
International Journal of Extreme Manufacturing

TOPICAL REVIEW • OPEN ACCESS

Triply periodic minimal surface (TPMS) porous
structures: from multi-scale design, precise
additive manufacturing to multidisciplinary
applications
To cite this article: Jiawei Feng et al 2022 Int. J. Extrem. Manuf. 4 022001

 

View the article online for updates and enhancements.

You may also like
Surface curvature in triply-periodic minimal
surface architectures as a distinct design
parameter in preparing advanced tissue
engineering scaffolds
Sébastien B G Blanquer, Maike Werner,
Markus Hannula et al.

-

3D printing polyurethane acrylate(PUA)
based elastomer and its mechanical
behavior
Huan Li, Lei Liang, Wenxiang Zeng et al.

-

3D printed flexible wearable sensors
based on triply periodic minimal surface
structures for biomonitoring applications
Mohammad Ebrahim Imanian, Mostafa
Kardan-Halvaei, Fatemeh Nasrollahi et al.

-

This content was downloaded from IP address 3.129.23.30 on 06/05/2024 at 19:16

https://doi.org/10.1088/2631-7990/ac5be6
https://iopscience.iop.org/article/10.1088/1758-5090/aa6553
https://iopscience.iop.org/article/10.1088/1758-5090/aa6553
https://iopscience.iop.org/article/10.1088/1758-5090/aa6553
https://iopscience.iop.org/article/10.1088/1758-5090/aa6553
https://iopscience.iop.org/article/10.1088/2053-1591/acd740
https://iopscience.iop.org/article/10.1088/2053-1591/acd740
https://iopscience.iop.org/article/10.1088/2053-1591/acd740
https://iopscience.iop.org/article/10.1088/1361-665X/aca6bc
https://iopscience.iop.org/article/10.1088/1361-665X/aca6bc
https://iopscience.iop.org/article/10.1088/1361-665X/aca6bc


IMMT International Journal of Extreme Manufacturing

Int. J. Extrem. Manuf. 4 (2022) 022001 (31pp) https://doi.org/10.1088/2631-7990/ac5be6

Topical Review

Triply periodic minimal surface (TPMS)
porous structures: from multi-scale
design, precise additive manufacturing
to multidisciplinary applications

Jiawei Feng1,2, Jianzhong Fu1,2, Xinhua Yao1,2,∗ and Yong He1,2,∗

1 State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, People’s Republic of China
2 Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China

E-mail: yaoxinhuazju@gmail.com and yongqin@zju.edu.cn

Received 13 November 2021, revised 13 January 2022
Accepted for publication 9 March 2022
Published 25 March 2022

Abstract
Inspired by natural porous architectures, numerous attempts have been made to generate porous
structures. Owing to the smooth surfaces, highly interconnected porous architectures, and
mathematical controllable geometry features, triply periodic minimal surface (TPMS) is
emerging as an outstanding solution to constructing porous structures in recent years. However,
many advantages of TPMS are not fully utilized in current research. Critical problems of the
process from design, manufacturing to applications need further systematic and integrated
discussions. In this work, a comprehensive overview of TPMS porous structures is provided. In
order to generate the digital models of TPMS, the geometry design algorithms and performance
control strategies are introduced according to diverse requirements. Based on that, precise
additive manufacturing methods are summarized for fabricating physical TPMS products.
Furthermore, actual multidisciplinary applications are presented to clarify the advantages and
further potential of TPMS porous structures. Eventually, the existing problems and further
research outlooks are discussed.
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1. Introduction

With the rapid development of material science and man-
ufacturing engineering, numerous complex structures are
constructed and applied in diverse engineering fields. Regard-
less of whether these structures are composed of metallic,
non-metallic inorganic materials, polymers, or any other more
complex materials, most of the structures currently used in
industry are classified as solid structures. Hence, the porosities
of solid structures can be regarded as zero. In fact, the internal
pores are even considered as defects due to the low manu-
facturing quality. However, there are lots of porous structures
exist in nature with outstanding performances, such as bones,
corals, honeycombs, woods, etc [1, 2]. Inspired by these nat-
ural structures, more and more attempts are made to generate
artificial bionic porous structures.

The design strategies of porous structures are strictly
restricted by the development of manufacturing technologies.
Due to the complex topology and intricated internal pores,
conventional cutting or milling methods are powerless to fab-
ricate porous structures which are similar to natural archi-
tectures. Several special technologies are proposed to gener-
ate porous features, such as salt leaching, gas-foaming, and
phase-separation followed by freeze-drying [3]. Yet, the basic
demands such as the pore shape, size, and connectivity can
hardly be controlled. Fortunately, revolutionary additive man-
ufacturing provides new solutions to fabricating porous struc-
tures [4]. The constraints of topological complexity on the
manufacturing process are greatly alleviated. However, how to
design porous structures with controllable geometries and per-
formances, reliable manufacturing quality, and broad applica-
tion prospects is still a critical problem.

In this review, the design methods of porous structures
can be summarized as three kinds according to the degree
of control over geometric features and the degree of depend-
ence on additive manufacturing. The two-dimensional honey-
combs and three-dimensional foams can be regarded as typical
examples of the first kind of porous structures [5, 6]. Some
simple honeycombs can be easily fabricated by conventional
cutting technologies. Due to the two-dimensional geometric
features, honeycombs are utilized as cores of sandwich panels
in most current applications. As mentioned before, numerous
porous foams are generated by salt leaching or gas-foaming.
The porous features and performances of foams are not easy to
control. Hence, lattice structures which are composed of struts
and nodes were developed and can be regarded as the second
kind of porous structures [7]. The geometries and perform-
ances can be conveniently controlled by adjusting the length,
radius of struts, and the topology of the strut connections. Due
to the intricated internal struts, most of the lattice structures are
fabricated by additive manufacturing. Yet, the stress concen-
tration may appear at the connections of lattice struts. Based
on that, in order to further improve the performances, the third
kind of porous structures are designed by the triply periodic
minimal surface (TPMS) [8], which is themain research object
of this review.

TPMS is a kind of periodic implicit surface with zero mean
curvature [9]. Hence, compared with other kinds of structures,

TPMS porous structures own two significant merits. (a) The
whole structure can be precisely expressed by mathematical
functions. Basic performances, such as porosity or volume
specific surface areas can be directly controlled by adjusting
the function parameters. (b) The surfaces of TPMS are very
smooth, without sharp edges or junctions as the lattice struc-
tures. Furthermore, the TPMS porous structures are highly
interconnected with non-tortuous pores, which are important
advantages for applications. Based on these merits, more and
more research attention has been payed to TPMS. Different
from traditional porous material research, the design, man-
ufacturing, and application research of TPMS involve mul-
tiple disciplines, including computer graphics, manufacturing
science, mechanics, thermology, optics, acoustics, chemistry,
biology, etc.

As the basis of performance optimization, additive man-
ufacturing, and multidisciplinary applications, the 3D mod-
els of TPMS need to be generated by computer-aided design
(CAD) methods. Due to the implicit characterizes, the range,
curvature, and period of TPMS can be easily controlled
[10, 11]. Moreover, complex calculations such as Boolean,
modulation, and convolution can also be implemented based
on TPMS functions [12]. In order to mimic natural por-
ous structures and to fulfill demands of diverse applications,
graded TPMS [13, 14], heterogeneous TPMS [9, 15–18],
multiscale TPMS [19–22], and TPMS with complex external
shapes [9, 23, 24] were designed. Then, complex TPMS struc-
tures can be precisely fabricated via different additive man-
ufacturing technologies [25–28]. The geometries of TPMS
have significant influences on the application performances.
Among the performances of different disciplines, the mech-
anical properties were mostly studied, including the basic
Poisson’s ratio [29–31], anisotropy [32–34], elastic behavior
[35–37], yield strength [38], fatigue behavior [39, 40], vibra-
tion and buckling characteristics [41, 42], etc. Similar to
other porous structures, TPMS can also be adopted as energy
absorbers under compression [43–46]. Furthermore, TPMS
porous structures are widely applied in tissue engineering
[47–51] and implant devices [52–56]. The smooth internal
surfaces and interconnected pores can supply enough space
for cells to attach and grow. Due to the high volume spe-
cific surface areas, TPMS can also be utilized as heat sinks
[57–59], chemical microreactors [60, 61], and membranes
[62, 63]. Furthermore, the wave energy will be weakened
after multiple reflections in the internal architectures of
TPMS porous structures. Hence, TPMS structures are also
ideal choices for sound absorbers [64, 65], electromagnetic
microwave absorption [66], photonic crystal [67], as shown in
figure 1.

Although TPMS is an interesting research hot spot in dif-
ferent areas, the advantages of TPMS are not fully utilized.
Most of the current research only focused on the perform-
ances or applications of one discipline. The current research
directions are chaotic and scattered. Interdisciplinary stud-
ies of TPMS are needed to further promote the widespread
applications of TPMS. For example, TPMS can be designed
with complex shapes, graded porosity, and multiscale pores
by CAD algorithms. However, most of the current adopted
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Figure 1. Overview of this review of TPMS porous structures. Reproduced with permission from [68]. Copyright 2020, the Author(s),
CC BY-NC-ND 4.0 [36]. Copyright 2017, the Authors, CC BY 4.0 [69]. Copyright 2020, IEEE [70]. Copyright 2020, the Authors,
CC BY 4.0 [71]. Copyright 2021, the Authors, CC BY 4.0 [60]. Copyright 2019, Elsevier [72]. Copyright 2019, Royal Society of Chemistry
[73]. Copyright 2018, Elsevier [74]. Copyright 2019, Elsevier [75]. Copyright 2018, Royal Society of Chemistry [64]. Copyright 2017,
American Chemical Society [66]. Copyright 2021, Elsevier [67]. Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[56]. Copyright 2017, American Chemical Society [76]. Copyright 2019, Acta Materialia Inc. CC BY-NC-ND 4.0 [77]. Copyright 2020,
Acta Materialia Inc.

TPMS no matter in thermology or chemistry are still standard
TPMS structures with uniform porosity and simple shapes.
In addition, as the intermediate link between TPMS design
and applications, the manufacturing methods still need to be
improved. Complex TPMS structures with external shapes
and internal architectures bring great challenges to the cur-
rent additive manufacturing technologies. Although some new
manufacturing technologies are currently proposed, the cal-
culation efficiency and accuracy in the path planning pro-
cess need further to be improved. More fabrication restrictions
should be taken into consideration in the design process to fur-
ther improve the manufacturing quality. Based on the above-
discussed background, a review from TPMS design, manu-
facturing to applications will be presented. The structure of
this work is presented in figure 1. Specifically, the multiscale
design methods including geometry design and performance
control will be discussed in sections 2 and 3. Then, current pre-
cise additive manufacturing technologies will be summarized
in section 4. Based on that, diverse interesting applications will
be introduced according to different disciplines in section 5.
Finally, the conclusions and outlooks will be presented.

2. TPMS design strategies

As the first important factor of TPMS porous structures,
appropriate 3D models will be generated by the design
strategies. Actually, the geometry features, such as porosity
or volume specific surface areas have great influences on the

performances. Hence, the geometry design is the basis for
further performance control in different disciplines. Different
from the conventional foam of lattice structures, TPMS can
be designed with more complex features to mimic natural por-
ous structures. In this work, the multiscale design methods
of TPMS include the graded TPMS, heterogeneous TPMS,
internal multiscale pores, and TPMS with complex external
shapes.

2.1. Geometry design by CAD algorithms

Compared with other kinds of porous structures, TPMS owns
three notable features. Firstly, TPMS belongs to the impli-
cit surface. Hence, the whole geometry can be completely
expressed via algebraic equations, which can be simplified as
f(x,y,z) = C, in which C is a constant. Based on that, TPMS
is also regarded as isosurface. Secondly, TPMS is periodic
in three independent directions. The distribution range and
period can be conveniently controlled by the function para-
meters. At last, TPMS is also characterized as minimal sur-
face, which means the mean curvature of TPMS is zero. The
smooth surfaces are similar to the soap bubbles and leaves in
nature [78]. More interestingly, as shown in figures 2(a) and
(b), some structures found in butterfly wings [79] and weevil
exoskeletons [80] are very similar to TPMS, which indicates
TPMS has promising bionic application potential.

There are two main methods to express TPMS. Accord-
ing to the Enneper–Weierstrass parametrical representation
approach, TPMS can be precisely calculated as [8]:
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Figure 2. Natural TPMS-like porous structures. (a) Wings of a butterfly. Reproduced with permission from [79]. Copyright 2016, the
Authors, CC BY-NC 4.0. (b) Weevil exoskeletons. Reproduced with permission from [80]. Copyright 2018, WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim.
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in which i2 =−1, τ is a complex variable, θ is the Bon-
net angle and Re represents the real part of a complex
variable.R(τ) is the Weierstrass function of different kinds of
TPMS units. For example, the Weierstrass function of D, P,
and G surfaces can be expressed as:

R(τ) =
1√

τ 8 − 14τ 4 + 1
. (2)

And the Bonnet angle for D, P and G surfaces are 0, 90◦

and 38.0147◦, respectively [8]. However, only a few kinds of
TPMS units can be generated by this approach. The Weier-
strass function have been found for a few minimal surfaces for
now. As the other mathematical method, TPMS can be gener-
ated by [81]:

ϕ(r) =
K∑
k=1

Ak cos

[
2π (hk · r)

λk
+Pk

]
= C (3)

in which Ak is the amplitude, λk is the period factor, Pk is the
function phase. Based on that, common TPMS units can be
described as shown in table 1.

Due to the implicit characteristic, both the geometries and
performances are depending on the mentioned simple implicit
functions. Similar to parametric surfaces in the CAD domain,
most of the current TPMS need to be discretized as mesh mod-
els for visualization or additive manufacturing. In virtue of
the famous Marching cube algorithm [82], the smooth TPMS

surfaces are approximately expressed by numerous triangle
facets, as shown in table 1. Apparently, the space is divided
by TPMS as two parts which can be expressed as f(x,y,z)> C
and f(x,y,z)< C. Note that TPMS is a kind of surface without
wall thickness. Further materialization operation is needed for
generating TPMS porous structures. As shown in figure 3, the
sheet TPMS porous structures will be constructed by directly
offsetting the TPMS surfaces with constant wall thickness.
And the two parts divided by TPMS are defined as network
TPMS porous structures.

2.2. Graded TPMS porous structures

According to the TPMS functions in table 1, ω and C are
two important parameters which have influences on the TPMS
period and curvature. For network TPMS porous structures,
the volume ratio between two divided parts only depends on
the curvature parameter C. Hence, the period parameter ω
and curvature parameter C can be defined as different val-
ues to generate graded or non-uniform TPMS porous struc-
tures. With regard to sheet TPMS, the wall thickness should
also be taken into consideration. For sheet TPMS with differ-
ent C and wall thickness combinations, the relative densities
may still be equal. In our previous work, the parameter C and
ω are designed with graded values to generate graded surfaces
[9]. As shown in figure 4(a), although the surface is drastically
altered by adjusting period parameter ω values, the continuity
and smoothness of TPMS can still be retained. For network
TPMS in figure 4(b), relative densities can be directly con-
trolled by setting different parameter C [83]. Moreover, the
graded sheet TPMS porous structures with different offset wall
thicknesses can be acquired as presented in figure 4(c).

In fact, the graded porous structures are widely existing
in nature. For example, the porosities of human bones are
gradually changed from cancellous bones to cortical bones.
Hence, it is an effective approach to mimic natural architec-
tures via graded porous structures. Note that, the graded por-
ous structures can also be generated by conventional lattice
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Table 1. Mathematical expressions of different TPMS units.

Unit name Mathematical expressions 3D models

P f(x,y,z) = cos(ωxx)+ cos(ωyy)+ cos(ωzz) = C

G f(x,y,z) = sin(ωxx)cos(ωyy)+ sin(ωzz)cos(ωxx)
+sin(ωyy)cos(ωzz) = C

D f(x,y,z) = cos(ωxx)cos(ωyy)cos(ωzz)
−sin(ωxx)sin(ωyy)sin(ωzz) = C

I-WP f(x,y,z) = 2[cos(ωxx)cos(ωyy)
+cos(ωyy)cos(ωzz)+ cos(ωzz)cos(ωxx)]
− [cos(2ωxx)+ cos(2ωyy)+ cos(2ωzz)] = C

F-RD f(x,y,z) = 4cos(ωxx)cos(ωyy)cos(ωzz)
−[cos(2ωxx)cos(2ωyy)+ cos(2ωxx)cos(2ωzz)
+cos(2ωyy)cos(2ωzz)]

= C

I2-Y∗∗ f(x,y,z) =−2[sin(2ωxx)cos(ωyy)sin(ωzz)
+sin(ωxx)sin(2ωyy)cos(ωzz)+ cos(ωxx)sin(ωyy)sin(2ωzz)]
+cos(2ωxx)cos(2ωyy)+ cos(2ωyy)cos(2ωzz)
+cos(2ωxx)cos(2ωzz) = C

Figure 3. Network and sheet TPMS generation principle.

or foam structures. Compared with these solutions, the graded
TPMS porous structures own two obvious advantages. Firstly,
the graded porosities can be precisely controlled via TPMS
functions. For example, the parameter C can be defined as
a function which is related to coordinates. The porosities of
graded TPMS presented in figure 4 are linearly changed. More
complex graded porous structures with non-linear changing
porosities can be more conveniently constructed by TPMS.
Secondly, due to the function controllable characteristics, the
internal surfaces are still smooth with ideal connectivity and

continuity. The curvature, period, and wall thickness can be
adjusted in different degrees. More design freedom can be
provided by TPMS to generate graded porous structures.

2.3. Heterogeneous TPMS porous structures

In material science, in order to give full play to the advant-
ages of different materials, most applied engineering struc-
tures are composed of diverse kinds of materials. Similarly,
any TPMS units are not perfect with all advantages. As the
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Figure 4. Graded TPMS porous structures. (a) Adjusting C and ω to generate graded surfaces. Reproduced with permission from [9].
Copyright 2018, Elsevier. (b) Adjusting C to generate graded network TPMS. Reproduced with permission from [83]. Copyright 2018,
Elsevier. (c) Adjusting wall thickness to generate graded sheet TPMS. Reproduced with permission from [84]. Copyright 2020, the Authors,
CC BY-NC-ND 4.0.

Figure 5. Heterogeneous TPMS porous structures. (a) Heterogeneous TPMS from D to G structures. Reproduced with permission from
[86]. Copyright 2018, the Authors, CC BY 4.0. (b) Heterogeneous TPMS with different units in different regions. Reproduced with
permission from [87]. Copyright 2015, Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg. (c) Bio-mimetic
heterogeneous TPMS. Reproduced with permission from [15]. Copyright 2014, Elsevier. (d) Comparisons between graded and
heterogeneous TPMS. Reproduced with permission from [88]. Copyright 2018, American Chemical Society.

basic performance index of TPMS porous structures, the rel-
ative density or porosity, and volume specific surface areas are
widely utilized in engineering to evaluate the porous struc-
tures. However, for TPMS units mentioned in table 1, both
ideal performances cannot be acquired at the same time by
one kind of TPMS unit. Hence, the heterogeneous TPMS is
proposed to fulfill more complex application demands [85].
Note that, the material of heterogeneous TPMS can be the
same. The TPMS units are regarded as different components
to generate heterogeneous porous structures. Fortunately, each
component TPMS unit can be expressed by a mathematical
expression. Hence, the mission of generating heterogeneous
porous structures is to choose appropriate TPMS units in dif-
ferent regions. As shown in figure 5(a), the G and D structures

can be utilized together [86]. The surfaces of heterogeneous
TPMS porous structures are still smooth. With regard to the
transition between different regions, the unit weight can be
changed according to linear or sigmoid rules. Based on this
design freedom, any TPMS units can be selected in required
regions for special applications as presented in figure 5(b) [87].
For example, a dense cortical shell with a porous cancellous
interior, and dense cortical layers on the outer surfaces with
a thin cancellous structure inside can be designed as shown
in figure 5(c) [15]. The merits of heterogeneous TPMS and
comparisons between heterogeneous and graded TPMS can
be illustrated in figure 5(d) [88]. The porosities of distinct
regions of natural structures are different. The graded P can
be utilized to generate porous structures with similar porosity
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distributions to the natural architectures. However, in order to
further mimic the complex functions, more factors should be
taken into considerations. Although the porosity and permeab-
ility of P structures are higher, Young’s moduli of D are larger
than that of P structures under the same relative density [88].
Hence, the advantages of distinct units should be utilized in
different regions.

Similar to the merits of graded TPMS, the internal surfaces
of heterogeneous TPMS are still smooth. However, due to the
topology differences, the transition regions may be drastically
changed. Reasonable transition rules are necessary to improve
continuity. Compared with graded TPMS, more design free-
dom is provided by heterogeneous TPMS.

2.4. Multiscale TPMS porous structures

Regardless of graded TPMS or heterogeneous TPMS por-
ous structures, the scales of the pores are basically the same
in previous discussions. Nevertheless, most natural porous
structures are hierarchical with multiscale pores. The poros-
ity and volume specific surface areas can be further improved
by multiscale porous structures. Generally, the porous struc-
tures can be classified as microporous structures with pore
diameter less than 2 nm, mesoporous structures with pore dia-
meter greater than 2 nm and less than 50 nm, and macroporous
structures with pore diameter greater than 50 nm. It is a great
challenge to efficiently generate multiscale porous structures
by CAD algorithms.

Although TPMS can be accurately expressed by implicit
functions, it is still difficult to design multiscale TPMS via
only one function. The pore sizes of graded TPMS are dif-
ferent but not crossing scales. The surfaces will be dramat-
ically changed if the microporous and macroporous structures
appear in the graded TPMS porous structures at the same time.
According to classical CAD algorithms, Boolean operations
are effective approaches to merge multiscale porous structures
together. However, there are disadvantages of the conventional
3D Boolean operations to generate multiscale porous struc-
tures. Firstly, the Boolean operation is very time-consuming
and error-prone. As mentioned before, the TPMS surfaces are
extracted as mesh models for geometry processing in most
cases. In order to improve construction accuracy, numerous
discrete facets are needed. The intricate porous structures
with complex pores further increase the burden of calculation.
The computer memory may be consumed before the calcu-
lation is completed. Even if the calculation memory is large
enough, numerous errors may exist after Boolean operations
between each discrete facet. Moreover, the calculation res-
ults after Boolean operations may be incorrect for multiscale
TPMS. Some tiny parts of TPMS may be broken or separated
from the main parts. And it will be impossible to fabricate
these TPMS with separated parts by additive manufacturing.
Although some attempts [19] have been made to accelerate
and improve the calculation process, these disadvantages of
3D Boolean operations are still unavoidable.

In our previous work, a new strategy was proposed to
generate multiscale TPMS porous structures [22]. The 3D

calculation is simplified as 2D operations to improve the cal-
culation efficiency. The solid areas of TPMS are meshed for
extracting TPMS with smaller pores. And the layered extrac-
ted TPMS areas are alternately regarded as solid or pore areas.
Hence, some areas separated by pores will be reconnected
again by the TPMS areas of the next level. Four-level TPMS
will be enough to generate multiscale TPMS porous structures
with pores of three scales, which are shown in figure 6(a).
The generated layered areas of multiscale TPMS porous struc-
tures can be directly handled by additive manufacturing, sav-
ing the time-consuming slicing process. Differently, Li et al
developed an efficient merging method to construct multiscale
TPMS porous structures [21]. As shown in figure 6(b), TPMS
with pores of different scales are directly merged together. In
order to reduce the sharp boundaries, Allen–Cahn equation
was utilized to generate smooth surfaces. The stress concen-
tration can be obviously reduced by the proposed optimiz-
ation methods. Yet, the proposed methods are implemented
based on the network TPMS rather than the sheet TPMS. Ding
et almade use of the Boolean operations to acquire multiscale
TPMS porous structures [20] as shown in figure 6(c). The
pores of the next level are iteratively subtracted from the solid
parts of the current level. Due to the disadvantages of the 3D
Boolean operations discussed before, only simple structures
with fewer scales can be efficiently generated by this method.

In summary, the computational complexity of the
multiscale structures geometrically grows with the increase
of the scales. Different from the graded and heterogeneous
TPMS, there is no effective method to describe multiscale
TPMS via implicit functions. The 3D Boolean operations can
only be adopted for simple structures. More reliable design
strategies of multiscale TPMS porous structures are eager to
be developed.

2.5. TPMS porous structures with complex external shapes

In previous discussions, the internal porous features are
designed with diverse strategies according to different require-
ments. The external shapes of most of these structures are
simple geometries, such as cubes or spheres. In fact, porous
structures with different freeform surface shapes are required
in most practical applications. For example, the tissue engin-
eering scaffolds or implants need to be designed as same as
the defect parts as possible. For a long time, most of the cur-
rent CAD algorithms of porous structures only pay attention
to the internal pores, ignoring cooperation and unification with
the shape design methods. In order to design a porous scaf-
fold with a bone shape, four steps are needed by conven-
tional methods. Firstly, a 3D model should be reconstructed
according to the bone features. Secondly, the maximum and
minimum sizes in three directions need to be calculated to
acquire the envelope region. Thirdly, porous structures, such
as TPMS, should be generated in the envelope region. Lastly,
the intersection parts between the 3D bone model and por-
ous structures in the envelope region are obtained by Boolean
operations. After these processes, ideal porous structures with
both required internal porous architectures and external shapes
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Figure 6. Multiscale TPMS porous structures. (a) Multiscale TPMS generation based on fractal sheet TPMS structures. Reproduced with
permission from [22]. Copyright 2019, Elsevier. (b) Merging TPMS units with multiscale pores to construct multiscale TPMS. Reproduced
with permission from [21]. Copyright 2021, Elsevier. (c) Multiscale TPMS generation based on iterative Boolean operations. Reproduced
with permission from [20]. Copyright 2021, CIRP.

are acquired. However, there are three obvious shortcomings
of this method. First of all, the calculation efficiency and
accuracy of 3D Boolean operations are unreliable for design-
ing complex porous structures as discussed before. Numer-
ous model errors may occur after mesh tailoring and reorgan-
ization calculations. Moreover, the porous structures which
are outside of the target structures and inside of the envel-
ope region are useless for the final results. The calculation
memory and time cost for these structures are wasteful. Lastly
and most importantly, the relative positions between external
shapes and internal pores are hardly controlled, especially for
non-uniform porous structures. Slight relative position differ-
ences will result in a completely different pore distribution res-
ult. Based on this background, some attempts have been made
to solve this problem.

In order to improve the efficiency of Boolean operations,
the scalar field is adopted to describe the distances between
the target model and porous structures in the envelope region
[89]. The design results are shown in figure 7(a). However,
the process of constructing a scalar field will also cost a lot
of time. The intrinsical drawbacks of Boolean operations are
not avoided. Inspired by the meshing process of the finite ele-
ment method, Yoo directly mapped TPMS units to the tar-
get 3D models [81]. The original target model was voxelized.
Afterward, in virtue of the shape function, each TPMS unit
is mapped from the parametric domain to the space domain,
as shown in figure 7(b). The conventional Boolean opera-
tion is completely avoided by this method. The porosities of
TPMS structures can be conveniently controlled by adjusting
the density of the voxelization. Though promising, the shapes

of TPMS unit will be changed in the mapping process. Some
original smooth characteristics of TPMS may be destroyed.
In addition, both the voxelization and mapping processes are
implemented after acquiring the target 3D model. If the tar-
get model needs to be modified, all mentioned processes will
be repeated, which is time-consuming for some applications,
such as medical implants.

In our previous work, the solid T-spline was adopted to
design TPMS porous structures with freeform external shapes
as shown in figure 7(c) [9]. T-spline is an effective tool to
design freeform surfaces. As a kind of parametric surface, the
parametric space is regular and easy to be divided. Hence,
the solid T-spline can be conveniently divided into numer-
ous cubes for TPMS extraction. Moreover, the control points
can be used to save the TPMS parameters to generate graded
or heterogeneous TPMS porous structures. With help of the
local refinement algorithms of the T-spline, local geometry
or porosity features can be finetuned or interactively modi-
fied. Therefore, the design freedom can be greatly improved
by this method. Similar methods were also introduced based
on B-spline [23]. However, the efficiency of the whole pro-
cess is not ideal as expected. For porous structures whose
design efficiency is more important than the iterative design
demand, the 2D design strategy is a better choice [22]. As
shown in figure 7(d), the external shapes will be sliced as
layered areas. Then, the 2D TPMS contours are extracted in
the meshes inside of external shape layers. After offsetting and
2DBoolean operations, the layered TPMS areas with freeform
shapes can also be acquired as layered areas, which can be dir-
ectly fabricated via additive manufacturing.
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Figure 7. Design methods for TPMS porous structures with complex external shapes. (a) Three-dimensional Boolean operation design
approach. Reproduced with permission from [89]. Copyright 2017, Springer International Publishing Switzerland. (b) Shape function
mapping method. Reproduced with permission from [81]. Copyright 2011, Korean Society for Precision Engineering and Springer-Verlag
Berlin Heidelberg. (c) Porous TPMS design based on solid T-splines. Reproduced with permission from [9]. Copyright 2018, Elsevier.
(d) Two-dimensional design strategy for TPMS with freeform shapes. Reproduced with permission from [22]. Copyright 2019, Elsevier.

3. Performance control of TPMS

The performances of TPMS porous structures are the research
focus in recent years. The goal of geometry design is gen-
erating TPMS with similar features to outstanding natural
porous architectures. Based on that, the performance control
strategies aim to construct TPMS porous structures which
can be successfully applied in engineering. The mechanical
performances, thermal performances, optic performances, or
multiphysics coupling performances need to be controlled for
different applications. Two important aspects need to be dis-
cussed for performance control in this section. Firstly, the
basic performances will be analyzed according to diverse dis-
ciplines. Moreover, some novel methods will be introduced to
further optimize the TPMS performances.

3.1. Mechanical performances

Among performances of different disciplines, the research on
mechanical performances is the most. Regardless of whether
the TPMS porous structures are used as scaffolds, energy
absorbers, or heat exchangers, basic mechanical performances
are required to keep the structures stable and reliable. The
elastic modulus, Poisson’s ratio, and anisotropic properties
are the basic mechanical property indexes which should be
payed close attention [90]. The elastic and anisotropic prop-
erties of TPMS are evaluated by Every’s diagram as shown in
figure 8(a). The porous structures can be regarded as a spe-
cial kind of composite material with material phase and air
phase. Hence, the Hashin–Shtrikman upper bound is effect-
ive to evaluate the mechanical properties of TPMS. Compared

with hollow lattices, the bulk modulus properties of TPMS are
much closer to the theoretical limit, as shown in figure 8(b).
For porous structures, relative density is regarded as the most
important influence factor on the elastic modulus. The scal-
ing laws are utilized in most research to describe the relation-
ship between relative density and elastic modulus or plateau
stress [36]. According to the finite element analysis (FEA)
and compression tests, the changing laws of modulus with
relative density can be fitted to smooth curves [37, 38, 40,
45, 91]. The geometry features of network TPMS can be
completely expressed by the relative density. However, as
discussed before, the sheet TPMS with different parameter
combinations may own the same relative density. Hence, the
mechanical properties of sheet TPMS cannot be accurately
described by the relative density. The parameter influences on
the elastic modulus and anisotropic properties are systemat-
ically analyzed in our previous work [92]. According to the
developed design map, the elastic modulus and anisotropic
properties can be controlled at the same time.

Poisson’s ratio is utilized to evaluate the ratio between
material transverse and vertical deformation, which is greater
than 0 in most cases. However, Poisson’s ratio of TPMS can
be designed as negative with special parameter combinations.
As presented in figure 8(c), the structure shrinks in the trans-
verse direction under compression. The auxetic behavior of
the constructed TPMS is dominated by buckling instability.
Due to the special auxetic behavior, the Poisson’s ratio can
be controlled to meet diverse special demands for sensors or
energy absorbers. The mechanical performances of most of
the porous structures are distinct in different directions, which
means the porous structures are anisotropic. For some special
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Figure 8. Basic mechanical properties of TPMS. (a) Elastic and anisotropic properties of TPMS. Reproduced with permission from [29].
Copyright 2019, Acta Materialia Inc. (b) TPMS modulus close to the theoretical bound. Reproduced with permission from [93]. Copyright
2021, the Royal Society of Chemistry. (c) TPMS with negative Poisson’s ratio. Reproduced with permission from [30]. Copyright 2020, the
Authors, CC BY-NC-ND 4.0. (d) Isotropic TPMS design methods. Reproduced with permission from [92]. Copyright 2021, the Authors,
CC BY 4.0. (e) Anisotropic property control method based on hybrid TPMS. Reproduced with permission from [94]. Copyright 2019, the
Authors, CC BY-NC-ND 4.0.

applications, the anisotropic behavior is even considered as
harmful. For example, the energy absorbers need bear load-
ing from different directions. The weak directions may be
prematurely broken or invalid before total failure. It is an
effective way to adjust the TPMS parameters to control the
anisotropic properties and even to generate isotropic TPMS
[32]. However, the porosities of isotropic TPMS may be too
high or too low which cannot be accurately fabricated. In our
previous work, the TPMS units with complementary aniso-
tropic properties were utilized to generate composite TPMS
with close isotropic properties, as shown in figure 8(d) [92].
Then, the wall thickness of composite TPMS is adjusted to
generate accurate isotropic TPMS. Note that the composite
TPMS is similar to the heterogeneous TPMS. The functions
of different units are combined with different weights. Hence,
the internal surfaces are still smooth. Differently, the hybrid
TPMS is constructed by directly combining two TPMS units
as presented in figure 8(e) [94]. Although the structures can
also be designed with isotropic properties, the original smooth
features of TPMS are destroyed.

Besides the basic mechanical property indexes, the com-
pression behaviors of TPMS have also been systematic-
ally studied [95–103]. Due to the porous internal struc-
tures, much energy can be directly absorbed. Four regions
including the nonlinear stage, linear elastic stage, elastic
plastic stage, and post-yield region can be observed from
the TPMS compression stress–strain curves [104]. Compared
with network TPMS, the energy absorption capability and

efficiency of sheet TPMS are superior. Lu et al discussed
the differences between G and P structures under compres-
sion, as shown in figure 9(a) [105]. The TPMS structures
are fabricated by digital light processing (DLP) technology
with ZnO powder. The G structures can bear much more
deformation than the P structures during the compression
tests. Moreover, Maskery et al studied the compressive fail-
ure modes as presented in figure 9(b) [43]. The cell size has
important influences on the failure mechanism. Low-strain
structural failure can be avoided by the smaller size. More
interestingly, more energy can be absorbed by TPMS after heat
treating. As mentioned in section 2.2, the graded structures
can be designed by TPMS. Yang et al introduced the energy
absorption capability of graded TPMS. The energy absorption
capability decreases with the increase of the cell size as shown
in figure 9(c) [106]. In addition, the graded P structures can
absorb more energy than the uniform P structures [107]. How-
ever, the energy absorbability of graded and uniform G is very
similar. Long plastic plateaux is important for energy absorb-
ing. Maskery discussed the compressive deformation behavi-
ors of G, D, and P [36]. High stiffness and strength can be sup-
plied by P structures. D and G structures are better choices for
undergoing high strain before failure as shown in figure 9(d).
Similarly, comparedwith P or G, the energy absorption of IWP
and Neovius structures is higher [35, 103].

In order to further illustrate the merits of TPMS, the mech-
anical performances of the sheet, network TPMS, and classical
lattice, such as Kelvin, octet-truss and Gibson–Ashby are
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Figure 9. Mechanical behaviors under compression. (a) Comparisons between G and P structures under compression. Reproduced with
permission from [105]. Copyright 2021, Elsevier Ltd and Techna Group S.r.l. (b) Compressive failure modes and energy absorption of G
structures. Reproduced with permission from [43]. Copyright 2017, the Authors. CC BY 4.0. (c) The deformation and collapse behaviors of
graded D structures. Reproduced with permission from [106]. Copyright 2021, Elsevier. (d) Compressive deformation behaviors of G, D,
and P. Reproduced with permission from [36]. Copyright 2017, the Authors, CC BY 4.0.

analyzed and compared. Sheet TPMS structures exhibited a
near stretching-dominated deformation behavior, while skel-
eton TPMS showed a bending-dominated behavior [108]. Fur-
thermore, among these structures, the sheet TPMS structures
own superior performances [37]. As discussed before, TPMS
can be regarded as a composite material with solid and air.
Some interesting attempts have also been made to generate
interpenetrating phase composite TPMS by replacing the air
phasewith other kinds ofmaterial to further improve themech-
anical performances [91, 109–114]. Speirs et al studied the
fatigue behaviors of TPMS scaffolds which are fabricated by
selective laser melting (SLM) with NiTi shape memory alloy
[39]. Compared with the octahedron unit, superior fatigue res-
istance can be acquired by TPMS due to the smooth surfaces
without nodal points. In addition, the fracture toughness of
TPMS has also been studied in recent research [115, 116].
Interestingly, the bandgaps can be acquired by G structures
[41]. The bandgap width can be further adjusted by chan-
ging the cell size and volume fraction. Khan et al studied
the viscoelastic behaviors of TPMS under both time and fre-
quency domains [117]. Experimental results showed that the
IWP structures own superior behaviors under uniaxial loading,
and shear and bulk responses of P structures are the highest.
Moreover, based on the merits of TPMS, some novel porous
structures are developed for better performances. Cao et al
designed P-lattice by generating lattice struts along the smooth
surfaces [118]. Compared with traditional lattices, superior
mechanical properties and higher energy absorption charac-
teristics can be obtained. Maskery and Ashcroft developed
a new gyroid-based honeycomb by changing the honey wall
shape according to the G surfaces [119]. Novel deforma-
tion and post-yield stiffening under in-plane loading can be
obtained.

Although there are numerous studies of the TPMS mech-
anical properties, the geometries of the discussed TPMS are
basically simple. The actual performances of TPMSwith free-
form shapes under complex application environments need
more research attention. Moreover, different kinds of TPMS
units own diverse advantages. How to choose suitable TPMS
units in different applications is an important question. Con-
sidering diverse requirements in multidisciplinary and multi-
functional applications, a trade-off will be needed.

3.2. Thermal (heat transfer) performances

Dealing with the extra heat during the operation process is
an important problem no matter for microchips in computers
or large-scale machinery and equipment. The porous struc-
tures are widely applied as heat exchangers for a long time.
The internal heat exchange areas can be greatly improved by
the complicated architectures with high porosity. Due to these
merits, most of the current heat exchangers are designed based
on stochastic metal foams or parameterized lattice structures.
Theoretically, the interconnected and smooth pores of TPMS
are more ideal candidates for heat changing. The controllable
geometries and porosity properties as discussed before are
precious merits for further improving heat transfer efficiency.
Compared with traditional porous heat exchangers, few TPMS
heat exchangers are adopted in actual engineering. But the
thermal performance advantages of TPMS have been studied
and proved by current limited research.

Kaur and Singh discussed the flow and thermal transport
characteristics of TPMS [58]. The TKD structure which is the
commercially open-cell foam was utilized to compare the per-
formances with TPMS. The heat transfer distribution of P, G,
and TKD from different views can be seen in figure 10(a).
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Figure 10. Thermal performances of TPMS porous structures. (a) Heat transfer distribution of P, G, and TKD. Reproduced with permission
from [58]. Copyright 2021, Taylor & Francis Group. (b) Temperature distributions of commercial foam and F-RD. Reproduced with
permission from [120]. Copyright 2021, Elsevier. (c) The liquid fraction at 30 s after heat transferring by porous structures. Reproduced
with permission from [57]. Copyright 2021, Elsevier.

The average heat transfer coefficients of G are 1.07 times
higher than TKD. In addition, heat can be dissipated twice by
G structures compared with TKD structures under the same
temperature differences.Wang utilized the computational fluid
dynamics (CFD) simulations to evaluate the TPMS perform-
ances [120]. The 3D models of commercially random foams
are reconstructed via micro-computed tomography (CT) to
compare the property differences. The temperature distribu-
tions of commercial foams and F-RD structures are shown in
figure 10(b). According to the experimental results, the F-RD
structures can obtain 103% higher thermal conductivity than
the stochastic foams with the same porosity. The better con-
nectivity along the heat transfer direction is the main reason
for the higher thermal conductivity. Qureshi et al made use
of TPMS as the heat transfer structures for the phase change
materials in thermal energy storage [57]. The TPMS structures
are set inside of the phase change materials. Hence, after heat-
ing, the solid materials will become liquid. The liquid fraction
at 30 s can be seen in figure 10(c). Compared with the Kelvin
structures, more liquid can be found in TPMS structures. The
I-WP structure owns the best performances in pure conduction
than G, P, and Kelvin structures. While the P structure owns
the best performances in natural conduction than G, I-WP, and
Kelvin structures. Hassan et al adopted the TPMS as advanced
heat sinks for electronic components [121]. The heat trans-
fer coefficient and interface surface areas are two important
factors for heat transfer. The temperature contours of network
G and network D are the lowest and highest, respectively. And
the temperature contours of sheet G and network D are basic-
ally the same. The surface areas of network G and D are the
same. And the surface areas of sheet G are twice of network G.
Hence, network D showed the highest convection heat transfer
coefficient according to the CFD results.

In addition, Al-Ketan studied the heat transfer perform-
ances of graded TPMS [59]. The temperature contours and
velocity streamlines of uniform and graded D from differ-
ent directions were discussed. The porosities of uniform and
graded structures are the same. However, the surface areas of
uniform TPMS are 22% higher than graded TPMS. Exper-
imental results showed that the porosity grading structure
results in a significant pressure drop of 27.6%, while the con-
vective heat transfer drop is less at 15.7%. A suitable poros-
ity distribution design is an effective way to control the heat
transfer performances. But the flow performances of graded

structures with the same porosity of uniform structures can-
not be improved. Mirabolghasemi et al discussed the thermal
conductivity of TPMS based on the homogenization method,
and periodic representative volume elements [122]. For G,
D, and P structures with curvature parameter C= 0, similar
homogenized thermal conductivities can be obtained. And the
effective thermal conductivity of the P structure decreases
with C from 0 to 0.8. Moreover, the thermal conductivity of
TPMS is primarily a function of the relative density [123].
And thermal conductivity is inversely proportional to the sur-
face area to volume ratio. However, for convective heat trans-
fer, thermal performance is typically proportional to surface
areas. Besides the heat conduction in the solid phase, the radi-
ative heat conductivity was also studied [124]. Both conduct-
ive contribution and radiative contribution should be taken into
consideration for evaluating the effective thermal conductiv-
ity. And the radiative contribution is a linear function of the
radiation/conduction ratio.

In summary, due to the high-volume specific surface
areas and smooth porous structures, TPMS structures are
ideal candidates for heat transfer applications. The thermal
performances of TPMS in some special applications are even
superior to conventional porous structures, such as foams or
lattices. Similar to mechanical performances, the thermal per-
formances of TPMS can be conveniently controlled by the
TPMS unit type, relative density, and structural parameters.
However, current research is still not enough for further com-
plex applications. The thermal performances of graded, het-
erogeneous, and multiscale TPMS which are designed by the
mentioned methods in section 2 are not thoroughly studied.
These intersecting questions need more research attention in
the future.

3.3. Permeability (mass transfer) performances

As discussed before, TPMS structures are highly interconnec-
ted with non-tortuous pores which are suitable for mass trans-
fer. Due to this advantage, TPMS porous structures can be
applied as porous electrodes of fuel cells and batteries, por-
ous filters, and tissue engineering scaffolds [125, 126]. Per-
meability is an important index to evaluate the fluid flow con-
duct performances. All these porous features, such as porosity,
tortuosity, pore size, and interconnectivity have great impacts
on permeability [127]. Recently, as the theoretical basis for
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Figure 11. Permeability performances of TPMS porous structures. (a) Longitudinal and radial permeability of TPMS porous structures.
Reproduced with permission from [128]. Copyright 2017, Elsevier. (b) Fluid permeability of graded TPMS porous structures. Reproduced
with permission from [129]. Copyright 2019, American Chemical Society. (c) Polydimethylsiloxane TPMS scaffolds and corresponding
permeability results. Reproduced with permission from [130]. Copyright 2019, Acta Materialia Inc. (d) The pressure and velocity of G
structures. Reproduced with permission from [131]. Copyright 2019, Elsevier. (e) The flow paths of FKS, G, and P structures. Reproduced
with permission from [132]. Copyright 2021, the Authors, CC BY-NC-ND 4.0.

engineering applications, some interesting studies have been
carried out.

Montazerian et al discussed the pore shape and poros-
ity influences on the longitudinal and radial permeability as
shown in figure 11(a) [128]. The permeability of unidirec-
tional flows was analyzed in most research. However, for some
special applications such as tissue engineering, the cells radi-
ally grow in these porous scaffolds. Hence, it is also neces-
sary to evaluate the longitudinal permeability. According to
the experimental results, the permeability of TPMS, especially
I-WP structures, is higher than lattice structures in longitud-
inal directions. The radial permeability is half of the longit-
udinal permeability in the cylindrical scaffolds. The relation-
ship between porosity and permeability can be described by
the power law as well as the Kozeny–Carman models. Zhian-
manesh et al analyzed the fluid permeability of graded TPMS
porous structures as presented in figure 11(b) [129]. For uni-
form TPMS structures, P and G structures own the highest
permeability values. With regard to radially graded TPMS,
the sensitivity of permeability to the peripheral porosity was
found to be almost twice as the central porosity. Moreover,
the graded porosity influences on the permeability are depend-
ing on the topology of porous structures. Higher permeability
of P structures can be obtained by the higher central poros-
ity. For I-WP and G structures, permeability can be improved
by the deviation from uniform porosity. However, for the IJ∗-
P2 structure, the highest permeability is obtained by the uni-
form porosity. Montazerian et al studied the fluid permeability
of TPMS for constructing porous scaffolds [130]. The TPMS
scaffolds manufactured by fused deposition modeling and cor-
responding permeability results are shown in figure 11(c).
Compared with uniform scaffolds, higher permeability can be
obtained by radially gradient pore distributions. The permeab-
ility values of P structures are lower than D or G structures. Ma
et al discussed themass transport performances of G structures

for designing bone-mimicking scaffolds [131]. Almost no tur-
bulence can be found in the G structures. The fluid pressure
and velocity of G structures are shown in figure 11(d). Higher
permeability can be obtained by a larger pore diameter. The
permeability of G scaffolds can even be adjusted similar to the
original bones. In order to predict the permeability of TPMS,
Asbai-Ghoudan further developed an analytical model accord-
ing to the desired architecture, pore size, and porosity [132].
The differences between the prediction and actual permeabil-
ity are less than 5%. The flow paths of FKS, G, and P structures
are shown in figure 11(e). Inmost cases, the permeability of the
P structure is the highest. However, for porous structures with
50% porosity, the G structure owns higher permeability. In
order to evaluate the permeability of porous structures, Darcy’s
flow is utilized inmost cases. Santos et al further calculated the
permeability of TPMS based on Forchheimer’s law, which was
proved as a good mathematical tool as Darcy’s law expansion
[133]. According to the experimental results, TPMS struc-
tures can achieve good permeability values while remaining
less porous. Although the permeability can be improved by
higher porosity, the mechanical performances of TPMS will
be weakened. Hence, a reasonable trade-off between mechan-
ical properties and permeability needs to be made according to
diverse application requirements [134–136]. TPMS structures
with higher permeability under the same relative density may
be a better choice for multidisciplinary applications.

In general, the permeability study of TPMS is still a
research hotspot in recent years [137–140]. The permeability
can be obviously improved by TPMS structures. Appropriate
permeability control is important for mass transfer applica-
tions, such as tissue engineering scaffolds or bone implants.
Precise prediction and evaluation of the TPMS permeabil-
ity is still a challenge. Similar to the research status of other
performances, most of the current research only focused on
the standard TPMS with cube shape. Although some attempts
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Figure 12. Lightweight optimization based on the TPMS porous structures. (a) Lightweight TPMS design based on the density-variable
shape modeling method. Reproduced with permission from [144]. Copyright 2015, Springer-Verlag London. (b) Lightweight TPMS
generation based on the strength-to-weight optimization method. Reproduced with permission from [145]. Copyright 2019, Springer-Verlag
GmbH Germany, part of Springer Nature. (c) Lightweight structure design by internal TPMS channel. Reproduced with permission from
[146]. Copyright 2020, IEEE. (d) Lightweight TPMS structure design according to TPMS functions. Reproduced with permission from
[69]. Copyright 2020, IEEE.

have been made to discuss the permeability of graded TPMS,
the influence mechanism of the porosity distribution, hetero-
geneous TPMS, and multiscale TPMS need more research
attention.

3.4. Performance optimization

Although the TPMS structures ownmany advantages in mech-
anical properties, heat, and mass transfer performances, it is
still of great significance to further optimize the TPMS per-
formances. As a kind of porous structure, the mass of TPMS
is much lighter than the solid structure under the same envelop
volume. However, the mechanical strength will be inevitably
weakened by the porous architectures. Actually, in practice,
the performances of solid structures are excessive. Replacing
the solid structures as porous structures is an effective way
to achieve the lightweight purpose. The material, energy, and
fabrication time can be obviously saved by these lightweight
structures. Note that, a trade-off between the mechanical per-
formances and the structure weight always exists. As dis-
cussed in our previous research, the art of the lightweight
structure design for 3D printing is to find a balance between the
material-consuming and physical performances [141], which
means that suitable pores need to be designed in ideal posi-
tions for acquiring the best strength-to-weight ratio. Over past
decades, with the help of additive manufacturing, lattice and
foam structures were widely used as lightweight structures
[142, 143]. Recently, some novel attempts have been made to
design lightweight structures based on the porous TPMS for
seeking a better strength-to-weight ratio.

Li et al proposed a density-variable shapemodelingmethod
for interior structure optimization [144]. The stress distribu-
tions of complexmodels were analyzed according to the cross-
section method. The relationship between the curvature para-
meter of the G structure and the relative density was fitted
with implicit functions. Afterward, the suitable parameter was

utilized in different regions for generating graded internal
TPMS porous structures as shown in figure 12(a). With help
of this method, the strength of the complex structures can
be increased, meanwhile, the use of materials can be min-
imized. Hu et al further developed a lightweight TPMS gen-
eration framework based on the proposed strength-to-weight
optimization method [145]. According to the given condi-
tions including the external loads and gravity, the input model
will be divided on the basis of the stress field. The porosity
values of different divided regions are changed by the non-
uniform TPMS. In order to ensure the smoothness of the trans-
ition regions, the compactly supported radial basis function
interpolation method was utilized. Furthermore, the TPMS
parameters were iteratively optimized to generate lightweight
structures with more stress distribution, which is presented in
figure 12(b). Compared with other existing methods, lighter
structures with smooth features can be acquired under the
same external loads.

Different from the above methods to generate interior light-
weight TPMS for additive manufacturing, Yan et al proposed
a lightweight design strategy by constructing internal TPMS
channels for material injection [146]. As discussed before, the
internal smooth surfaces and excellent permeability of TPMS
are very suitable for injection. Similar to other strategies,
the stress field calculation was utilized as the first step to
generate graded TPMS channels with different period para-
meters and uniform width. The channel widths and TPMS
period were iteratively optimized in an interleaving manner
according to the corresponding FEA results. In virtue of the
optimized channels, the lightweight TPMS structures can be
obtained as shown in figure 12(c). Compared with the light-
weight structures designed by lattices or foams, larger loads
can be afforded. In the conventional FEA process, the mesh-
ing operation is very time-consuming, especially for porous
structures. Hu et al further developed a lightweight optim-
ization method directly based on the TPMS functions [69].
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Figure 13. Topology optimization of TPMS porous structures. (a) TPMS optimization based on homogenization and topology optimization
methods. Reproduced with permission from [147]. Copyright 2018, Elsevier. (b) Multi-TPMS optimization based on topology optimization.
Reproduced with permission from [148]. Copyright 2021, the Authors, CC BY-NC-ND 4.0. (c) Topology optimization of extended TPMS
structures. Reproduced with permission from [149]. Copyright 2020, Elsevier. (d) Comparisons of different TPMS design strategies.
Reproduced with permission from [150]. Copyright 2017, the Authors. (e) Heat-sink design by topology optimization [151]. Copyright
2019, ASME. (f) Bandgap structure design based on topology optimization method. Reproduced with permission from [152]. Copyright
2020, Springer-Verlag London Ltd, part of Springer Nature.

The period and wall thickness were defined as topological and
geometrical parameters and iteratively optimized as shown in
figure 12(d). In order to bear the same external loads, the same
input structure can be optimized by the strength-to-weight
optimization method [145] and the implicit function optimiza-
tion method [69] to 28% and 25%, respectively. The optimized
structures will also be comparable or stronger than the TPMS
channel with injection [146]. Up to now, there are still many
attempts for generating lightweight structures. It is significant
to maximize the actual application performances with the least
materials. Due to the outstanding performances and control-
lable geometries, TPMS structures are expected to become the
candidate of next-generation lightweight structures for wider
engineering applications.

Although the graded TPMS with diverse porosity distri-
butions can be conveniently generated by the methods men-
tioned in section 2.2, how to select suitable porosities in dif-
ferent regions is a critical problem. Topology optimization
is an effective method in the structure optimization domain.
According to the design domain, loads and constraints, suit-
able material density distributions can be obtained. For solid
material, the density of the structures in each calculation ele-
ment can only be 0 or 1. Hence, the solid isotropic micro-
structures with penalization method was developed for avoid-
ing elements with intermediate density. However, the relative
density of TPMS porous structures can be directly adjusted
from 0 to 1. Recently, more and more interesting research is
based on topology optimization and TPMS porous structures.

Li et al introduced an effective TPMS optimization method
based on the homogenization and topology optimizationmeth-
ods [147]. The relationship between curvature parameter and
relative density was fitted as scaling laws. In virtue of the
numerical homogenization method, the elastic scaling laws
of TPMS can also be obtained. Each constant of the stiff-
ness matrix can be calculated as a function of relative dens-
ity. After the topology optimization process, the correspond-
ing relative density distributions can be acquired to generate
graded TPMS. Considering the additive manufacturing direc-
tion, some porous TPMS structures can be further removed
as shown in figure 13(a). Under the same volume ratio, the
deformation of optimized TPMS is 1/9 of that of uniform
TPMS structure. Moreover, Ren et al designed the multi-
TPMS by topology optimization method [148]. As presented
in figure 13(b), different TPMS units were utilized together
in multi-TPMS, which is also named as heterogeneous TPMS
in section 2.3. An improved sigmoid function was used to
increase the smoothness of the transition regions. Under the
same density distribution, compared with gradient P the equi-
valent stiffness is increased by 17.6%, compared with gradi-
ent IWP the equivalent stiffness is increased by 90.4%. Li
et al further proposed a kind of extended TPMS for topo-
logy optimization [149]. The performances can be predicted
by the offline parametric homogenization method with high
accuracy. Optimized extended TPMS can be more efficiently
generated as shown in figure 13(c). The density distribution
results from topology optimization can be used in different
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ways to generate graded TPMS. Panesar et al compared the
different design strategies [150] as illustrated in figure 13(d).
According to the performance requirements and manufactur-
ing restrictions, the graded TPMS which is designed by map-
ping the relative density onto the greyscale density solution
of topology optimization is the most desirable solution. More
importantly, the topology optimization method is also adopt-
able for requirements of other disciplines. Li et al optimized
the TPMS relative density distributions of heat-sink [151].
Under the same volume ratio, the maximum temperature of
uniform TPMS can be decreased from 66.1 ◦C to 57.4 ◦C
by the graded TPMS structures. The heat transfer perform-
ances can be further improved by a larger density range,
as shown in figure 13(e). Moreover, the topology optimiza-
tion method can also be utilized to design bandgap structures
[152], as shown in figure 13(f). In brief, topology optimiz-
ation is an outstanding tool to provide guidance for gener-
ating graded or heterogeneous TPMS porous structures. The
requirements of multidiscipline can be summarized as dif-
ferent optimization targets for seeking ideal relative density
distributions. However, the iterative optimization process is
relatively time-consuming. More efficient topology optimiz-
ation methods are still research hotspots in the current study.
Some two-dimensional density results are not precise enough
for solving problems of actual engineering. Actually, in prac-
tice, there are more restrictions need to be considered in the
optimization process, which will further increase the burden
of calculation. All these problems need more research atten-
tion to generate ideal TPMS models with suitable geometries
and performances.

4. Additive manufacturing methods of TPMS

The manufacturing quality has great influences on the actual
performances of TPMS porous structures. Due to the complex
topology and intricated porous architectures, most of the cur-
rent TPMS structures are fabricated by additive manufacturing
methods. According to the material required by actual applica-
tions, diverse forming principles can be selected. Although the
TPMS structures can be conveniently fabricated by additive
manufacturing layer by layer, the porous features, and com-
plex topology are still great challenges to the precision and
efficiency of current manufacturing methods. Related work
about the additive manufacturing methods for TPMS will be
reviewed in this section.

4.1. Selective laser melting (SLM)

The SLM technology is widely utilized to fabricate metal
structures in engineering. The powder material is melted by
the laser layer by layer. The powder which is not melted after
one layer can be used as support for the next layer. How-
ever, for structures with numerous hanging surfaces, such as
TPMS, enough support structures are still needed. Consider-
ing the manufacturing process of SLM, both the sizes of laser
spot and powder have great influences on the manufacturing
quality.

Yan et al discussed the manufacturability of TPMS using
the SLM technology with 316 l stainless steel powder [153].
According to the experimental results, all the unit sizes ran-
ging from 2 to 8 mm can be fabricated by SLMwithout defects
and additional support structures. However, there are a lot of
bonded particles on the surfaces as shown in figure 14(a). The
surface roughness is increased by these bonded particles. Fan
et al fabricated graded TPMS by SLM with Ti6Al4V powders
[95]. As shown in figure 14(b), semi-melted powders also exist
on the surfaces. Compared with structures with uniform wall
thickness, less support can be supplied by the thinner walls
of graded structures. The defects gradually decreased along
the gradient direction. Hence, the thickness errors of graded
structures are greater. For porous TPMS structures, the largest
deviations will be found at the upper inner walls of pores
[99]. In order to further improve the surface roughness, the
sand-blasted method is effective to reduce the influences of
stair steps and overhang or bonded particles, as presented in
figure 14(c). With regard to the fabrication material, diverse
metal materials can be selected for different purposes. Yavari
et al fabricated TPMS implants with titanium powder [154].
The laser paths were optimized without overlapping contours
as shown in figure 14(d). Ma et al compared the SLM fabric-
ated TPMS and the designed models by CT images [155]. The
pore size values of fabricated TPMS were all less than that of
the designed models as shown in figure 14(e). The manufac-
tured errors ranged from 46 to 80 µm.

4.2. Selective laser sintering (SLS)

Similar to the SLM manufacturing method, the laser is util-
ized for SLS technology as the input energy for fabricating
structures layer by layer. Differently, the powder material
is sintered together as products. Hence, more materials can
be selected for SLS, such as metal, ceramics, and plastics.
Moreover, the fabrication quality is also greatly affected by
the powder. Al-Ketan et al fabricated TPMS structures by SLS
with gas atomized maraging steel fine powder [37].

Some powder was stuck on the printed structures as shown
in figure 15(a). And the layer step can also be observed
along the printing direction. Abou-Ali et al fabricated TPMS
structures by SLS with polyamide nylon powder [156]. The
actual relative densities of printed structures were close to the
designed values. Ideal printing quality and manufacturability
can be obtained as presented in figure 15(b). Elmadih et al
also utilized nylon-12 powder for fabricating TPMS by SLS
technology [41]. As shown in figure 15(c), compared with the
originally designed model, the maximum cell size and volume
fraction deviation are 1.8% and 10%, respectively. And the
maximum differences of the minimum feature were 3.2% of
the nominal values. The differences between measured and
nominal values can be controlled smaller than the laser spot
size, which means that the fabricated TPMS structures can
be used for vibration isolation in the discussed applications.
Maskery et almade use of the EOS polyamide PA2200, which
is also based on the nylon 12 to manufacture TPMS por-
ous structures [36]. As presented in figure 15(d), the aver-
age volume fraction of printed structures was 0.294 ± 0.007,
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Figure 14. Porous TPMS structures fabricated by SLM. (a) Manufacturability of TPMS porous structures. Reproduced with permission
from [153]. Copyright 2012, Elsevier. (b) Graded TPMS fabrication with Ti6Al4V powders. Reproduced with permission from [95].
Copyright 2021, Elsevier. (c) Comparisons between as-built and sand-blasted TPMS structures. Reproduced with permission from [99].
Copyright 2019, Acta Materialia Inc. (d) Porous TPMS fabricated with titanium powder. Reproduced with permission from [154].
Copyright 2020, the Authors, CC BY 4.0. (e) Comparisons between fabricated and designed TPMS structures. Reproduced with permission
from [155]. Copyright 2020, the Authors, CC BY-NC-ND 4.0.

which was very close to the designed fraction of 0.3. The
abovementioned SLM and SLS technologies can be defined as
the laser powder bed fusionmethod, which is widely utilized to
fabricate complex porous structures such as TPMS. More fab-
rication attempts can be found in current research [157–159].

4.3. Stereo lithography appearance (SLA)

As another precise additive manufacturing technology, SLA
is utilized to cure photosensitive liquid material layer by layer
with ultraviolet or other special light. The designedmodels can
be fabricated with high accuracy by controlling the light spot
size, which is also regarded as the printing resolution. How-
ever, due to the limitation of the fabrication principle, only a
small amount of material with photosensitive properties can
be utilized by SLA. Generally, the manufacturing precision of
SLA is much higher than the above SLM or SLS methods.
Based on that, more and more TPMS structures are fabricated
by SLA in recent research.

Zhang et al fabricated ceramic TPMS based on the SLA
technology [115]. The Al2O3 material was merged with pho-
tosensitive liquid for curing reaction. The lateral resolution
and z-resolution were 40 and 25 µm, respectively. As shown
in figure 16(a), the TPMS structures can be directly man-
ufactured with high accuracy. Macroscopic pores or cracks
cannot be found on the printed walls. UIIah et al fabricated
calcium phosphate TPMS structures for bone scaffolds [51].
The 10Mg–CaP and Mg, Zn–CaP powders were merged with
photosensitive resin, dispersing agent, and photoinitiator. The
wall thicknesses and pore sizes of printed structures which are
shown in figure 16(b) were 300 and 500 µm, respectively. The
grain boundaries can be clearly observed. Elomaa et al made
use of the poly(ε-caprolactone) (PCL) to manufacture TPMS

scaffolds [160]. The resin for SLAwas composed of PCLmac-
romer, Irgacure 369 photoinitiator, inhibitor, and dye. Due to
the special material preparing process, no obvious shrinkage
was found in the final structures. As shown in figure 16(c),
the average porosity measured by µCT was 70.5 ± 0.8%,
which is very close to the designed 70% porosity. The fabric-
ated pore sizes were 400–500 µm. Yu et al fabricated graded
TPMS structures with commercial resin [107] as presented
in figure 16(d). The wall thickness accuracy was higher than
94%. The maximumweight deviation was 2.89%.With regard
to the porosity, the maximum deviation was 1.41% from the
designed model. Recently, numerous commercial SLA equip-
ment and resin material have been developed for fabricating
complex structures. Good accuracy and surface quality can be
acceptable for most engineering requirements.

4.4. Digital light processing (DLP)

The DLP technology is developed based on the basic fabrica-
tion principle of SLA by curing photosensitive liquid material.
Differently, the liquidmaterial is curved point by point by SLA
to generate the whole structures. Yet, each sliced layer of struc-
tures is directly cured by DLP in each projection step. Appar-
ently, the manufacturing efficiency can be greatly improved
by DLP. However, limited by the resolution of the projec-
tion equipment, the DLP fabrication sizes of the structures are
basically smaller than SLA. Currently, DLP is also an ideal
choice to precisely fabricate TPMS porous structures.

Saed et al fabricated the poly L-lactic acid (PLLA) TPMS
structures by DLP technology [161]. A commercial DLP 3D
printer was used with 1024 × 768 pixels. And the size of the
pixel was 77 × 77 µm. The fabrication principle and struc-
ture features are presented in figure 17(a). The fabrication
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Figure 15. Porous TPMS structures fabricated by SLS. (a) Metal TPMS structures. (The scale bar is 1 mm). Reproduced with permission
from [37]. Copyright 2017, Elsevier. (b) Nylon TPMS structures. Reproduced with permission from [156]. Copyright 2020, the Authors,
CC BY 4.0. (c) Nylon-12 TPMS. Reproduced with permission from [41]. Copyright 2018, the Authors, CC BY 4.0. (d) EOS polyamide
PA2200 TPMS. Reproduced with permission from [36]. Copyright 2017, the Authors, CC BY 4.0.

Figure 16. Porous TPMS structures fabricated by SLA. (a) Ceramic TPMS structures. Reproduced with permission from [115]. Copyright
2019, Elsevier Ltd. (b) Calcium phosphate TPMS structures. Reproduced with permission from [51]. Copyright 2021, Elsevier.
(c) Poly(ε-caprolactone) TPMS structures. Reproduced with permission from [160]. Copyright 2011, Acta Materialia Inc. (d) Resin TPMS
structures. Reproduced with permission from [107]. Copyright 2019, the Authors, CC BY-NC-ND 4.0.
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Figure 17. Porous TPMS structures fabricated by DLP. (a) Poly L-lactic acid (PLLA) TPMS structures. Reproduced with permission from
[161]. Copyright 2020, the Society of Manufacturing Engineers. (b) SiOC ceramic TPMS structures. Reproduced with permission from
[66]. Copyright 2021, Elsevier. (c) Polyethylene (glycol) diacrylate (PEGDA) TPMS structures. Reproduced with permission from [26].
Copyright 2020, Elsevier B.V. (d) β-tricalcium phosphate/58S TPMS structures. Reproduced with permission from [162]. Copyright 2021,
Elsevier B.V.

parameters, especially the exposure time and dye concen-
tration have great influences on the manufacturing quality
and corresponding mechanical performances. After numerous
tests and optimization, suitable parameters can be found to
fabricate TPMS with minimal deviation and the best mechan-
ical performances. Similar to SLA technology, ceramic struc-
tures can also be precisely fabricated by the DLP method.
The silicone powder, photopolymer, and photoabsorber were
merged for DLP [66]. As shown in figure 17(b), the fabric-
ation steps can be clearly observed. But no cracks can be
found in the printed structures. The manufacturing quality
of the ceramic TPMS can meet the demands of microwave
absorbers. Li et al fabricated polyethylene (glycol) diac-
rylate (PEGDA) TPMS structures by DLP technology [26]
as presented in figure 17(c). A theoretical prediction method
was developed to choose the suitable parameter combinations
for manufacturing. Based on this method, the TPMS struc-
tures can be precisely fabricated with PEGDA and other pho-
tocurable material by the DLP method. Due to the high vis-
cosity, most of the existing β-tricalcium phosphate (β-TCP)
slurries are not suitable for DLP. Li et al utilized the DLP
technology to fabricate β-TCP/58S TPMS scaffolds [162].
Different from normal DLP printers, they printed TPMS
with a light source placed above the tank, as shown in
figure 17(d). Hence, the light can directly reach the photo-
sensitive material. Compared with the structures fabricated
by DLP, the volume will further be reduced after sintering.

Based on the proposed methods, TPMS structures can be pre-
cisely fabricated as bone scaffolds. In general, due to the
precise manufacturing principle and optical control system,
DLP is an outstanding solution to fabricating TPMS porous
structures.

4.5. Fused deposition modeling (FDM)

The FDM technology is widely adopted for desktop 3D print-
ers. As a method of material extrusion technology, the pre-
cision of FDM is much lower than SLA or SLM. Especially
for complex structures like TPMS, many support structures
are needed for hanging surfaces. And the surface quality will
be further destroyed after removing support structures. Hence,
considering the geometry structures, FDM is actually not an
ideal choice for fabricating TPMS porous structures. However,
for somematerials, such as polylactic acid (PLA) and acryloni-
trile butadiene styrene (ABS), FDM technology is an effect-
ive way for manufacturing. Alizadeh-Osgouei et al fabricated
PLA TPMS scaffolds as presented in figure 18(a) via FDM
technology [163]. All the designed pores are open with good
connectivity. But the strut sizes are smaller than the designed
values. Due to the shock and clogged nozzle, bubbles will
appear during themanufacturing process. Hence, some defects
can be found on the printed surfaces. Diez-Escudero et al also
fabricated PLA TPMS structures for bone scaffolds [164]. As
shown in figure 18(b), the surfaces of printed TPMS are much
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Figure 18. Porous TPMS structures fabricated by FDM. (a) PLA TPMS structures. Reproduced with permission from [163]. Copyright
2020, the Authors, CC BY 4.0. (b) PLA TPMS scaffolds. (The scale bar is 1 mm). Reproduced with permission from [164]. Copyright
2020, the Authors, CC BY 4.0. (c) ABS TPMS structures. Reproduced with permission from [45]. Copyright 2019, Taylor & Francis Group.
(d) Short carbon fiber-reinforced nylon TPMS structures. Reproduced with permission from [101]. Copyright 2020, Elsevier B.V.

rougher than structures manufactured by SLA. But the basic
geometry features and pore sizes can still be obtained. For
some applications which are not sensitive to themanufacturing
quality, the FDM technology can also meet the demands of
applications. Khan et al fabricated ABS TPMS porous struc-
tures via the FDM method [45]. In order to improve the sur-
face quality, the dissolvable support material was utilized. The
manufacturing paths of infill and support areas were shown in
figure 18(c). The layered areas are infilled line by line. Due
to the complex shapes of the layered areas, the printing paths
cannot always fill the areas. Hence, air gaps can be found in
the printed structures. Although the support structures were
removed, some unwanted strands can still be found. The whole
printed structures were smaller than the designed models. The
manufacturing quality of FDM is not precise enough, but FDM
is talented at fabricating structures with fiber-reinforcedmater-
ials. As shown in figure 18(d), the short carbon fiber-reinforced
nylon TPMS structures can be fabricated by FDM for the pur-
pose of lightweight and strength improvement [101]. In sum-
mary, FDM is an effective supplementary method to fabricate
TPMS structures with required special materials. With help of
added support structures and optimized infill paths, the TPMS
structures manufactured by FDM can be utilized by engineer-
ing applications.

4.6. Other special fabrication methods

Besides these widely used AM technologies, there are
many special methods to fabricate TPMS porous structures.
Cao et al fabricated TPMS structures by projection
micro-stereolithography (PµSL) with PEGDA [165]. The
manufacturing principle and TPMS results can be seen in
figure 19(a). The basic fabrication principle is similar to the
SLA and DLP. The layer thickness was only 5 µm for each
sliced layer. But the ripples and nonuniform thickness still
existed on the surfaces. Compared with the designed models,
the fabricated thickness was larger, which may be caused by
self-weight in the viscous fluid. Abueidda fabricated TPMS at
the micro-scale using the 3D direct laser writing (DLW) based
on two-photon polymerization (2PP) [98]. The sample sizes
were only a few hundred microns with the smallest features
of several microns as shown in figure 19(b). Higher manu-
facturing precision can be obtained by the proposed methods.
Charbonnier et al fabricated TPMS implants by impregnation
of wax molds [77]. As illustrated in figure 19(c), both sup-
port and build materials were fabricated by the inkjet printer
with a layer thickness of 25 µm. The waxmold and the organic
adjuvants were removed at 500 ◦C. And the ceramic structures
were sintered at 1200 ◦C. With help of this method, the
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Figure 19. Porous TPMS structures fabricated by other special methods. (a) TPMS fabricated by PµSL. Reproduced with permission from
[165]. Copyright 2021, Elsevier Ltd. (b) TPMS fabricated by DLW based on 2PP. Reproduced with permission from [98]. Copyright 2020,
Elsevier Ltd. (c) TPMS fabricated by impregnation of wax molds. Reproduced with permission from [77]. Copyright 2020, Acta Materialia
Inc. (d) TPMS fabricated by sacrificial molds. Reproduced with permission from [49]. Copyright 2020, Acta Materialia Inc.

deviations between printed implants and the designed models
were centered on +1.4 µm. Similarly, Davoodi et al utilized
the sacrificial molds to fabricate silicone-based elastomeric
TPMS scaffolds [49]. The negative molds for TPMS were
fabricated by FDM technology with ABS. Then the silicone-
based prepolymer was mixed in the ABS molds. Eventually,
the required TPMS structures can be obtained by removing
ABS in acetone. As shown in figure 19(d), no ABS residue
was observed on the surfaces. Due to the ideal interconnectiv-
ity of TPMS, the silicone-based prepolymer can be fully filled
in the ABS molds. Hence, no cracks or bubbles were found
inside. More similar methods have been adopted in recent
research [130, 166].

4.7. AM path generation methods of TPMS

The abovementionedmethods are thewidely appliedAM tech-
nologies to fabricate TPMS structures. Actually, as the middle
step between obtaining CAD models of TPMS and additively
manufacturing TPMS, the AM path planning and generation
strategies, which are the main tasks of computer-aided man-
ufacturing (CAM) are also important. The layer slicing and
infill path generation are twomain steps to calculate AMpaths.
For some AM methods based on layered fabrication, only the
sliced layers can be used as the AM paths. Currently, most
AM path generation methods are universal strategies proposed
for most models with any shape or topology. Although these
methods are also effective to generate paths of TPMS, there
is still much space to improve the generation quality and effi-
ciency. In order to meet the demands of current CAM software

for AM, the designed CAD models need to be converted to
triangular mesh models. For complex structures like TPMS,
numerous triangular meshes will be needed to improve the
model precision, which will also increase the burden of calcu-
lation. However, most of the current attention has been payed
to the AM methods rather than the AM path generation. Only
a little research can be found to optimize the process of gen-
erating TPMS paths for AM.

As discussed in section 2.1, the sheet TPMS is construc-
ted by offsetting TPMS surfaces in the 3D space. However,
numerous errors may occur after offsetting 3D mesh mod-
els. In order to solve that, a systematic method was proposed
in our previous work to generate layered infill areas of sheet
TPMS [167]. Owing to the mathematical equations of TPMS,
the sliced contours can also be precisely described by implicit
functions. Hence, the slicing contours can be obtained in 2D
meshes. The calculation efficiency can be greatly improved,
meanwhile, the space cost by mesh models can also be saved.
With regard to the offset problem, the layered infill areas of
3D TPMS can be obtained by offsetting the 2D slicing con-
tours with consideration of the surface curvature. In a word,
the 2D layered infill areas of sheet TPMS can be efficiently
acquired according to the required input TPMS functions and
basic parameters. Zhang et al also proposed a similar strategy
to improve the path generation efficiency of porous structures
[168]. The generated 2D layered areas can be directly utilized
by AM equipment for manufacturing. However, how to optim-
ize the infill paths of TPMS is still a challenge. Most of the
layered areas of TPMS are long and narrow. Underfill areas
may always appear for generic infill path generation methods.
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Hence, numerous air gaps will exist on the printed structures,
such as the TPMS fabricated by FDM discussed before. This
problem needs more research attention in the future.

5. Multidisciplinary applications of TPMS

After geometry design, performance control, and precise
additive manufacturing, ideal TPMS products can be acquired
for different purposes. Recently, more and more research
attention has been payed to the applications of TPMS. Due
to the smooth surfaces, highly interconnected pores, TPMS
has been successfully applied in multidisciplinary areas. Rep-
resentative TPMS applications in mechanical, thermal, bio-
logical, chemical, acoustic, and optical domains will be
reviewed in this section to show the good application poten-
tial of TPMS structures.

5.1. Mechanical applications

The basic mechanical performances of TPMS porous struc-
tures have been systematically studied. Based on the long lin-
ear elastic stage, TPMS structures can be applied as energy
absorbers [46, 102] or impact absorbers [169]. Owing to the
mechanical vibration bandgaps, TPMS can also be utilized as
vibration isolators [41]. Apparently, the weight of TPMS is
much smaller than the solid structure under the same envelop
volume. In virtue of the optimization methods discussed in
section 3.4, TPMS can be used as lightweight structures to save
the consumption of materials and energy. In the aerospace or
automotive engineering domain, sandwich panels are widely
applied. Typical sandwich panels are composed of two face
panels with solid structures and internal cores designed by por-
ous structures. Over the past decades, most sandwich panels
were designed with lattice cores. Recently, novel sandwich
panels are constructed based on the TPMS structures [170].
Desirable bending properties and energy absorption capacity
can be acquired by the proposed methods. Alshaer and Har-
land compared the performances of sandwich panels with hon-
eycomb, lattice, and TPMS cores [171]. Experimental res-
ults proved that the highest strength, modulus, and stiffness
to weight ratio can be obtained by TPMS cores. Moreover, the
TPMS structures can be directly used as functional compon-
ents in the actual engineering domain. Alkebsi et al made use
of TPMS structures as turbine blades [172]. The porosity dis-
tribution of TPMS was designed by the topology optimization
method. Compared with the original model, the lightweight,
stress, and deformation performances were optimized. Wang
et almade an attempt to design a joint of a soft robot by TPMS
structures [173]. The TPMS parameters can be further adjus-
ted to obtain the linear variable stiffness. Interestingly, Pan
et al generate flexure hinges based on TPMS structures [174].
Experimental results showed that the P surface is themost suit-
able choice for flexure hinges. Compared with traditional leaf
flexure hinges, both the compliance and compliance ratio can
be greatly improved. In addition to the above examples, there
are still many interesting applications of TPMS structures in
the mechanical domain.

5.2. Thermal applications

Due to the high-volume specific surface areas, the heat trans-
fer performances of TPMS are outstanding as analyzed in
section 3.2. Hence, the TPMS structures are mainly applied as
heat exchangers in the thermal domain. Attarzadeh et almade
use of D surfaces as the heat exchangers [71]. According to the
experimental results, the heat transfer between flowing air and
the heat source can be more efficient. The thermal perform-
ances of the heat exchanger can be further improved by smaller
wall thickness. The supercritical carbon dioxide (CO2) based
Brayton cycle is widely adopted in engineering. However, the
cycle efficiency and heat transfer performances of current heat
exchangers are not ideal as expected. Li made an attempt to use
bioinspired TPMS structures as heat exchangers [70]. Com-
pared with printed circuit heat exchangers, only small flow
separations can be found in G and D structures, which is owing
to the smooth surfaces. Large turbulent kinetic energy produc-
tion, which is favorable for heat transfer, can be observed in G
structures. And the heat transfer rate of TPMS is much higher
than printed circuit heat exchangers. Moreover, the heat trans-
fer coefficient of TPMS is 16%–120% higher than printed cir-
cuit heat exchangers. However, compared with applications
of other domains, the research and applications of TPMS in
the thermal domain are at the initial stage. Most of the cur-
rent applied TPMS heat exchangers are designedwith standard
shapes and uniform porosities. How to further improve the heat
transfer performances of TPMS heat exchangers with minimal
volume is an interesting problem that needs more research
attention.

5.3. Biological applications

Recently, TPMS structures are widely applied in the biolo-
gical domain. Actually, the geometry and topology of TPMS
are similar to natural structures. Hence, TPMS owns numer-
ous outstanding merits for biological applications. The tissue
engineering scaffolds and medical implants are typical biolo-
gical applications of porous TPMS structures. Different from
classical lattice or foam structures, the smooth surfaces of
TPMS are suitable for cells to attach and grow. Moreover, the
high-volume specific surface areas and the highly interconnec-
ted porous architectures can supply enough space for the trans-
port of nutrition and waste. Based on the excellent biological
performances and the controllable mechanical, mass transport
performances discussed before, TPMS structures have been
successfully applied in current biological engineering.

In order to verify the topology advantages of TPMS struc-
tures, the structure effects on the cell seeding and culturing
were compared between TPMS scaffolds and normal salt-
leached scaffolds [175]. With the help of the interconnected
pores, the permeability of G structures was ten-fold higher
than salt-leached scaffolds. As shown in figure 20(a), large cell
populations can be found in the center of the TPMS scaffolds
after 5 d of static culture. However, only cell sheets can be
observed on the outside of salt-leached scaffolds. Tikhonov
et al fabricated TPMS as bone defect filling with PEGDA-
based hydrogels and calcium phosphates [176] as shown in
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Figure 20. Biological applications of TPMS structures. (a) Combinations between TPMS and salt-leached scaffolds. Reproduced with
permission from [175]. Copyright 2010, Acta Materialia Inc. (b) TPMS used as bone defect filling. Reproduced with permission from [176].
Copyright 2020, Elsevier Ltd. (c) Histological results of TPMS scaffolds. Reproduced with permission from [177]. Copyright 2019, the
Authors, CC BY-NC-ND 4.0. (d) Comparisons between lattice and TPMS scaffolds. Reproduced with permission from [54]. Copyright
2021, the Authors, CC BY 4.0. (e) Preferred TPMS pore sizes for different bone stages. Reproduced with permission from [76]. Copyright
2019, Acta Materialia Inc. (f) TPMS metallic bone. Reproduced with permission from [178]. Copyright 2019, Acta Materialia Inc.

figure 20(b). The mechanical properties can be conveniently
controlled by adjusting the parameters of TPMS structures. Li
et al further discussed the early osteo-integration of Ti6Al4V
scaffolds designed by TPMS [177]. The histological results
can be seen in figure 20(c). The bone ingrowth can be stimu-
lated by TPMS scaffolds. A stable interface between implants
and surrounding bone tissues after 5 weeks’ implantation was
obtained. Obvious bone formation around all the TPMS por-
ous structures can be found according to the micro-CT res-
ults. In order to illustrate the differences with other kinds of
porous structures, Hsieh et al compared the performances of
lattice and TPMS scaffolds [54] as presented in figure 20(d).
More bone growth was observed in the TPMS scaffolds than
in the octet truss lattice. In addition, TPMS scaffolds were
less prone to fatigue failure than lattice. Barba et al sum-
marized the preferred TPMS pore sizes for different bone
stages [76] as presented in figure 20(e). Due to the control-
lable porosity, TPMS can be designed with diverse pore sizes
for bone colonization or bone vascularization. Suitable osseo-
integration regions at larger unit cells can be supplied by IWP
and Neovius structures. Alabort et al verified the viability
of applying TPMS as metallic bones by 3D printing [178].
Ideal osseo-integration can be offered by TPMS structures. As
presented in figure 20(f), both cortical and trabecular bones
can bemimicked by TPMSwith suitable stiffness and strength.
Recently, TPMS structures have been applied as scaffolds
of different natural bones. Zhu et al utilized TPMS struc-
tures as meniscal implants [52]. Compared with the commer-
cial solid meniscal implants, higher magnitude compression
and shear stresses on the articular cartilage can be prevented.
Some semilunar characteristics can be retained by the TPMS
meniscal implants. Pare et al used TPMS calcium phosphate
implants for craniofacial bone repair [179]. The new bone
formation performances can be greatly improved by the TPMS
implants. In general, TPMS structures have been verified as an

ideal candidate for biological applications. Outstanding TPMS
scaffolds or implants with suitable geometries and perform-
ances can be generated to meet the demands of the actual
human biological environment.

5.4. Chemical applications

The interconnected architectures and high-volume specific
surface areas of TPMS are also advantages for other applic-
ations. For example, in the chemical domain, the efficiency
and quality of chemical reactions can be greatly improved if
higher chemical contact areas can be supplied. Hence, TPMS
structures have great potential for being applied as catalysts or
reactors. Some interesting attempts have been made in recent
research.

Electrical energy storage systems such as batteries are very
important in the current engineering domain. However, how
to improve the energy releasing and soring efficiency is still a
great challenge.Werner et al designed novel batteries based on
the porous TPMS structures [75]. As illustrated in figure 21(a),
anode and cathode were generated in different channels of
TPMS structures. Stable open circuit voltage, reversible dis-
charge voltage, and capacity can be obtained by the novel
TPMS batteries. More importantly, more internal space can
be saved by the TPMS. In order to generate the same capacity
by the three-layer battery with the same layer dimensions and
materials, 4700 times larger space will be taken up. Besides
batteries, hydrogen energy is also an important topic in the
current chemical and energy domain. Methanol steam reform-
ing is an effective way for hydrogen production. However,
the catalyst support has great effects on the catalytic reaction
rate and conversion rate of the micro-reforming reactors. Lei
et al adopted TPMS structures as the catalyst support [60] as
shown in figure 21(b). Compared with the commercial solu-
tions, the hydrogen production performances can be improved
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Figure 21. Chemical applications of TPMS structures. (a) TPMS batteries. Reproduced with permission from [75]. Copyright 2018, Royal
Society of Chemistry. (b) TPMS catalyst support. Reproduced with permission from [60]. Copyright 2019, Elsevier. (c) TPMS
microreactors. Reproduced with permission from [61]. Copyright 2021, American Chemical Society. (d) Solar vapor generation devices
based on TPMS. Reproduced with permission from [180]. Copyright 2020, American Chemical Society. (e) TPMS water absorb film.
Reproduced with permission from [72]. Copyright 2019, Royal Society of Chemistry.

by TPMS. In addition, due to the controllability of TPMS from
macro scale to micro scale, the flow field and the reaction
rate of methanol steam reforming reaction can be controlled.
Similarly, Baena-Moreno deigned TPMS microreactors for
CO2 methanation [61]. In order to illustrate the advantages
of TPMS, the performances were compared with the honey-
comb solution as presented in figure 21(c). Under the best
situation, 14% improvement can be acquired in CO2 conver-
sion, owing to the improvedmass and heat diffusion processes.
Sun et al constructed solar vapor generation devices based on
TPMS structures [180] as shown in figure 21(d). Compared
with other devices, outstanding evaporation performances can
be obtained under much lower photothermal component load-
ing. Interestingly, Kobayashi et almade use of TPMS as water
absorb films [72] as illustrated in figure 21(e). The smooth
surfaces and high-volume specific surface areas can be util-
ized. Similarly, TPMS structures are also widely applied as the
spacers in membrane distillation [181–187]. Note that, most of
the current utilized TPMS structures are uniform TPMS struc-
tures. In virtue of the design freedom supplied by the design
methods discussed in section 2, more interesting applications
and more ideal performances can be discussed in the future.

5.5. Acoustic and optical applications

The smooth surfaces and sufficient surface areas are utilized
in numerous applications in above discussion. Moreover, the
highly interconnected architecture is also a merit for wave
absorbing. After multiple reflections and refractions, the wave
energy can be dissipated as other forms of energy. Feng et al
utilized TPMS structures for microwave radiation absorption

[66] as presented in figure 22(a). The effective absorption
bandwidth and minimum reflection loss were 4.9 GHz and
−23.5 dB, respectively. Abueidda et al analyzed the acoustic
band gaps of TPMS structures [188] as shown in figure 22(b).
Due to the band gaps, the elastic and acoustic waves are forbid-
den to propagate along any directions. These structures with
complete band gaps are defined as phononic crystals. Accord-
ing to the experimental results, one wide complete band gap
can be found in P and I-WP structures. Interestingly, Neovius
structures own two complete band gaps, which are even wider
than I-WP structures. The width of band gaps can be fur-
ther adjusted by the porosity. Compared with band gaps of
other similar structures discussed by other work, wider band
gaps can be acquired by TPMS structures. How to find the
phononic crystals with complete phononic bandgaps is still a
challenge in current research. Hur et al invested the bandgaps
of 16 bicontinuous cubic network structures [64]. After experi-
mental tests, six structures including the TPMS structureswere
verified as ideal phononic crystals with complete bandgaps
as presented in figure 22(c). Furthermore, the I-WP struc-
ture with a bandgap width of 0.41 was the best choice among
these selected structures. Larger phononic bandgaps can even
be obtained by higher density contrast between the mater-
ial components of the structures. Electromagnetic radiation
with specific frequencies can be reflected by the photonic
crystals [67]. However, for photonic crystals with stable geo-
metries, the frequency of the electromagnetic radiation which
can be reflected is also unchangeable. Pouya et al designed
the photonic crystal based on the TPMS structures [67] as
shown in figure 22(d). More interestingly, the frequency can
be tuned by compression loads. Hence, the TPMS tunable
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Figure 22. Acoustic and optical applications of TPMS structures. (a) TPMS electromagnetic microwave absorber. Reproduced with
permission from [66]. Copyright 2021, Elsevier. (b) Acoustic band gaps of TPMS. Reproduced with permission from [188]. Copyright
2018, Elsevier Ltd. (c) TPMS with complete phononic bandgaps. Reproduced with permission from [64]. Copyright 2017, American
Chemical Society. (d) TPMS photonic crystal. Reproduced with permission from [67]. Copyright 2015, John Wiley and Sons. (e) TPMS
optical metamaterials. Reproduced with permission from [189]. Copyright 2018, the Authors.

photonic crystals can be utilized to meet the demands of com-
plex application environment. Dolan et al also adopted TPMS
to generate the optical metamaterials [189] as presented in
figure 22(e). Linear dichroism can be found in the G struc-
tures. According to these interesting works, TPMS structures
own great potential in photonic and phononic metamaterials.
Similar to the research status of other applications of TPMS,
the actual performances of photonic or phononic metamater-
ials designed by graded or heterogeneous TPMS need more
research attention in the future.

6. Conclusions and outlooks

In this review, the main design, manufacturing, and applic-
ation research of TPMS structures in recent years were sys-
tematically summarized. More specifically, the design meth-
ods of TPMS were defined as the multiscale design strategies
according to the actual complex requirements. According to
the geometry demands, the TPMS porous structures need
to be designed as similar to natural architecture as possible
for inheriting functional outstanding merits, including graded
porosity, heterogeneous features, multiscale pores, and com-
plex freeform external shapes. With regard to the perform-
ances, the multifunctional performances of TPMS can be con-
veniently controlled by the design freedom supplied by the
geometry design approaches. Hence, after geometry design
and performance control, ideal geometric models of TPMS
can be acquired. After that, precise manufacturing technolo-
gies are needed to make TPMS from CADmodels to the phys-
ical objects which can be used. Actually, the basic mathemat-
ical expressions and geometries of TPMS were studied for a
long time. However, due to the limits of conventional manu-
facturing methods, TPMS can hardly be fabricated by milling

or turning. The rapid development of additive manufacturing
promotes the prosperity of TPMS research and applications.
The 3D porous features can be simplified as the accumulat-
ing results of 2D sliced layers. In virtue of different material
and precision technologies, TPMS structures can be fabricated
with ideal accuracy in different scales. Eventually, the result-
ing TPMS structures can be successfully applied in different
domains. Due to the smooth surfaces and highly interconnec-
ted porous architectures, the actual application performances
can even be superior to conventional solutions. Though prom-
ising, there are still many challenges and interesting problems
which need more research attention.

At the geometric design stage, the design freedom of cur-
rent methods is still not enough for complex applications.
Numerous natural porous architectures cannot be accurately
reconstructed. Most of the current CAD algorithms are based
on Boolean operations. However, the calculation time and
space consumption are much higher than normal solid struc-
tures. Some calculation processes of complex structures may
be interrupted due to resource depletion. Moreover, the gener-
ation qualities of Boolean operations may be not acceptable.
Especially for complex TPMS porous structures, numerous
errors or cracks will appear after intersection operations. More
efficient and adaptive design strategies are needed to con-
struct ideal TPMS structures. Moreover, the design methods
of current porous structures including TPMS, lattice, foam,
and honeycomb are completely different. If a universal design
framework can be developed in the future, the advantages of
different topologies may be utilized together.

Although diverse geometric features can be generated
by CAD algorithms, most of current performance control
research is still based on uniform TPMS structures. Only
a small amount of mechanical research is based on graded
TPMS. Currently, too much research attention has been payed
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to the mechanical performances of TPMS. The compression
performances have been discussed with different manufac-
turing materials. More studies of the heat and mass transfer
performances of TPMS, especially heterogeneous TPMS and
multiscale TPMS are needed. More importantly, multifunc-
tional performances are urgently needed. How tomake a trade-
off among different requirements is a great challenge. Note
that, there are many kinds of TPMS units that can be selec-
ted for generating porous structures. A smart system is needed
to construct TPMS structures with suitable TPMS units and
optimal porosity distributions according to the required multi-
functional demands.

With regard to additive manufacturing technologies,
diverse fabrication principle and materials can be chosen for
different applications. However, the particularity and limita-
tion of TPMS structures are not comprehensively considered
in current research. Due to the sheet topology, there are many
thin and isolated areas in the sliced layers of sheet TPMS
structures. Although the paths of TPMS for additive manu-
facturing can be generated by the common methods, there is
still great potential for improvement in efficiency and qual-
ity. Actually, necessary support structures are still needed
for fabricating TPMS structures. Hence, some manufacturing
requirements or limitations can be regarded as restrictions
in optimization algorithms to obtain the optimal porosity for
both manufacturing and applications.

Owing to these outstanding merits, TPMS structures have
been successfully applied in different domains. Among these
applications, TPMS tissue engineering scaffolds or implants
are mostly discussed in recent research. All the mechanical,
mass transfer, and cell growth performances and advantages
can be verified by TPMS scaffolds. As discussed before, there
is still great potential to apply TPMS in other multidiscip-
linary areas. With help of the ideal geometry shapes, reli-
able performances, and precise manufacturing quality, TPMS
structures will play greater roles in future multidisciplinary
applications.
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