material jetting. Reprinted from [34], Copyright (2020), with permission from
Elsevier.

3. Printable battery modules and structures

3DP technology has demonstrated significant potential in
the fabrication of EESDs. Analysis of publications and
the utilization of 3DP technologies in batteries using the
‘Web of Science’ database reveals the increasing prevalence
of 3DP technology, particularly in emerging battery types
(figure 1(b)). Rechargeable secondary batteries, including Ni–
Cd, lead-acid, Ni-metal hydride, LIBs, and flow batteries,
dominate the battery market due to their ability to undergo
repeated charge and discharge cycles [54–56]. Although active
electrodes based on intercalation/deintercalation mechanisms
exhibit excellent cycling performance, their energy and power
densities are limited by the limited number of intercalated ions
and slow reaction kinetics [57, 58].

Conventional 2D electrodes often rely on strategies such as
increasing electrode thickness and loading of active materials
to enhance specific capacitance and energy density. However,
thick electrodes suffer from uneven pore distribution and long
ion transport pathways, resulting in sluggish ion and electron
transport and a decrease in power density and rate perform-
ance. In contrast, 3DP technology, a layer-by-layer AM tech-
nique with customizable structures, enables the production of
intricate spatial frameworks with superior structural design
and integration. The resulting electrodes facilitate electrolyte
permeation and ion diffusion, addressing the limitations asso-
ciated with traditional 2D electrodes.

Several distinctive 3DP structures have been documented,
including grid structures, interdigitated structures, serpentine
structures, fibrous structures, hierarchical octet-truss structure,
and others, as illustrated in figure 3 [59, 60]. The stacked 3D-
printed grid structure is formed by stacking multiple grid lay-
ers, each composed of two perpendicular parallel lines, along

the Z axis (figure 3(a)) [61]. This structure features layered and
ordered pores, resulting in a high specific surface area and pro-
moting uniform electron distribution on the electrode surface.
Consequently, it reduces local current density during charge
and discharge processes, leading to improved active mater-
ial utilization. Furthermore, the porous nature of this structure
helps alleviate mechanical stress within the electrode, enhan-
cing its mechanical properties. Additionally, the 3D-stacked
electrode structure facilitates efficient electrolyte transport and
penetration, ultimately enhancing power performance.

The interdigitated structure electrode consists of a 3D-
printed framework with cathode and anode electrodes inter-
connected in an interlaced ‘finger’ arrangement (figure 3(b))
[15]. This design enhances the contact area between the elec-
trodes and reduces ion transfer distance, thus reducing resist-
ance in integrated cells. Complex interdigital electrodes can
only be produced using 3DP techniques, such as DIW and
FDM. Serpentine structure electrodes, created by 3DP serpent-
ine patterns, exhibit reversible stretchability at the component
level, showcasing their potential for stretchable energy stor-
age devices in wearable and flexible electronics (figure 3(c))
[62]. Fibrous structures (figure 3(d)) obtained through 3DP
exhibit flexibility, breathability, and meet the requirements
for wearable energy storage devices [63]. These fibrous elec-
trodes demonstrate excellent flexibility, electrochemical per-
formance, and sufficient porosity for air exchange and stretch-
ing capability. The hierarchical octet-truss structure, with its
stable triangular architecture, exhibits exceptional stiffness
and strength (figure 3(e)) [64]. As a unique hierarchically por-
ous structure, it offers significant advantages in the application
of energy storage devices. Thus, various complex spatial struc-
tures are fabricated using 3DP technologies, providing signi-
ficant benefits for energy storage device applications.
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Figure 3. Typical 3D printing architectures of electrodes. Schematic of (a) the grid structure. Reprinted from [61], Copyright (2023), with
permission from Elsevier. (b) The interdigitated structure. [15] John Wiley & Sons. [© 2016 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim]. (c) The serpentine structures. Reprinted from [62], Copyright (2022), with permission from Elsevier. (d) The fibrous structures.
[63] John Wiley & Sons. [© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim] and (e) the hierarchical octet-truss structure.
Reproduced from [64] with permission from the Royal Society of Chemistry.

Designing and fabricating 3D architectures for critical com-
ponents, including electrodes (cathode and anode), separat-
or/electrolyte, and current collector, have emerged as effect-
ive approaches to optimize structures and improve battery
performance [65, 66]. The utilization of 3DP approaches
in rechargeable batteries has been demonstrated to enhance
the basic capabilities of these critical components [67],
which in turn determine the overall properties of the bat-
tery, such as energy densities, power densities, cycle lifespan,
and safety [68, 69]. Thus, in this section, we focus on the
architectural aspects of currently available printed battery
modules [70]. These individual battery modules require qual-
ities such as mechanical robustness, excellent electrical and
ionic conductivity [16, 71], and the selection and utilization
of appropriate 3DP procedures and materials are crucial for
achieving these goals in energy storage and conversion sys-
tems, further driving advancements in other energy storage
systems [72].

In 2013, Lewis et al demonstrated the printing of micro-
LIBs with an interdigitated design using DIW, which included
the commonly used anode and cathode of LIBs [73, 74]. The
3D interdigitated design and DIW process provided an advant-
ageous approach for the stacking and placement of battery
components [15]. Since then, researchers have continuously
developed novel electrode structures and materials, assem-
bling them through various 3DP processes. Prior to 2013,
some attempts were made to produce 3D-architected elec-
trodes or batteries using IJP, but they were mostly limited to
2D frameworks with restricted information and functionalities
[75, 76]. Therefore, this review focuses on the application of
3DP technologies in rechargeable batteries, primarily includ-
ing LIBs, sodium-ion batteries (SIBs), solid-state Li bat-
teries, Li-air batteries, Li–S batteries, and zinc-ion batter-
ies (ZIBs) [77] (figure 4). We emphasize and discuss design
principles, material selection, structural optimization, and

electrochemical performance mechanisms in different electro-
chemical systems.

4. 3D-printed cathode materials

The preparation of inks is crucial for 3D-printed critical mater-
ials used in rechargeable batteries, involving the selection of
raw materials and the composition ratio of the ink. Various
types of raw materials are used for different battery compon-
ents, such as cathode ink, anode ink, electrolyte/separator ink,
and more. The proportion of ink components varies depend-
ing on the specific battery type. Among these components,
enhancing the performance of the cathode material plays a
significant role in improving the overall battery performance.
3DP technology can be employed to design cathode electrode
materials for batteries, enabling control over the morphology
of the printed cathode materials at both macro and micro
scales. This control facilitates the transformation from a 2D
electrode to a 3D electrode, enhancing the surface activity of
the electrode and facilitating ion and electron transport within
the electrode. Additionally, the controllable thickness of the
cathode electrode material allows for adjustment of the active
substance mass, ultimately achieving high energy density and
high power density in lithium batteries [15, 78].

In the field of LIBs, several major cathode materi-
als have been successfully printed, including LiFePO4

[79], LiMn1−xFexPO4, LiCoO2 [80], LiMn2O4, and
LiNi0.8Co0.15Al0.05O2 (NCA). Among them, LiFePO4 has
seen the most significant development and has been prin-
ted using various processes such as DIW, FDM, and IJP. To
achieve high aspect ratios in printing electrode structures, it
is essential to carefully tune the composition and rheology
of inks. This ensures reliable flow through fine deposition
nozzles, promotes adhesion between printing features, and
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Figure 4. Schematic diagram of the critical materials and the lists of printable components including cathodes, anodes, and electrolytes for
advanced rechargeable batteries.

provides the necessary structural integrity to withstand drying
and sintering without delamination or deformation.

Lewis et al employed a straightforward 3DP approach by
suspending Li4Ti5O12 and LiFePO4 nanoparticles in a solu-
tion containing deionized water, ethylene glycol, glycerin,
and cellulose-based adhesives [30]. Multiple steps, includ-
ing particle dispersion, centrifugation, and homogenization,
were used to precisely generate filamentary functional inks on
surfaces with varying densities from 100 s·m−2 to 1 s·m−2.
They constructed a 3D staggered microcell structure (3D-
IMA) composed of Li4Ti5O12 (anode) and LiFePO4 (cathode)
using 3DP technology (figures 5(a)–(e)). These active mater-
ials exhibited modest volumetric expansion, reducing the
need for electrode compliance to accommodate strain during
charge/discharge operations. Printing thin LFP cathodes and
LTO anodes enabled the realization of high area energy/power
densities. The researchers demonstrated potential applications
in self-powered biomedical and microelectronics devices by
printing interdigitated electrodes, packing them, and electro-
chemically characterizing 3D Li-ion microbatteries.

Hu et al proposed a 3DP method and manufactured 3D
LIBs using C@LiMn1−xFexPO4 cathode [81]. Compared to
conventional coated electrodes, the printed 3D LIBs exhib-
ited ultra-high rate capabilities and capacities. Furthermore,
using the pseudo-2D hidden Markov model (referred to as
P2DHMM) and the simplified LIB model, the research-
ers found that electrolyte diffusion significantly influences
the rate performance, including factors such as the solu-
tion’s intrinsic diffusion coefficient, efficiency porosity,
and electrode thickness. The printed battery achieved a
capacity of 108.45 mAh·g−1 at 100 C, demonstrating
the LMFP LIBs’ superior rate capability (figure 5(f)).

These results hold universal significance for future bat-
tery design, as they highlight the importance of regulating
electrode thickness and porosity to achieve improved rates
and capacities.

In addition, a low-cost cathode for LIBs has been pro-
duced, for instance, DIW had produced Na3V2(PO4)3 with a
grid structure, and FDM had produced NaMnO2 with a cyl-
indrical shape [75]. Ding et al printed 3D porous skeletons
for salt storage using GO-contained ink with special ratio
and a freeze-drying method. Further demonstrating the wide
applicability of GO-based inks in the construction of a vari-
ety of well-designed and structurally complex frames, four
types of frames were printed, such as staggered grids, square
coils, mosquito coils and circular arrays. Plenty of micro-
holes and interconnected 3D networks were present in the
as-obtained skeletons [82] (figure 6(a)). Surprisingly, the fil-
aments were porous in a hierarchical manner and were cross-
linked by a spate of flexible nanosheets (figures 6(b) and (c)).
Scanning electron microscope (SEM) (figure 6(d)) revealed
that the NVP particles were evenly distributed throughout the
skeletons. The adjustable NVP-GO inks were used to print
a variety of skeletons (for instances, triangle, square, circle)
that could withstand the quick passage of sodium ions and
electrons (figure 6(e)). Wei et al reported the design, fabric-
ation, and electrochemical performance of fully 3D printed
LIBs of LFP or LTO (figure 6(f)) [83]. The active electrode
particles with good dispersion have small volume change and
excellent thermal stability, and are mixed with conductive car-
bon to construct a permeable network. Fully 3D-printed LIBs
eliminates the need for drying, electrolyte filling, calender-
ing, clamping, and heat sealing processes associated with tra-
ditional LIB manufacturing, and delivered an areal capacity
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Figure 5. 3D printing of lithium-ion battery cathode materials. (a) Diagram of fabricating 3D LTO and LFP composite cathode.
(b)–(e) Digital and SEM images, half-cell voltage of electrodes, and areal capacity of LTO-LFP electrode. [30] John Wiley & Sons.
[Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (f) Schematic of batteries fabrications with the 3DP electrode.
[81] John Wiley & Sons. [© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].

of 4.45 mAh·cm−2 at 0.14 mA·cm−2, which is equivalent
to 17.3 Ah·l−1. Nickel-based (Ni–Zn, Ni–Fe) batteries are
emerging as one of the new-type rechargeable batteries. Kong
et al’s group [55] reported the 3D-printed quasi-solid-state
Ni–Fe batteries (NFB) devices through layer-by-layer stack-
ing 3DP technology. In this design, 1D carbon nantubes and
2D rGO sheets ink was employed to fabricate the free-standing
matrix, and then ultrathin Ni(OH)2 nanosheets and holey
α-Fe2O3 nanorod arrays were prepared by solution method

and hydrothermal method, respectively. Homogeneous GO-
carbon nanotube (CNT) ink plays an important part in print-
ing 3D self-support matrix. As a result, the Ni–Fe battery
demonstrated superior cycling lifespan of 10 000 cycles with
91.3% capacity retentions and significant energy density of
28.1 mWh·cm−3 at a power of 10.6 mW·cm−3.

In recent years, the limited capacity of cathodes has
been a major obstacle to achieving higher energy density
in LIBs, hindering their development. To address this issue,
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Figure 6. 3D-printed critical materials for SIBs, LIBs, and Ni–Fe battery. (a) Diagram of 3D-printing porous skeletons, (b)–(d) the
corresponding SEM images of printed samples under different magnifications. (e) Schematics of different types of 3D-printed frameworks
including triangle, square, and circle. Reprinted with permission from [82] Copyright (2017) American Chemical Society. (f) Images and
schematics of direct writing inks of four components in LIBs. [83] John Wiley & Sons. [© 2018 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim]. (g) Working principle and electrochemical reaction mechanisms of the 3D-printed Ni–Fe battery, and (h) schematic illustration
of fabrication of 3D-printed rGO/CNTs@Ni(OH)2 cathode and 3D-printed rGO/CNTs@α-Fe2O3 anode. Reprinted with permission from
[55] Copyright (2022) American Chemical Society.
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Figure 7. The applications of 3D printing technology in Li–S battery and Li-air battery. (a) Diagram of the 3D-printed 3D sulfur (S)
cathode, optical picture, performance and analysis. Reprinted from [84], Copyright (2020), with permission from Elsevier. (b) The
comparison of catalyst in Li-air system with 2D or 3D framework. [85] John Wiley & Sons. [© 2018 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim].

the use of 3DP technology to fabricate cathode materials
with high theoretical mass specific capacity has emerged. For
example, 3DP has been employed to print sulfur (S) cath-
odes for Li–S battery systems and catalysts for Li-air systems
[74]. Cai et al developed a separate 3DP-LaB6/SP@S elec-
trode using an extrusion-based 3D printer, involving three
key steps: ink formulation, 3DP, and freeze drying [84]
(figure 7(a)). The resulting cathode exhibited a densely packed
structure with hierarchical microholes and continuous mul-
tichannels, facilitating unrestricted pathways for electrons and
ions and effectively accommodating volume expansion over
long-term cycling.

Furthermore, Lyu et al utilized 3DP technology to create
a freestanding catalytic scaffold with abundant porous struc-
tures by employing cobalt-containing metal-organic frame-
work (Co-MOF) ink derived from 2-methylimidazole and
cobalt nitrate solution. The scaffold was carefully thermally
treated using an extrusion-based 3D printer (figure 7(b)) [85].
The hierarchical frameworks comprised Co-MOF-derived car-
bon particles, which generated micrometer-sized openings
and various-sized pores within the sheets. This resulted in a
highly conductive, mechanically stable, and crack-free carbon
structure that served as an excellent conducting matrix. By
converting the permeable matrix into a self-standing catalyst
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Figure 8. The applications of 3D printing technology in Li-CO2 battery and Zn-air battery. (a) Diagram of fabricating r-GO framework by
3DP. (b) SEM, TEM and optical images of the GO, Ni/r-GO frameworks, (c) electrochemical properties. [86] John Wiley & Sons. [© 2018
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d) Schematics of 3D-printed anode and cathode in Zn-air battery and
(e) electrochemical properties. Reprinted from [87], Copyright (2020), with permission from Elsevier.

design, the specific energy was significantly increased, leading
to a competitive energy density.

In addition to the commonly studied Li–S and Li–
O2 cathodes, reduced graphene oxide (rGO) cathodes have
been explored for various battery systems, including Na–O2,
Li–CO2, and Zn-air batteries. For instance, Qiao et al [86]
introduced a novel method using 3DP to synthesize Ni nan-
oparticles anchored on an rGO framework (Ni/r-GO) via a
heat-shocking process, enabling the fabrication of thick elec-
trode designs for Li–CO2 batteries (figure 8(a)). The ultrathick
cathode, measuring 0.4 mm, was created in two stages: first, a
GO framework was printed and then reduced in an argon gas
environment to produce an rGO framework. Subsequently, the
framework was immersed in a NiCl2 solution, and ultra-fine
Ni particles were thermally anchored onto the r-GO through
a high-speed and high-temperature thermal-shocking process
(figure 8(b)). The designed ultrathick electrode, along with
the uniform dispersion of Ni nanoparticles, led to reduced
overpotential and increased specific capacity (figure 8(c)).
Similarly, Zhang et al [87] employed a direct ink writing

(DIW) 3D printer to fabricate functional electrodes, includ-
ing both anode and cathode, for Zn-air batteries. The prin-
ted freestanding air cathode exhibited a layered porous struc-
ture with characteristics such as a large surface area, strong
electrocatalytic activity, and fast reaction-diffusion routes
(figure 8(d)). Consequently, the constructed Zn-air battery
demonstrated outstanding capacity (670 mAh·g−1) and long-
term stability (figure 8(e)).

3DP technology has revolutionized the fabrication of elec-
trodes by enabling the production of precise and complex
geometric structures in a highly automated and reproducible
manner. One of the remarkable advancements in this field
is the work by Ren et al [88], who introduced the use of
CNT@MnO2 ink synthesized through 3DP. By incorporating
carbon nanotubes, they created a 3D network structure that
improved conductivity and charge dynamics. Additionally,
they replaced zinc foil with micron-sized zinc powder, res-
ulting in a highly flexible battery device. This innovative
approach allowed the electrodes to be separated bymillimeters
and directly in contact with the unitary electrolyte, reducing
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Figure 9. 3D-printed materials in ZIBs. (a) Schematic diagram of a 3D printing battery and SEM images of CNT@MnO2. (b) Photograph
of the multinozzle printing system. Reproduced from [88]. CC BY 4.0. (c) Schematic illustration of the fabrication of a conformal ZIBs
using nonplanar 3D printing. (d) Photographs of the nonplanar 3D-printed cathodes on various 3D substrates. [89] John Wiley & Sons.
[© 2023 Wiley-VCH GmbH].

dendrite penetration and enhancing ion transport. The 3D prin-
ted battery exhibited an impressive capacity of 63 µAh·cm−2

at 0.4 mA·cm−2, while maintaining excellent performance
even under different bending conditions, with a maximum
change in capacity of only 2.72% (figures 9(a) and (b)).

Another notable contribution in the realm of 3D printed
batteries is the work by Ahn et al [89], who developed a
non-planar 3DP technique for ZIBs. Their approach involved
the design of a ZIB component, comprising a Mansan-based
cathode, a UV-curable gel composite electrolyte, and a zinc
powder-based anode, using the DIW method. By carefully
regulating the colloidal interaction within the ZIB compon-
ent ink, they achieved a dual-infiltrated ion/electronic con-
duction pathway, ensuring efficient geometric synchroniz-
ation with non-planar surfaces. The ZIBs fabricated using
this approach demonstrated a high volumetric energy dens-
ity, reaching 50.5 mWh·cmcell

−3, thanks to their high-fill
coefficient (figure 9). These remarkable advancements in 3D

printed battery technology highlight the potential of thismanu-
facturing technique for achieving enhanced performance, flex-
ibility, and energy density. The ability to create intricate elec-
trode structures and optimize material composition through
3DP opens up new avenues for the development of advanced
energy storage systems.

In the past five years, there have been significant advance-
ments in sulfur and carbon cathodes, paving the way for the
exploration and development of high-specific-energy batter-
ies. These advancements have attracted considerable attention
and are expected to continue to be a focal point of research in
the foreseeable future. Among the variousmanufacturing tech-
niques employed in rechargeable batteries, DIW stands out as
the most widely utilized method, accounting for 76.3% of all
applications. It is followed by IJP and FDM. This widespread
adoption of DIW can be attributed to its unique advantages,
particularly its ability to work with a broad range of printable
material precursors.
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5. Structural design of anode materials

Since the commercialization of LIBs, the development of
anode electrodes has become a crucial aspect in increasing
their specific capacity. Graphite, the commonly used anode
material, exhibits limitations such as insufficient capacity and
poor rate performance, which are increasingly unable to meet
the growing demands. The emergence of alternative battery
systems, such as SIBs, potassium-ion batteries (KIBs), and
ZIBs, provides an opportunity for diversifying energy storage
options and filling the gaps in various applications.

To enhance the specific capacity of LIB anodes, vari-
ous high-capacity materials have been successfully explored.
These include carbon-based materials (such as graphene and
hybrid materials), tin-based materials, silicon-based materials
[90], titanium-based materials, and others [91]. Extensive
research has been conducted to investigate 2D or 3D config-
urations that enable efficient Li+ diffusion and achieve higher
specific capacity and power.

Maurel et al described the formulation and characterist-
ics of a 3D-printed graphite/polylactic acid (PLA) filament
specifically designed for use as an LIB anode and compat-
ible with standard commercial FDM 3D printers. Figure 10(a)
[43] illustrates the optimized 10% CSP (graphite/conductive
agent) film sample, which approaches theoretical capacity,
and its corresponding filament used as a 3DP material sup-
ply. The most printable filament, 40% PEGDME500, exhibits
good homogeneity, as confirmed by Raman microscopy ana-
lysis (figure 10(b)). The researchers successfully printed high-
resolution complex 3D structures, such as a semicube lattice
and a 3D boat (figure 10(c)). By studying various plasticizers,
including PC, PEGDME2000, PEGDME500, andATBC, their
effects on thermal behavior and compatibility with compos-
ite films were investigated through DSC curves (figure 10(d)).
The electrical conductivity was assessed by varying the ratio
and content of conductive additives (figure 10(e)).

Lawes et al demonstrated the fabrication, optimization,
and characterization of inkjet-printed (IJP) silicon (Si) anodes
for LIBs [26] (figure 10(f)). Through a comparison of four
polymer adhesives, they highlighted the importance of adhes-
ives in achieving superior electrochemical performance of
IJP Si electrodes. The self-healing effect was demonstrated
using FTIR analysis based on the structure of PEDOT:PSS
(figure 10(g)), which exhibited excellent performance and dur-
ability when used with the conductive polymer PEDOT:PSS
adhesive (figure 10(h)). These studies highlight the advance-
ments in developing anode materials for LIBs through 3DP
techniques. By tailoring the composition, structure, and adhes-
ive properties, researchers have been able to optimize the
performance and durability of anodes, paving the way for
improved energy storage capabilities.

For the fabrication of 3D electrodes, extrusion-based 3DP
offers a potentially affordable and straightforward manufac-
turing solution. For instance, the FFF approach allows for
downsizing and the design of free form factor batteries, as well
as the reduction of dead mass components, the reduction of
energy loss, the creation of a suitable interface, and an increase
in the efficiency of energy transfer. Ragones et al described a

unique concept and feasibility investigation of a 3DP FFF [92]
(figures 11(a)–(c)). In cells using traditional liquid electro-
lytes, 3D printed LiFePO4 (LFP) and lithium-titanium-oxide
(LTO) composite polymer electrodes indicated reversible elec-
trochemical reactions. This helped build a free-volume bat-
tery, reduce the volume changes that occur at the charging and
discharging stages. The electrochemical activity of the elec-
trodes proved that FFF-printed cells were technically feasible.
While the method is promising for printing with thick elec-
trodes, there is still a basic issue that has to be solved regarding
the viability of the ink. Sun et al printed AgNWs, graphene,
and Li4Ti5O12 as highly conductive and hierarchical networks
for mixed-function inks (figure 11(d)) [67, 92, 93]. The com-
bination of conductive AgNW networks, linked 3D graphene
scaffolds, and layered porous structures allows for signific-
antly improved charge and ion transport, as well as reduced
internal stress during ultra-thick charge–discharge operations,
providing the necessary mechanical strength, which resulted
in the enhanced stability (figure 11(e)).

The local current density and electric field concentration
on the electrode are two extremely critical elements influ-
encing the electrochemical behavior of Li+/Na+/Zn2+ [72].
Conventional 2D planar anodes (bare Li, Na, Zn metal)
have rough surfaces, contributing to non-uniform current
distribution [70]. Li+/Na+/Zn2+ preferred to electromigrate
to tips when the local current density increased, which pro-
moted dendrite formation [66]. Through 3DP, the structured
Li/Na/Zn metal anode electrode can increase the SSA of
the electrode, so that the total electric field was evenly dis-
tributed in the porous electrode, so as to decrease the cur-
rent density, achieve uniform deposition, and inhibit volume
changes of electrode, so as to enhance the cycle stability and
safety [58, 65]. Increasing electrode thickness is a common
method to increase battery areal capacity [27, 82]. However,
due to basic difficulties such as insufficient electrolyte pen-
etration, poor mechanical characteristics, and delayed charge
and ion transport, the practical use of these thick electrodes is
hampered. Continuous innovation as the foundation for creat-
ive advancement in quickly creating varied form-factor micro-
electronic devices necessitates smooth battery integrability
[57, 94]. As a result, during the last decade, in terms of materi-
als advancements for battery, the emphasis had shifted increas-
ingly toward creative manufacturing techniques, unorthodox
topologies, and multi-functional modules [68].

For Li metal anodes, such as graphene, CNTs, MoS2-
graphene, and MXenes, had been manufactured in the same
way as the printed anodes of Li metal batteries. 3D-printed
porous structures made of carbon, MXenes (Ti3C2Tx), and
Cu, for instance, had been developed as hosts for the Li
metal anode. According to the extrusion-type 3DP, shen et al
developed a dendrite-free Li anode with a 10 mV overpo-
tential, a 1200 h cycle life, and excellent areal capacities
[95] (figure 12(a)). In 3DP anodes, MXene arrays with huge
quantities of voids not only facilitated lithium nucleation,
homogenized the electric field and lithium ion flow, success-
fully restrained the formation of Li dendrites, but also offered
adequate room for the expansion of significant cobblestone
lithium. V2CTx/rGO-CNT material is also fabricated by a
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Figure 10. The applications of 3D-printed graphite-based and silicon-based anode materials in LIBs. (a) Procedures the 3DP graphite-based
anode, (b) nonhomogeneous filament image obtained by optical microscopy of graphite and PLA, (c) optical image of 3D objects printed by
40% PEGDME500, (d) DSC curves for various printed disc, and (e) Arrhenius plots of the electrical conductivity for various samples.
Reprinted with permission from [43]. Copyright (2018) American Chemical Society. (f) Optical diagram of preparing printing ink of Si
anode and mechanism analysis of 3D-Si electrode. (g) FTIR spectra of SiNP anodes with PEDOT:PSS binder taken at three stages, and
schematic structure of PEDOT:PSS. (h) Schematic illustration of the proposed mechanism to electrochemical performance of anodes with
various binders. Reprinted from [26], Copyright (2017), with permission from Elsevier.

DIW 3DP technology and further adopted as the matrix of Na
metal. The 3D-printed V2CTx/rGO-CNT aerogel was demon-
strated to be superior matrix for Na metal anodes due to
the large specific surface area and sodiophilic V2CTx MXene
nanoflakes [55] (figure 12(b)). 3D hierarchical porous flex-
ible Zn anode (3DP-ZA) was printed for the first time by a
component in the formulated ink (CNT, graphene and cellu-
lose) [61]. In this design, 3DP technology plays a vital role in
fabricating the flexible Zn anode, and tight integration among

carbon matrix, Zn powder and zincophilic Ag particles gur-
antees a good flexibility and structural stablility, which shows
huge potential for the practical application of flexible ZIBs
(figure 12(c)).

Furthermore, 3DP technology has been utilized to address
crucial challenges associated with Li metal anodes by employ-
ingMOF-basedmaterials and biomassmaterials. Thesemater-
ials aim to mitigate issues such as uncontrolled Li dendrite
formation and significant interface changes. Lyu et al achieved
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Figure 11. The application of extrusion-based 3D printing technology in 3D electrodes design. (a) Schematics and models of 3DP various
electrodes; (b) the structure design of 3D batteries and (c) overall view. Reproduced from [92] with permission from the Royal Society of
Chemistry. (d) Diagram of the fabricating rGO-AgNWs-LTO cells and (e) mechanism analysis. Reprinted from [67], Copyright (2020), with
permission from Elsevier.

a breakthrough by 3DP a unique N-doped carbon framework
with a hierarchically porous host and high surface area using
an extrusion-based Zn-MOF precursor (figure 13(a)) [94]. The
distinctive structural characteristics of the framework effect-
ively inhibited dendrite formation, facilitated Li plating, sta-
bilized the Li/electrolyte interfaces, and promoted high local
current dispersion.

In another pioneering study, Cao et al successfully
employed cellulose nanofiber (CNF), one of the most abund-
ant biopolymers on Earth, to fabricate high-performance lith-
ium metal batteries (LMBs) through 3DP [58] (figure 13(b)).
The researchers demonstrated the 3DP of cathode and
anode scaffolds, as well as the rheological properties of the
inks, and developed CNF/LFP samples with varying layers
(figure 13(c)). The incorporation of CNF gel in the printing
process provided a stable framework for Li deposition along-
side the LFP electrode. The feasibility of the CNF gel was
thoroughly investigated, and the permeable design of CNF
scaffolds enhanced ion permeability while reducing local cur-
rent density during Li plating. As a result, dendritic forma-
tion caused by uneven Li plating or stripping was signific-
antly reduced. Figure 13(d) showcases the initial assembly of

a fully packed LMB with 3D-printed electrodes, which effect-
ively powered a LED light with a working voltage exceeding
3.0 V. Moreover, a multiscale numerical technique incorpor-
ating first-principle theory and a multi-physical field model
revealed that the porous structures exhibited more homogen-
eous Li deposition (figure 13(e)).

Considerable research has been dedicated to the advance-
ment of a wide range of cathode and anode materials, as exem-
plified by the sample printed batteries presented in table 2. The
utilization of 3DP technologies holds great promise in fab-
ricating crucial components for rechargeable batteries, offer-
ing exceptional adaptability and enabling high mass loadings.
This approach has the potential to significantly enhance areal
capacities and energy densities. Through the precise control
afforded by 3DP, various materials and processes have been
explored, leading to the creation of innovative battery archi-
tectures. These advancements contribute to the continuous
improvement of battery performance and the realization of
more efficient and sustainable energy storage systems. The
integration of 3DP techniques with battery technology opens
up exciting avenues for future research and development in the
field of electrochemical energy storage.
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Figure 12. 3D-printed various 3D hosts for metal anode batteries. (a) Diagram of preparing raw Ti3C2Tx MXene, 3D MXene electrode, and
the morphology of Li plating. Reprinted from [95], Copyright (2020), with permission from Elsevier. (b) Procedures of fabricating 3D
V2CTx/rGO-CNT aerogel for Na metal anode. Reprinted with permission from [55] Copyright (2022) American Chemical Society and
(c) 3D printing Ag anchored hierarchical porous flexible Zn anode. Reprinted from [61], Copyright (2023), with permission from Elsevier.
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Figure 13. 3D-printed carbon-based hosts for Li metal anodes. Diagram of (a) the Li plating process on 3D-printed carbon-based hosts.
Reprinted from [94], Copyright (2020), with permission from Elsevier and (b) 3D printed c-CNF scaffolds for LMMBs; (c) optical image of
pristine dispersions, CNF/LFP cathodes printed one layer after another. (d) The illustration of 3D-printed cell structure, and LMBs
powering a white LED lamp. (e) Theoretical simulations of Li plating morphologies, normalized Li+ ion concentration, and local current
densities. [58] John Wiley & Sons. [© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].

6. Separator/electrolyte

In addition to the anode and cathode, the separator/electro-
lyte plays a crucial role in rechargeable batteries [115]. The
interface between the separator/electrolyte and the electrodes
is particularly important as it significantly influences the elec-
trochemical performance. In this regard, 3DP offers a viable
approach for interface design by allowing the adjustment and
fabrication of the separator/electrolyte morphology.

The separator must possess uniform pore-size distributions,
excellent thermal and mechanical stability, as well as remark-
able electrochemical stability, which have been extensively

studied in conventional rechargeable batteries [104, 116–
118]. However, printing the separator remains a challen-
ging task [119], and further research is needed to assess
whether printing can enhance its performance [94, 120, 121].
Recently, solid-state rechargeable batteries have garnered sig-
nificant attention due to their stability and safety advant-
ages. SSEs offer improved safety, increased energy densities,
potential enhancements in cycling lifespan, and fast-charging
capabilities [122, 123]. To meet the requirements of emer-
ging markets, advancements in solid electrolyte materials are
necessary, along with the rapid progress in 3DP techniques
[31, 124].
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A variety of 3D-printed electrolytes have been reported for
SSE, including polymers [29, 125, 126], ceramics [98, 127–
129], and polymer-ceramic hybrids [130–134]. Unlike con-
ventional manufacturing processes, the printability of electro-
lytes is a critical characteristic for 3DP. Currently, DIW is
widely employed in 3DP electrolytes due to its wide selection
of printable inks. Additionally, SLA is used to achieve high-
resolution and complex structures using photocurable inks.
Generally, 3DP electrolyte inks comprise polymer substrates,
salts, and additive fillers. The ink is extruded or stacked during
the 3DP process, with the polymer substrate determining strain
behaviors such as rheological properties, shear, and yield.
Commonly used polymer substrates in 3DP electrolyte inks
include polyvinylidene fluoride (PVDF), polyethylene oxide
(PEO), and their copolymers. Based on these techniques and
materials, several design principles have been discussed.

One of the key design principles focuses on the electrolyte–
electrode interfaces. In solid-state batteries, a major challenge
is the high intrinsic resistance resulting from insufficient con-
tact at the electrolyte–electrode interfaces. 3DP enables the
optimization and patterning of interlocks between the elec-
trolyte and electrode [135, 136]. Printing structured polymers
or ceramics proves to be an effective approach for achiev-
ing strong interfaces. For instance, He et al utilized SLA to
print a 3D Archimedean spiral structure using a PEO-based
electrolyte [137] (figure 14(a)). A precursor surface was ini-
tially formed using a laser, and then the wavelength was shif-
ted over the precursor surface according to the planned mod-
els. After each layer had solidified, the stage was lowered
downward. Compared to conventional electrolytes, the struc-
tured solid polymer electrolyte exhibited shortened ion trans-
port paths into the electrodes (figure 14(b)) due to the strong
adherence between the interfaces. These structured polymers
resulted in lower resistances (394 Ω at 50 ◦C, 1705 Ω at
25 ◦C), higher capacity retention (77% after 250 cycles), and
improved cycling stability, as shown in figure 14(c). Similarly,
strong interfaces were achieved through 3DP for fabricat-
ing ceramic electrolytes. McOwen et al employed DIW to
create a thin, nonplanar, intricate ceramic grid composed of
Li7La3Zr2O12 (LLZO) scaffold [29] (figure 14(d)). With the
Li metal immersion and coverage, the contact area between
LLZO and Li significantly increased, demonstrating good
interface contact and stable cycling capability. By varying the
current densities from 0.1 to 0.33 mA·cm−2, the average over-
potential was measured as 2.3 mV and 7.2 mV, respectively,
corresponding to an extremely lower area-specific resistance
of 22 Ω·cm2 (figure 14(e)).

Overall, these advancements highlight the potential of 3DP
techniques for designing and fabricating electrolyte–electrode
interfaces in solid-state batteries. By employing tailored struc-
tures andmaterials, 3DP offers a promising avenue for improv-
ing the performance and reliability of SSEs, ultimately con-
tributing to the advancement of next-generation rechargeable
battery technologies.

In addition to the adjustable electrolyte–electrode
interfaces, another designing principle for 3DP electro-
lytes involves balancing and improving performance. The

advancement of suitable solid electrolytes with strong ionic
conductivity and adequate mechanical characteristics is one of
the main issues [27, 138]. While polymer electrolytes typic-
ally have limited ionic conductivity, ceramic electrolytes have
poor mechanical characteristics [139, 140]. Hence, there is
an increasing amount of interest in polymer-ceramic hybrids.
Conventional processing techniques cannot easily fabricate
sacrificial and complex templates [141, 142]. 3DP addressed
this issue by not only providing the tunable material ratio but
also possessing automatable preparation process. Blake et al
employed DIW in a so-called dry phase inversion method to
develop a novel electrolyte with controlled porosity [104]. The
printing ink consisted of several combinations of NMP, PVDF,
glycerol, and Al2O3 nanoparticles (figure 15(a)). Using dif-
ferent precursors, various electrolyte materials can be printed
(figure 15(b)). The introduction of the dual-solvent system
yielded high porosity (with large voids around 5 µm). Since
phase inversion was not employed to create a porous structure,
the obtained morphology seemed denser when Al2O3 particles
and PVDF were added to NMP without glycerol (CPE). With
an optimized polymer/ceramic ratio (PVDF/Al2O3 = 30/70)
in the dual solvent, a higher specific area (17 m2·g−1) was
abstained, suggested that Li+ transport routes may have been
affected upon by the preservation of void space between nano-
particles (CPE-PI). Among that, enhanced flexibility and elec-
trochemical performance can be realized through tunable 3DP
conditions. Hence, in order to meet printing requirements,
it is feasible to adjust the electrolyte’s ionic conductivity,
mechanical stability, and thermal characteristics as well as the
rheology of the inks. The optimized porous hybrid electrolyte
CPE-PI showed higher specific capacity than the bulk mixed
electrolyte CPE at different rates (figure 15(c)). Meanwhile, at
0.2 C, the PE-PI, CPE, and CPE-PI failed at 85 h, 500 h, and
over 4000 h, respectively. The cycle performance of CPE-PI
exceeded that of commercial membranes (failed at 3400 h)
which demonstrated the effectiveness of the 3DP technique in
optimizing electrolyte materials.

Besides the polymer/ceramics ratio, 3DP can also enable
the unique hybrid architecture of the polymer and ceramic
components [62, 122]. Zekoll et al presented 3D-ordered
bi-continuous structures of hybrid solid electrolytes [31].
Through SLA, a printed template was first obtained. Following
by filling with ceramic Li+ conductor Li1.4Al0.4Ge1.6(PO4)3
and removing the initial templates by calcination at 900 ◦C,
a LAGP ceramic scaffold was constructed. Finally, the struc-
tured hybrid electrolyte is produced by covering the bare scaf-
fold with non-conducting polypropylene or epoxy polymer
(figure 15(d)). The distinctive microarchitecture provided the
optimum balance of conductivity and mechanical characterist-
ics. Therefore, a wide range of particular hybrid microstruc-
tures, including cubic, gyroidal, diamond, and spinodal struc-
tures, may be accurately created (figure 15(e)).

Up to now, several promising 3DP technologies (DIW
[128, 131, 134], SLA [125, 130], FDM [126, 133]) have
been employed in the development of separators and solid
electrolytes [143–145]. The majority of current research is
on the development of stable, high-ionic conductivity solid
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Figure 14. 3D printing technique on polymer/ceramic electrolytes. (a) Print polymers onto laser-curves surface to achieve 3D-SPE by SLA.
(b) The electrodeposition process and (c) battery performance of 3D-SPE and structure-free SPE. Reprinted with permission from [137].
Copyright (2020) American Chemical Society. (d) The DIW process, obtained interfaces between structured LLZ and Li, and (e) the
corresponding cycling performances. [29] John Wiley & Sons. [© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].

electrolytes [146, 147]. The advantages of 3DP for solid elec-
trolytes includes internal interlocking and stable interfaces,
which is more conducive to low impedance and cycle stabil-
ity. In the near future, several optimized strategies regarding
3DP separator/electrolyte should be given more attention and
research. In order to obtain appropriate viscosity and rheolo-
gical properties, more printable materials besides PVdF and
PEO-based inks and suitable additives can be developed in the
future. Furthermore, more 3DP techniques should be intro-
duced in addition to DIW to achieve higher printing accur-
acy and processing efficiency. In addition, the designing prin-
ciples of 3DP separator/electrolyte should be studied more
comprehensively and systematically. Based on the existed cyl-
indrical, grid, and matrix geometries, different microarchitec-
tures, materials, and interfaces should be explored, and the

mechanism of performance improvement should be further
clarified.

7. 3D-printed hosts

In recent years, 3D hosts have been increasingly applied and
discussed, which was seen as additional components. This
involves the performance improvement of rechargeable bat-
teries. It is considered that rechargeable batteries, especially
metal-ion batteries, suffer from unsatisfactory cycling stability
[148]. The low cycling lifetime stems from the growth of
dendrite and undesired side reactions on conventional metal
foil electrodes [137, 142, 149]. The metal ions thermody-
namically preferred to nucleate on the pristine defects and
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Figure 15. 3D printing technique on hybrid electrolytes. (a) The typical DIW process, (b) the obtained different electrolytes (porous PVDF,
bulk and porous Al2O3/PVDF hybrid electrolytes), and (c) corresponding battery performances. [104] John Wiley & Sons. [© 2017
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d) The SLA processes and (e) different printed hybrid microstructures include
cubic, gyroidal, diamond, and spinodal structures. Reproduced from [31] with permission from the Royal Society of Chemistry.

uneven surfaces of the metal foils [150, 151]. Moreover,
the low-mechanical-strength fibrous separators, which have
poor cycle performance, poor rate capability, low coulombic
efficiency, and disabled electrochemical devices, are read-
ily deformed by the sharp dendrites [135, 152, 153]. The
development of metal dendrites has been inhibited using a
variety of techniques, including electrolyte tuning, SEI layer
alteration, and 3D structure creation [154–156]. All in all,
using 3D hosts has been shown to successfully stop metal
dendrite formation. As demonstrated in [83, 145], zinc [157,
158], sodium batteries [150, 159], the higher specific sur-
face areas of 3D hosts can lower local current densities and
homogenize interface charge distributions, enabling uniform
plating of metal ions. The technology and material choices for

3D hosts are relatively diverse. Generally speaking, carbon-
containing (including graphene and carbon nanotubes) and
metal-containing printable inks are commonly selected for
DIW and DLP.

To satisfy the actual needs of 3D hosts, 3DP is an effi-
cient method for fabricating arbitrary shape [160–162]. DIW
is one of the most common 3DP methods for hosts [151–
153]. Lyu et al presented 3D-printed grids for Li deposition
[94]. A solution dissolving Zn-MOF and F127 was used
as the printing ink. In order to pressurize the syringe and
regulate the ink discharge speed, a compressed air pneu-
matic device was employed (figure 16(a)). As 3D hosts for
Li metal, the large-sized microchannels produced by 3DP
fibers assisted in accommodating a massive Li plating and
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Figure 16. 3D hosts through DIW. (a) The typical DIW process to fabricate 3D hosts, the schematic of dendrite growth on Cu foil and 3D
hosts, and (b) the corresponding battery performances. Reprinted from [94], Copyright (2020), with permission from Elsevier. (c) The
different 3D hosts with various shapes and sizes processed by DIW and (d) the comparison between batteries with and without printed
hosts. Reproduced from [27] with permission from the Royal Society of Chemistry.

suppressing Li metal volume changes. Within 150 h of cyc-
ling at 10 mA·cm−2 and 2 mAh·cm−2, the large surface area
had dispersed the low overpotential of 80 mV (figure 16(b)).
Owing to the highly tunable and precisely developed DIW
technique, Lim et al demonstrated that replicable and complex
structures of variety-shaped 3D hosts could be fabricated [27]
(figure 16(c)), The Li-metal battery with 3D Cu host exhib-
ited average columbic efficiency at 95.5% within 450 h at a
high areal capacity, and the 3D printed host enabled longer
cycling times from lower than 75 h (without hosts) to 450 h
(figure 16(d)).

Other than that, the DLP technique is also adopted for 3D
host fabrication [157, 158]. Zeng et al [158] demonstrated a
UV SLA 3D printer by hardening UV photosensitive epoxy.
Because of the advanced electroless plating method and the
strong binding energy of the zinc atom and the Ni surface,
Ni was selected as the metalized coating. The 3D multichan-
nel Ni–Zn lattices were fabricated as optimized zinc anodes
with 3D architecture and robust supporting skeletons via elec-
trodeposition Zn metal on the surfaces of 3D-Ni (figure 17(a))
[54]. At different current densities, 3D structured hosts showed
higher capacity compared with 2D hosts during charging and
discharging. Furthermore, higher capacity retention (80%)
compared to conventional hosts battery (67%) after 1000
cycles was obtained (figure 17(b)). Through DLP, different
morphologies were achieved and the metal deposition hosting
effects could be optimized [163, 164]. Wu et al, for example,
suggested 3DP graphene tube (3DGT) and pillar (3DGP)

structures for ZIBs via DLP (figure 17(c)) [119]. According to
multi-physical simulation, the 3DGT structured hosts enabled
more uniform deposition and hence reduced the stress on the
separator compared to 3DGP structures (figure 17(d)). Under
2 mA·cm−2 and 1 mAh·cm−2, the 3DGT-based zinc symmet-
ric cell exhibited the lowest overpotential at 14.0 mV and the
longest cycling time at 1100 h (figure 17(e)). It showed that the
3DGT indicated greater advantages in reversible Zn deposit-
ing/stripping than the 3DGP and 2D commercial Zn foils.

8. 3D printed microelectromechanical systems
(MEMS)

MEMS, also referred to as micro-electro-mechanical systems,
micro-systems, or micro-machines, are advanced devices that
can be measured in millimeters or smaller. The internal struc-
ture of MEMS typically ranges in size from microns to
even nanometers, rendering them self-contained intelligent
systems. Accelerometers, inkjet heads, pressure sensors, and
gyro sensors are commonly utilized in MEMS. While silicon
(Si) materials have traditionally served as the foundation for
MEMS devices, polymers have emerged as alternative mater-
ials in recent years. Examples include polydimethylsiloxane
for microfluidic devices, parylene for valves and sensors, and
epoxy for micromanipulators.

Figure 18(a) illustrates the integration of 3DP technology
with MEMS for robotic handling, featuring an integrated
pick-and-place functionality [165]. Lee et al achieved a switch
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Figure 17. 3D hosts through DLP. (a) The typical DLP process for printing lattice structure and (b) the corresponding cycling performances.
[54] John Wiley & Sons. [© 2021 Wiley-VCH GmbH]. (c) The DLP process for printing 3D pillar hosts and 3D tube hosts. (d) The
simulated electrochemical deposition on different host configurations and (e) the experimental battery performances. Reprinted from [119],
Copyright (2023), with permission from Elsevier.

with excellent electrochemical properties, abrupt switching
behavior, and a high on/off current ratio exceeding 106
using FDM printing of conductive PLA and poly(vinyl
alcohol) as a water-soluble support material (figure 18(b)).
Additionally, an interdigitated 3D microbattery offers sev-
eral unique attributes for on-chip energy storage. Ning et al’s
group fabricated mesostructured electrodes by combining 3D
holographic lithography with conventional photolithography
techniques (figure 18(c)). The optical and SEM images of the
3D printed electrodes, as depicted in figure 18(d), demon-
strate precise machining and novel structural design. The

flexibility in designing holographic structures was achieved
by manipulating the intensity, polarization, and angle of
each beam, resulting in high power and energy densities
(6.5 µWh·cm−2·µm−1). The flexibility, energy capacity, and
power of microbatteries are closely associated with the struc-
tural parameters of the 3D-printed electrodes, including size,
shape, surface area, porosity, and tortuosity. The goal of
MEMS development is to explore new principles, functional
components, and systems throughminiaturization and integra-
tion, leading to the emergence of new technological fields and
industries. The combination of MEMS and 3DP technology
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Figure 18. The integration of 3D printing technology with MEMS. (a) Combination of 3D printing and pick-and-place functionality to
produce 3D MEMS devices. (b) Concept of 3D-printed MEMS switch and printing process. Reproduced from [165]. CC BY 4.0.
(c) Schematic illustrations and images of 3D microbatteries, and (d) SEM and optical images of the 3D printed structures. Reproduced from
[166]. CC BY 3.0.

offers novel opportunities for the development of microbatter-
ies for new energy applications.

Based on the aforementioned discussion, 3DP technologies
offer distinct advantages for producing rechargeable batteries,
such as customizable morphology, effective dendrite suppres-
sion, and longer cycle life. However, optimizing the mech-
anical stability of 3D-printed hosts is crucial due to its dir-
ect impact on the battery’s practical lifespan. Additionally,
the design of 3D printed hosts, including materials, pro-
cesses, and geometries, needs optimization to enhance their
electrochemical activity compared to anode/cathode mater-
ials. Future efforts should focus on developing photopoly-
merizable composite ink for efficient printing of novel 3D
hosts. This will enable advancements in rechargeable battery

technology, improving overall performance and energy stor-
age capabilities.

9. Conclusion and outlook

Advanced 3DP technologies offer significant potential for
practical applications in EESDs, particularly in the design and
printing of 3D electrodes, flexible electrodes, and full-cells of
rechargeable secondary batteries. In this report, we present
the latest developments in 3DP of critical components for
rechargeable secondary batteries. The use of 3DP to create
various battery types (LIBs, SIBs, KIBs, ZIBs, metal batter-
ies) with high energy and power densities represents a bold
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and promising innovation, as evident from the summary and
discussion of 3DP reusable batteries both domestically and
internationally.

Initially, we discuss the common characteristics of primary
3DP technologies employed in constructing EESDs, focus-
ing on design principles, material selectivity, and optimiz-
ation strategies. Subsequently, we summarize recent break-
throughs in 3D-printed essential materials for rechargeable
batteries, encompassing traditional Li-ion (SIBs, KIBs) bat-
teries, Li/Na/K/Zn metal batteries, Zn-air batteries, and Ni–Fe
batteries. In comparison to conventional EESDs, many thick
electrodes and hierarchical porous frameworks of 3D prin-
ted electrodes demonstrate comparable or superior volumet-
ric power density/energy densities, owing to the benefits of
high mass loading of diverse active materials. Additionally,
improved areal capacities, fast kinetics, as well as power and
energy densities are achieved due to enhanced electrolyte wet-
tability and accelerated ion transport, even with impressive
electrode thickness and mass loadings in different battery sys-
tems. Notably, most current 3D printed electrodes are free-
standing, eliminating the need for traditional current collectors
(e.g., Al for cathode, Cu for anode) due to integrated manufac-
turing processes.

However, several barriers and challengesmust be addressed
to further develop 3DP technologies and promote their prac-
tical applications, despite their numerous advantages and
immense potential for EESDs. Firstly, commercial 3D print-
ers are presently limited to single-unit use and can only
produce single or a few battery components, resulting in
prolonged manufacturing processes. To enhance overall bat-
tery performance, it is necessary to integrate multiple func-
tional materials rather than individual components. Therefore,
decomposing the functions of 3DP equipment, improving each
subsystem (molding room system, three-axis motion system,
material conveying system, numerical control system), and
developing integrated printing platforms are crucial.

Secondly, only a limited number of printable active
materials, particularly for EESDs, are suitable as inks for
rechargeable batteries. Conventional inert materials are widely
used in 3DP, but to achieve optimal electrochemical per-
formance, novel electrochemically active materials must be
developed. Furthermore, inks often require various additives
to fine-tune the rheology of 3D-printed electrodes, necessit-
ating further research into multifunctional additives for 3DP
rechargeable batteries.

Thirdly, nanometer-level printing precision and the devel-
opment of printing technologies and equipment that can
operate in low-humidity, low-oxygen environments are cru-
cial for electrochemical energy storage and conversion
systems/devices.

Fourthly, understanding the relationship between 3D
designed architectures and ion transportation mechanisms
is essential for improving the performance of printed bat-
teries. Factors such as electrolyte wettability in 3D por-
ous structures and ion transfer rates in thick electrodes
can be further optimized to enhance high power densities
under extreme operating conditions. Additionally, selecting
the optimal manufacturing methods, process parameters, and

structural parameters significantly influence the capacities and
powers of batteries. Therefore, a comprehensive understand-
ing of the interplay between electrochemical performance and
structural designs is essential.

Finally, to advance commercial applications, practical pro-
duction factors such as manufacturing cost, product uni-
formity (including structural and performance stabilities),
and potential application scenarios and market sizes need to
be considered. The costs of 3DP equipment and printable
materials are key factors for commercial viability, and consid-
erations such as facilities and personnel should not be over-
looked. Furthermore, the safety performance of power bat-
tery products must be significantly improved to demonstrate
attractive technical advantages and commercial value, partic-
ularly in high-energy density applications with reduced man-
ufacturing costs.

Despite the challenges and drawbacks associated with
developing 3D printed rechargeable batteries, we firmly
believe that 3DP will become an indispensable compon-
ent of future manufacturing by bridging the gap between
industry and basic research through ongoing advancements in
high-efficiency, low-cost, high-performance, and diverse 3DP
technologies.
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