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Abstract
Randomized clinical trials, while often viewed as the highest evidentiary bar by which to judge the
quality of a medical intervention, are far from perfect. In silico imaging trials are computational
studies that seek to ascertain the performance of a medical device by collecting this information
entirely via computer simulations. The benefits of in silico trials for evaluating new technology
include significant resource and time savings, minimization of subject risk, the ability to study
devices that are not achievable in the physical world, allow for the rapid and effective investigation
of new technologies and ensure representation from all relevant subgroups. To conduct in silico
trials, digital representations of humans are needed. We review the latest developments in methods
and tools for obtaining digital humans for in silico imaging studies. First, we introduce terminology
and a classification of digital human models. Second, we survey available methodologies for
generating digital humans with healthy and diseased status and examine briefly the role of
augmentation methods. Finally, we discuss the trade-offs of four approaches for sampling digital
cohorts and the associated potential for study bias with selecting specific patient distributions.

1. Introduction

Two decades ago, in the epilogue of their seminal textbook on image science [1], Barrett and Myers pointed
out that in the future, sport games might be played with simulated athletes. The advancement of computer
graphics and simulation technologies sparked the notion that perhaps the excitement of a real-life sports
event could be conducted in the simulation space with digital models of athletes. Since then, continuous
advances in computer processing power and modeling techniques have taken place, driven primarily by
entertainment applications [2] and quickly becoming a significant component of research and development
efforts in a variety of industries3. Industries that have widely adopted computational modeling and in silico
methods throughout the product life-cycle include automotive [3] and manufacturing [4] among others [5].
Medicine lags considerably behind [6] due, in part, to model complexity, challenging validation, associated
potential risks for new devices and drugs, and lack of consensus and regulatory standards.

Randomized clinical trials, while often viewed as the highest evidentiary bar by which to judge the quality
of a medical intervention, are far from perfect. Common causes of failure include safety issues, difficulties
with patient recruitment, enrollment, and retention [7]. In addition, clinical trials can suffer from
under-representation of rare subpopulations [8]. These limitations represent a unique opportunity to
develop in silico trials that are completed as planned, safely, and that include digital cohorts with a
representative distribution of subject characteristics and numbers large enough for appropriate statistical

3 To date, Super Bowl games are played with physical-world athletes, in part due to the difficulty of conveying real-life personal struggle,
an essential component of the entertainment context for sport players and teams (see, for instance, here).
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power. As pointed out in [9], in silico data has the potential to address lack of data availability, sharing
mechanisms and privacy challenges associated with the use of medical information.

In silico imaging trials are computational studies that seek to ascertain the performance of a medical
device for the intended population, collecting this information entirely in the digital world via computer
simulations. The benefits of in silico imaging trials for evaluating new technology include significant resource
and time savings, minimization of subject risk, and ethical considerations [10, 11]. Moreover, in silico trials
can be used to study devices that do not yet exist or are not practically attainable in the (limited) physical
world, allow for the rapid and effective investigation of new technologies [11–13], and facilitate
representation from all relevant subpopulations. Each one of these benefits is an essential consideration
within the context of the regulatory evaluation of medical technology [11].

The realization that computational models of humans would take center stage in medical imaging system
assessment is not new. Full optimization of imaging systems for specific medical tasks requires objects
(physical or digital) that represent the variability seen in patients. For many decades, scientists have relied on
practical and simpler versions of patients [14]. However, recent advances in computer processing power and
simulation methods are now facilitating the development of more detailed and realistic patient models that
are based on digital stochastic descriptions of the model components. For instance, a recent report
demonstrated the feasibility of an in silico trial, the Virtual Imaging Clinical Trial for Regulatory Evaluation
(VICTRE), as an alternative approach to establish regulatory evidence in support of medical imaging
products [15].

There are numerous parallels between digital- and physical-world trials. Fundamentally, in silico trials
must include the same essential elements of well-designed physical-world clinical trials. Firstly, the
population of subjects for whom the new device or technology is intended must be defined. The study design
must contain clear rules for selection and rejection of subjects from a distribution of healthy and diseased
subjects. However, in silico trials are not subject to effects from covariates in patient selection. For instance, a
common problem in evaluating screening tests meant for asymptomatic subjects is that a portion of the
enrolled population might be symptomatic [16] with the potential for verification bias [17]. Secondly, when
there are two technologies that are being compared, i.e. a new, yet unproven technology and a comparator
technology currently in clinical use, both must be unambiguously defined. A good choice for comparator
technology should be associated with accurate representations of the device characteristics as supported by
validation studies [18]. Thirdly, the study requires a definition of the users of the device’s outcome
(i.e. images in the case of an imaging device trial). These first three components reflect the physical intended
use of the device under investigation, i.e. the intended populations of subjects, the intended device
comparison, and the intended image interpreters that will be using the device in the physical world. Finally,
whether physical or digital, the trial design must provide a definition of the primary outcome to be
evaluated, a protocol and statistical analysis associated with the trial, and an analysis of the risk and benefits
introduced by the device under investigation.

Both physical and in silico studies require enrollment of representative subjects. In this review, we survey
the latest developments in methods and tools for generating the cohorts of digital humans for imaging
studies that represent the variability of physical-world subject populations. We refer to the digital cohorts
consisting of digital humans (realizations of the digital human models) as ‘stochastic humans’. Assessment of
new technology and the regulatory evaluation of that technology requires establishing performance levels for
intended populations and, therefore, necessitates computational models that allow sampling of the
parameter space defining the subject population in the physical world. We propose to name these models
digital humans as opposed to digital replicas or twins to avoid confusion.

The review is organized as follows. First, we introduce terminology and representation models regarding
the different types of digital humans described throughout the article. Second, we survey available
methodologies for generating digital humans with healthy status and for generating diseased cases. Then, we
briefly discuss the role of augmentation methods and conclude with an analysis of sampling techniques that
may be used to generate the digital cohorts for evaluating the performance of imaging devices.

2. Terminology

A variety of terminologies are being used or proposed for describing digital representations of humans in
medicine and other fields. In the literature, some of these are often used without the benefit of a clear
definition and, in some instances, wrongly interchangeably.

We propose to use the term stochastic digital human to denote digital representations of humans (or
human body parts) generated from multiple random outputs by sampling known distributions for the
model characteristics matching the variability observed in human populations. In contrast, non-stochastic
representations are deterministic digital versions of a single physical exemplar (e.g. a model of a human body
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at a given time) or a group (or family) of physical exemplars which are differentiated by varying physical
parameters. Contrary to other terms and concepts currently being discussed including digital families,
avatars, chimeras, and digital twins, the concept of a stochastic digital human represents an approach for in
silico trials and regulatory evaluation that estimates the performance of an imaging device for a population of
subjects rather than for an individual patient, thus incorporating the variability observed in the population.

We propose to classify all digital humans as either individual or population models (see figure 1).
Individual models are necessarily image-based while population models can be derived either from images or
from knowledge of the fundamental characteristics that define the relevant features of a human. Note that we
will use the term digital human to refer to the models even if the represented object is a part of the body or
the whole body of a subject.

3. Representations

Physical objects (including humans) can be represented using continuous variables. We consider the models
of humans as continuous in space (r) and time (t) and described by a coefficient vector affecting a set of
model characteristics:

fm (r, t)≈
N∑

n=1

θnϕn (r, t) . (1)

Here, N is the dimension of the approximate finite-dimensional representation of the object, and the
subscriptm indicates the modeling approximation to differentiate from the actual object f(r, t).

The collection of expansion functions {ϕn(r, t)}Nn=1 is employed to form fm(r, t), and θn denotes the nth
component of the N-dimensional expansion coefficient vector θ. The quantity fm(r, t) constitutes a discrete
representation of a digital human that can be readily displayed on a computer or digitally processed. For the
case where the expansion functions are defined as indicator functions that describe non-overlapping
space-time voxels, θ can sometimes be interpreted as a digital image whose components θn represent the
integrated value of the object over the support of the voxel.

More generally, a digital human model can be established by integrating the continuous representation
fm(r, t) over a collection of N voxels as

fn =

ˆ
vn

fm (r, t) d
3r dt, n= 1, . . . ,N, (2)

where vn denotes the support of the nth spatial-temporal voxel and fn denotes the nth component of a
N-dimensional vector f that represents the digital human.

As discussed below, the choice of the expansion functions and associated expansion coefficients can be
specified in different ways, with the general goal of making fm(r, t) an accurate approximation of f(r, t). The
expansion functions can depict geometry (e.g. size, morphology), material properties (e.g. x-ray interaction
cross-sections, elasticity) or other relevant features (e.g. radioactivity, blood oxygenation levels). For
simplicity, we will consider that the stochastic human does not vary with time and proceed only with the
spatial dimension r. However, the concepts that follow can readily be generalized to model time-varying
descriptions [19].

In practice, the coefficient vector θ can be modeled as a random vector and the expansion functions
{ϕn(r)}Nn=1 as random processes. Methodologies for generating large cohorts of digital stochastic models of
humans for in silico imaging trials, including models for organs and tissues with appropriate variability, can
rely on either sampling θ, ϕn or both from appropriate distributions representing the intended population.
We can denote the cohort of digital stochastic humans as follows,

{fs}Ss=1 =
∑
n

θsnϕn (r) , (3)

where s denotes a particular state or random realization of a digital human in a cohort of size S.
When ϕn are known, analytically or numerically, the stochastic models are referred to as procedural. In

this case, the modeler is left with choosing the coefficient vector defining the object (θ). In cases for which
the defining characteristics are unknown, θn and ϕn can be estimated from imaging data.

In the following sections, we review available methods and tools for generating digital human models
and digital cohorts. We present a classification of available approaches in figure 1.
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Figure 1. Classification of methods to generate digital humans for in silico clinical trials.

4. Individual models

Individual models attempt to create a digital replica of a specific physical object. Individual models can be
categorized as personalized and family models. These models are not stochastic since they are meant to
represent individual subjects with as much detail and accuracy as achievable from the image data. In this
respect, the representation introduced in section 3 applies only with S= 1 resulting in a single coefficient
vector (θn) defining the individual.

The digital representation in these cases is typically a multidimensional voxelized array that can be
segmented into structures such as tissues and organs. Early attempts relied on geometrical volumes
represented by analytical expressions altered to generate a wide variety of sizes and shapes. In other words, ϕn

are described by quadrics and θn represent properties of the volumes defined by the surfaces (e.g. x-ray
attenuation and scattering properties). These computational models have proved useful in areas of quality
control of imaging systems [20, 21] and in radiation dosimetry [22]. Even with more sophisticated
geometrical structures [23–25] and more spatial detail, these approaches lack the ability to accurately
represent the statistical variability found in humans, organs and tissues. While these simpler models remain
practical and useful for some tasks, the lack of realism and variability makes them unsuitable for generating
digital humans for in silico imaging trials.

4.1. Personalized models or digital twins
Personalized models aim to capture patient-specific information in a digital representation [26]. Medical
digital replicas of human subjects are in silico representations of an individual in terms of anatomy and
physiology. Sometimes referred to as digital twins [27], these replicas are designed to simulate parts or the
whole body of a subject for prognostic or predictive assessments.

A critical element of the concept of digital twin is the inclusion of detail found in the individual patient.
For example, Jirsa et al [28] describe a method to obtain digital virtual brains by mapping the brain network
of a subject with epilepsy, using data derived from magnetic resonance imaging (MRI) images of the subject.
The digital twin model can be used clinically to estimate the extent, localization and organization of the
epileptogenic regions related to seizure. The authors postulate that virtual brains could one day be used as
part of the clinical decision-making to improve localization precision for seizure activity and for personalized
surgical planning. However, the authors claim that low spatial and temporal resolution and lack of validation
currently limit the use of the models in clinical settings.

These models, including digital twins, can be continuously updated from multimodal medical data if the
characteristics change over time4. Digital twins are of interest in the context of evaluating and selecting
optimal medical treatments [27] or imaging procedures [29] within clinical practice, and can also be
incorporated into other in silico applications [30]. For instance, Wang et al [31] suggested three applications
in the areas of medical imaging: optimal selection of scanning techniques (so called ‘virtual comparative

4 A related concept is an avatar, an artistic and sometimes aspirational digital representation of the human in the digital world for inter-
activity purposes.

4



Prog. Biomed. Eng. 5 (2023) 042002 A Badano et al

scanning’), data sharing from in silico scanning of the digital replica to the open source community, and
improvement of the regulatory process of image reconstruction algorithms. Patient image datasets can also
be used to generate models of specific tissues and organs. For instance, the Visible Human project [32] was
first made available in 1994 by the National Library of Medicine (NIH) to facilitate anatomy visualization
applications and includes a detailed data set of cross-sectional photographs of the human body.

4.2. Family models
Personalized models of a small number of subjects can be assembled into families to generate a collection of a
small number of digital humans spanning a common set of parameters, such as subjects’ body size and age.
These models are based on image acquisitions using different modalities including computed tomography
(CT), MRI and chest radiographs (CXRs).

An example of a family model is the Virtual Family [33], released by FDA5 in 2012. The Virtual Family
consists of a set of detailed, anatomically correct whole-body models of an adult male, an adult female, and
two children based on high-resolution MRI data of healthy volunteers. Organs and tissues are represented
using computer-aided design techniques where each component is a high-resolution, non self-intersecting
mesh. In this case, the models are used for electromagnetic, thermal and acoustic simulations in the safety
assessment of active and passive medical implants [34]. Safety evaluations do not require full sampling of the
intended population and can be performed with a small number of exemplars, provided the exemplars
adequately cover the needed parameter space.

Similar approaches are utilized in efforts to provide models of patient anatomy using patient images as
the basis for development of cohorts including using MRI and CT images for modeling lungs [35] and
torso [14]. More recently, image-derived digital and physical models of the breast have been proposed by
Kiarashi et al [36] and Bliznakova et al [37]. In this approach, a voxelized breast model is derived from
patient images through image segmentation for determining the composition of each voxel [38–44].
Patient-derived models are limited to the imaging characteristics of the acquisition system and are also
affected by the imperfections of the segmentation methods. The resulting models can also be augmented
with physiological features to facilitate imaging studies involving contrast agents [45].

5. Populationmodels

Testing new imaging devices, however, requires the availability of large digital cohorts of stochastic digital
humans that can be assembled to properly power a study not only on the aggregate (i.e. for the entire
population), but also to analyze for specific subgroups with notable characteristics, including
under-represented populations. In this section, we focus our attention on models suited for the generation of
large cohorts of digital humans to be enrolled within in silico imaging trials.

5.1. Image-based models
Image-based models estimate and sample model components from relevant characteristics within the
acquired medical images. Image-based models estimate model components ϕn and θn in equation (3) from
within the acquired medical images. Whether parametric or generative, all image-based models are limited
by the quality of the source data (i.e. medical images), including noise, artifacts, and contrast constraints,
and do not provide an unequivocal mapping to the underlying tissues. In practice, the use of image-based
models should also acknowledge the limitation arising from the existence of a null space of the imaging
system [46]. The null space, which typically arises from the mapping of a continuous object to discrete data
with an imperfect image acquisition system, results in an unavoidable loss of information regarding the
object. Given that the imaging system operator is only partially known for most imaging systems and cannot
represent information obscured by the null space of the imaging transformation, image-based models are
limited even when imaging system models include noise measurement.

5.1.1. Image-based parametric models
In image-based parametric models, the generation of cohorts is achieved by creating models based on
available sets of patient imaging data and model modification techniques including parametric deformation,
morphing, and registration. Parametric models (also known as stylized phantoms [47]) capture a population
cohort by a set of mathematical equations representing a series of surfaces (e.g. splines) defining organs that
are later voxelized into a volumetric model. The popular 4D extended cardiac-torso (XCAT) phantom [48] is

5 www.fda.gov/about-fda/cdrh-offices/virtual-family.
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an example of an image-based parametric model, and a survey of other representations can be found in
Kainz et al [49].

One limitation of this approach is that model development is typically performed on a small number of
available patient images. For instance, Erickson et al [39] presented a methodology to create a database of
anatomically variable 3D digital breast models from dedicated breast CT images using a tissue classification
and segmentation algorithm and a fuzzy C-means segmentation algorithm. The study provided a population
of 224 breast phantoms incorporating a range of breast types, volumes, densities, and parenchymal patterns.
However, using hundreds of images might be insufficient to properly characterize a population for
statistically powered in silico imaging trials across patient variability.

Some recently released image datasets include a larger number of cases. For example, the Medical
Information Mart for Intensive Care CXR dataset [50] contains 227 835 imaging studies from 65 379 patients
presenting to the Beth Israel Deaconess Medical Center Emergency Department between 2011 and 2016.
Similarly, the Medical Imaging and Data Resource Center effort [51] is undertaking a large, multi-year,
systematic effort to collect high-quality COVID data, and over 100 000 imaging studies have been made
public after 2 years of work and with significant funding from the NIH.

Cohorts containing multiple realizations of digital humans can be obtained by extending image-derived
models to create populations in a statistical manner. For instance, Sturgeon et al [52] developed synthetic
breast models using principal component analysis (PCA) to describe a small training set of patient images. In
this approach, each existing patient breast CT volume was compactly represented by the mean image plus a
weighted sum of eigenbreasts. The distribution of weights was sampled to create synthesized breast
phantoms that matched fibroglandular density and noise power law exponent distributions in real images.
Hence, the distribution of the synthetic model is determined by that of the training data, and, therefore,
might suffer from a lack of appropriate representations of cases at the tails of the distribution (e.g. very large
or very small, very dense or very glandular breasts). A related concept from the computer vision and graphics
community is the statistical human body model, in which a vertex-based model of the body surface is
learned, typically via PCA, from subjects’ input. The techniques rely on linear blend skinning to constrain
the surface vertex deformation with respect to a template bone skeleton [53]. Created for non-medical
purposes, these parametric models are typically learned from training examples of lower resolution than
what is common in medical imaging.

One alternative approach is to add deformation morphing using an anatomic template [26]. Lee et al
[47] introduce a hybrid, non-uniform rational B-spline surface based phantom of an infant by combining
the expressiveness of a voxel phantom with the flexibility of geometric manipulation and organ positioning
in a parametric phantom. Another example is the XCATWarp [54], where artificial intelligence (AI)-assisted
unsupervised registration is used to warp XCAT to patient CT images to capture a more broad set of
variations, compared to the existing organ and model scaling offered by XCAT. These methods are suitable
for investigating digital-twin approaches where individual models reflecting the characteristics of a single
individual are needed.

Limitations of image-based parametric models. Patient data sets collected from well-defined areas are likely
still insufficient to capture the total variability in patient images and the large number of subgroups one may
find interesting to study6. This limitation precludes the use of image-based parametric models for accurately
creating digital cohorts for large scale in silico trials.

5.1.2. Image-based generative models
Image-based generative models attempt to synthesize a population of stochastic digital humans from
information contained in medical images. Ideally this population captures the variability in the anatomy and
tissue properties within a specified cohort of to-be-imaged subjects. Consider a collection of N-dimensional
digital humans {fs}Ss=1 that represents the cohort of interest as described by equation (3). Here, the index s
specifies a digital human within the cohort and the variable S denotes the size of the cohort. Although objects
are inherently infinite dimensional, we assume that each realization of the stochastic human can be
accurately described by a N-dimensional representation as specified in equation (1). Thus, each object is
represented by a N-dimensional vector f s that resides in a Euclidean vector space.

This setting corresponds to a practical situation in which an in silico study employs a fully discrete
representation of an imaging system in which a finite-dimensional approximation of an object is mapped to
discrete image data. As mentioned in section 3, each digital human f s can be interpreted as a realization of a
random vector f that is characterized by an unknown probability density function pr(f). The ability to sample

6 ‘I cannot breed them. So help me, I have tried. We need more . . . than can ever be assembled. Millions, so we can be trillions more,’
Niander Wallace in Blade Runner 2049 (see www.imdb.com/title/tt1856101/characters/nm0001467).
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from pr(f) to generate large ensembles of objects for use in in silico imaging trials is, at least conceptually, the
ultimate objective of a stochastic digital human model. Emerging generative methods that utilize neural
networks are being actively developed for this purpose [55]. We refer to these methods as generative models.

Types of image-based generative models. Instead of explicitly modeling pr(f), which is difficult due to the high
dimensionality of f, generative models typically seek to define a stochastic process for drawing samples. In
other words, they are implicit. Specifically, they map an analytically tractable, low-dimensional distribution
pr(z) to the desired samples for the high-dimensional distribution pr(f). Various strategies to learn the
mappings f 7→ z and z 7→ f have been proposed. For example, a variational autoencoder (VAE)model [56]
constrains pr(z) to be an independent and identically distributed standard normal distribution so that
samples of the random vector z can be readily generated, and applies a reconstruction loss term to the
output. To improve output realism, a generative adversarial network (GAN)model [57] employs an
additional discriminator network, trained simultaneously with the generator, to discriminate between the
real and generated examples. The GAN training process is adversarial and approximately solves a min–max
optimization problem [57]. GAN models have been extremely popular for various medical image generation
tasks [58]. A flow-based model [59] learns pr(f) by constructing a sequence of invertible transformations, and
therefore, calculates the exact log likelihood of the observed sample. This class of models addresses the
instabilities of the training process in GANs and VAEs, but typically requires a more specialized architecture,
larger number of parameters and higher computational costs. Finally, a diffusion model [60, 61] constructs a
Markov chain, where noise is gradually added during the forward process, and then removed during the
backward process, from a sample. Compared to other models, in diffusion models, z has a higher
dimensionality. They can significantly outperform GANs in output image quality [62]. To date, almost all
studies of deep generative models have focused on synthesizing images rather than object representations.
These models have been applied to a variety of medical imaging applications [58], but focused on
synthesizing images, rather than object representations.

Limitations of image-based generative models. There are several significant challenges to employing deep
generative models to establish stochastic human models. A fundamental and potentially limiting issue is the
fact that a collection of objects {fs}Ss=1 describing the population is generally not available. Medical images
are degraded by the presence of measurement noise and/or reconstruction artifacts which are a limitation of
the imaging system and not representative of the true underlying objects. As such, conventional generative
models that are directly trained on degraded images will not learn how to sample from the true distribution
of objects. In essence, there is a ‘chicken and egg problem’ when seeking to establish stochastic human
models via deep generative models. There are two possible ways to circumvent this limitation. First, one can
utilize high-quality medical images as surrogates of the objects. For example, in certain tomographic imaging
modalities and under specific conditions, images of object properties can be reconstructed and accurately
approximate the true object properties. In this case, generative models are trained in the conventional
manner, with images representing the training data. If these images are representative of the desired subject
cohort, the generative model has the opportunity to accurately capture object variability. Second, one can
modify the generative model training process to incorporate the image degradation process in training. This
approach, referred to as an ambient GAN (AmGAN) [63], utilizes a generator network that is augmented
with a measurement operator. Objects produced by the generator are mapped to degraded image data, which
are then compared with experimental images by the discriminator network. This permits establishment of an
implicit generative model that describes object randomness to be learned from indirect and noisy
measurements of the objects themselves. In a preliminary study, AmGAN was explored for establishing
stochastic object models from imaging measurements for use in optimizing imaging systems [63].

Finally, image-based generative models can misrepresent details from the object space. By definition,
stochastic digital human models should be independent of the imaging system, measurement noise and any
reconstruction method employed in the imaging process. In other words, they should provide an in silico
representation of the ensemble of subjects to-be-imaged and not estimates of them that would be indirectly
measured or computed by imaging systems. While promising, the use of generative models for in silico
clinical trials is nascent and there remain important topics for future investigation. The objective assessment
of these technologies is largely lacking, and there is no consensus regarding what statistical information can
be reliably learned. Additionally, current models have largely been applied on 2D images and their extension
to three-dimensions is an ongoing topic of research. Finally, as with any data-driven method for establishing
stochastic human models, the presence of an imaging system null space will fundamentally limit the ability of
GANs to describe certain components of the to-be-imaged objects. The extent to which the null space can be
mitigated also remains a topic of ongoing research [63].
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Figure 2. 3D rendering of one realization of Graff ’s surface breast models [64].

5.2. Knowledge-based models
Knowledge-based (also known as procedural) models are constructed by sampling a set of ϕn and θn in
equation (3) from distributions representing the relevant characteristics of the models. The characteristics of
the distributions are often derived from physical or biological measurements. Procedural models allow for an
unlimited number of random realizations of the object, leading to the possibility of creating large cohorts of
digital humans including the representation of rare cases, and at varying spatial resolution which can
properly account for small structures that might be relevant for the specific imaging task being studied.
However, they are usually computationally intensive and require a large number of parameters to be defined
and estimated based on prior knowledge. Their accuracy and realism depend on the parameter combinations
and they can sometimes generate completely unrealistic outputs.

Knowledge-based, procedural models are common in modeling breast anatomy for imaging studies.
Graff [64] proposed a detailed model that begins with defining an outside surface using a quadratic
hemisphere shell with a skin layer and nipple area overlaid. The shape of the shell is then adjusted for the
overall breast volume and surface curvature. Using a Voronoi segmentation approach, the interior is
randomly divided into regions of fat or glandular components, with each glandular component containing a
ductal network with terminal duct lobular units. The volume is then filled with Cooper’s ligaments, chest
muscle, and blood vessels. For the VICTRE trial [15], the breast model was sampled with a 50µm voxel size.
The implementation is initiated with a set of random seeds and creates random voxelized breast anatomy
objects segmented into nine different tissue types. Several different modeling techniques are employed
including a non-isotropic Voronoi segmentation, recursive tree branching algorithms to generate a ductal
tree and vascular network, and Perlin-noise perturbed random spheroids to create fat lobules.

S(θs,ϕs) =


(a1b cosϵ1 θs cosϵ2 ϕs,a2l cosϵ1 θs sin

ϵ2 ϕs,a3 sin
ϵ1 θs) , 0⩽ θs < π/2,π/2⩽ ϕs < π

(a1t cosϵ1 θs cosϵ2 ϕs,a2l cosϵ1 θs sin
ϵ2 ϕs,a3 sin

ϵ1 θs) , 0⩽ θs < π/2,0⩽ ϕs < π/2

(a1t cosϵ1 θs cosϵ2 ϕs,a2r cosϵ1 θs sin
ϵ2 ϕs,a3 sin

ϵ1 θs) , 0⩽ θs < π/2,−π/2⩽ ϕs < 0

(a1b cosϵ1 θs cosϵ2 ϕs,a2r cosϵ1 θs sin
ϵ2 ϕs,a3 sin

ϵ1 θs) , 0⩽ θs < π/2,−π ⩽ ϕs <−π/2.

(4)

In a knowledge-based digital human model such as the one introduced by Graff [64, 65], components of
the model are described by parameterized surface expressions. For instance, the breast surface is modeled as
superquadric surfaces parameterized via polar angles ϕs and θs as shown in equation (4). Parameter set a
refers to the volume of the breast for bottom, top, right and left hemispheres and length of the breast, while ϵ
adjusts the shape. An example of one random realization for the breast surface obtained from Graff ’s model
is shown in figure 2. In this case, the model is constructed by randomly sampling a set of parameters a and ϵ
(equivalent to the basis functions in equation (3)) to obtain a distribution of shapes with tunable variability.

A similar approach by Bliznakova et al [37] describes a 3D breast software model for x-ray breast imaging
simulations based on a breast external shape, ductal lobular system, Cooper’s ligaments and pectoralis
muscle. In this approach, a mammographic background texture is added to the tissue regions. Blood vessels,
nerves and lymphatics were not modeled explicitly. A similar, more simplistic approach, was developed by
Bakic et al [66] based on two ellipsoidal regions of large scale tissue elements: predominantly adipose tissue
and predominantly fibro-glandular tissue. Internal tissue structures within these regions are approximated
by a distribution of elements including shells, blobs, and a ductal tree. Similar approaches have been reported
for full-body models [47].
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6. Modeling disease

Disease states can be incorporated into digital cohorts using image-based methods or object-space models of
the condition. The analogy between digital human models and disease models can be established if we
consider lesions as continuous variables in space (r) and time (t), described by a coefficient vector affecting a
set of lesion model characteristics. For simplicity, we will consider the disease independent (of the underlying
anatomy where the disease is located) and additive. This assumption allows us to represent the disease cases
as a sum of the stochastic human model and the disease component, an addition that is typically performed
in the voxelized object model or directly within the model images. We recognize this approach is a known
simplification, as disease processes often have significant impact on underlying tissues.

Analogously to the description provided by equation (3), we can generate a set of disease models {ds}
defined by:

{ds}Ss=1 =
∑
n

λsnψn (r, t) , (5)

where λsn is a disease characteristics coefficient vector described by the function ψn over N parameters.
Characteristics that define lesions can include geometric functions (e.g. size, morphology), material
properties (e.g. x-ray interaction cross-sections, elasticity) or other relevant features (e.g. radioactivity, blood
oxygenation levels).

Methodologies for generating and incorporating disease into cohorts of digital stochastic models rely on
sampling λn and ψn from appropriate distributions representing the intended population. In some cases,
disease models are specific to a given anatomical location or physiology corresponding to a digital human
exemplar. In other cases, disease models are independent of the digital healthy human and are simply added
or inserted multiple times into models of healthy anatomy. In both cases, diseased subjects are denoted by a
cohort of digital stochastic humans with added disease components:

{fs}Ss=1 =
∑
n

θsnϕn (r)+
∑
n

λsnψn (r) , (6)

where {fs}Ss=1 is a cohort of diseased digital humans (for simplicity, and similarly as in the previous section,
we choose to omit the time dimension). Similarly to normal models, when ψn are unknown, models of
disease can be obtained relying on imaging. Alternatively, when ψn are known, analytically or numerically,
the stochastic disease models are referred to as knowledge-based (also known as procedural).

6.1. Image-based models of disease
Similar to image-based models of the human body, image-based models of disease rely on imaging data for
extracting lesion information. Various techniques for capturing disease characteristics, particularly for breast
lesions, have recently been explored [67, 68]. Image-based neural network models for disease modeling have
also been explored. For instance, Kadia et al [69] proposed a method to generate synthetic, infection-like
patterns in the lung to create large collections of 2D and 3D training examples for deep segmentation
models. While image-based models contain features from actual patient data and thus may look more
realistic at first glance, they suffer from limited resolution of the tumor model, largely determined by the
imaging acquisition characteristics and limited number of available lesion morphologies, shapes, and sizes.
In addition, image-based methods require an institutional review board approval for obtaining and utilizing
the diseased case data for research and development, which could delay or disadvantage some analysis efforts.

6.2. Knowledge-based models of disease
Knowledge-based models of disease are constructed by sampling a set of known (or assumed known) ψn and
λn in equation (5) from distributions representing the relevant characteristics of the disease, where
distributions are often derived from physical or biological measurements. In contrast to image-based models,
knowledge-based models enable the generation of unlimited numbers of lesion shapes with variable
resolution. Examples of knowledge-based models include de Sisternes [70] spiculated breast cancer mass
model and Sengupta [71] growing breast mass models. In [71], a breast lesion growth method based on
biological and physiological phenomena accounting for the stiffness of surrounding anatomical structures
was introduced. Breast ligaments were considered as rigid structures with elastic moduli in the range of
8× 104–4× 105 kPa, while fat (elastic modulus varying from 0.5 to 25 kPa) and glandular tissues (elastic
modulus varying from 7.5 to 66 kPa) constituting the more elastic regions of the breast. In this approach,
tumor cells are less likely to grow through stiffer structures and instead, preferentially proliferate through the
more elastic regions of the breast. Depending on the breast local anatomical structures, a range of unique
lesion morphologies can be realized, allowing lesions to blend naturally into the anatomical regions.
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A common simplifying assumption is to define the disease model independent from other human model
components. For example, in VICTRE [15] and in Sengupta et al [72], breast cancer mass lesions are added
to the normal breast models by replacing voxels in the breast with voxels of the lesion model, without
modification to adjacent voxels. This approach, while practical, does not account for the significant effect of
the growing tumors on its surrounding tissues, typically visible in x-ray images as architectural distortions
suggestive of abnormalities. To consider these effects, equation (6) needs to be modified to account for the
interaction between normal and disease models.

7. Role of augmentationmethods

Augmentation methods start with an already-defined object, image or a set of defined objects, and generate
new examples based on properties of inputs, as well as pre-defined or data-driven transformations (in
contrast, digital human models start with only an object description, such as that given in equation (1)).
GAN-based models (see section 5.1.2) are similar to augmentation methods in that they employ complex
transformations derived with the help of training data sets. Augmentation methods typically employ
analytically-defined or stochastic operators that do not require the use of neural networks, and can be
applied both in the object domain and in the acquired image domain. Techniques in the latter group generate
examples that could be obtained through an imaging system applied to an object with an accompanying
degradation (e.g. smoothing, noise, reconstruction artifacts).

Geometric transformations, intensity operations, and spatial filtering are among the most basic types of
augmentation methods. Geometric transformations redefine the spatial relationships among voxels or
geometrical locations in an object, and include affine (scaling, rotation, translation, reflection and shearing),
as well as non-affine transformations, such as non-linear warping and morphing [73]. Intensity operations
modify intensity values in a grayscale image or channel values (e.g. RGB or CMYK) in a color image.
Examples include operations such as a family of gamma corrections, linear contrast adjustments, and
remapping voxel values using a pre-defined or pseudo-random remapping curve [74, 75]. Spatial filtering
(using a filter mask) is another possibility for generating a new image or object based on an existing one.
Spatial filtering can be linear (in which case it can be implemented by a convolution operation) or non-linear
(e.g. median filtering), and can be implemented to smooth or sharpen to emphasize certain features. Finally,
all three types of augmentations can be combined using a continuous mapping from the parameter space of
transformations to the image or object space [76].

Noise injection is an image augmentation method that enhances robustness of machine learning models
and belongs to the family of domain randomization methods [77]. Although noise injection after data
acquisition does not generate a new member of a patient population, it can generate a different
representation of an object in the image domain, and can be useful for augmenting patient cohorts obtained
with in silicomodeling. Some earlier and non-medical applications of noise injection in machine learning
sought to augment the image data sets without regard to the physics of image acquisition [78, 79]. Other
works used physics-based techniques for noise modeling and addition, improving realism of the noise
appearance in the augmented images [80, 81]. The main benefit of noise injection in the image domain for in
silico trials is that it may allow for the rapid generation of different representations of the same object at
different noise levels, leading to comparisons that may require less computational power compared to a full
implementation of image acquisition physics applied to a digital stochastic object model. Addition of texture
to a model in the object domain has similarities to noise injection in the image domain in that both
techniques aim at producing noise-like properties (e.g. using a noise power spectrum in modeling), but are
different in that addition of texture in the object domain does not attempt to model the noise from data
acquisition [82].

Combination of objects or images is another popular augmentation technique. In the object domain,
combination of an object model for a normal (non-diseased) patient with a lesion model (as described in
section 6) can be thought of as an example of this type of augmentation. Generating new members of a
patient population based on an eigenspace analysis of existing patient objects, as was done in [52] and
described in section 5.1.1 is another example of augmentation in the object domain. In the image domain,
researchers investigated tools for the extraction of image parts from one clinical image and then their
insertion into a new location on the same or different image. Pezeshk et al [83] used an image blending
technique based on Poisson image editing to insert pulmonary nodules extracted from one chest CT exam
into another. Augmenting a training data set for a machine learning model using this technique can improve
the model performance on independent, real test datasets [84]. Likewise, Ghanian et al [85] used a similar
technique to insert microcalcification clusters extracted from one mammogram into another mammogram,
and showed that experienced observers cannot reliably distinguish between computationally inserted and
native clusters. Besides the ability to convince experts, desirable properties for such combination techniques
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include acceptable noise properties in the combined image, plausible lesion-background combinations (that
might require the intervention of an operator during the augmentation process), and a sufficient range of
variation in the combined images that can be generated, which are often difficult to satisfy simultaneously.

The main advantage of data augmentation methods is their practicality. For example, existing images or
models both for normal and diseased patients can be manipulated (with relative ease) with geometric
transformations leading to expanded patient representations. When implemented in the image domain,
augmentation methods are fast, bypassing the stage where a model for the imaging system is applied to the
object to yield an image. However, important shortcomings accompany these advantages. Unless deliberate
attention is paid, augmentation methods may yield objects or images that are biologically or physically
implausible. An extreme example may be an intensity transformation that results in bones with lower
Hounsfield units than soft tissue. Although this can be avoided easily by using an intensity transformation
that is monotonically increasing, most augmentation methods and transformations need careful planning to
avoid such inconsistencies, and it may not be possible to avoid all inconsistencies. The consequences of such
implausible images or objects on the results of an in silico imaging trial should be carefully considered. In
addition, many augmentation techniques do not result in an independent, new representation from the
population, but rather in representations that are highly dependent on the original objects or images used as
inputs to the augmentation method. For example, lesion insertion methods described in the previous
paragraph do not increase the number of lesions in the augmented data set, but only the lesion-background
combinations that are generated. Again, the consequences of this limitation in the range of variation of
generated images should be an important consideration in an in silico imaging trial that uses augmentation.

8. Considerations for sampling digital cohorts

In silico studies require careful study planning and good clinical trial design. Even if and when methodologies
for developing digital stochastic models of humans for imaging studies become widely available, enrolling
digital cohorts needs an understanding of the trade-offs and potential for bias associated with selecting a
specific distribution of study subjects. At the start of the design of an in silico imaging trial is the challenging
task of scoping the population of the digital humans to be included in the study. For instance, a number of
previous computational studies in breast imaging using procedural models used a uniform sampling with a
desired average of 50% adipose and 50% fibroglandular voxels [86] with an uncompressed breast size of
14 cm. Another example of enrollment strategy can be found in the OpenVCT platform, where a range of
size and glandularity is specified and then uniformly and randomly sampled [87]. A more recent in silico
imaging study used sampling from a multi-class distribution identifying four different breast densities
resulting in the characteristics of the intended population [15].

The importance of sampling strategy for digital cohorts was highlighted by Romero et al [88]. Romero
described a study comparing bootstrapping, GAN and Gaussian sampling methods for the generation of
digital cohorts of aortic aneurysm geometry. The sampling based on a GAN approach achieved the highest
efficiency (i.e. ratio of generated cases deemed as acceptable and belonging to the target population), but was
sensitive to sample size and susceptible to losing statistical properties of the sample. On the other hand,
sampling based on bootstrapping and Gaussian distribution sampling were less efficient, but better captured
statistical properties, with Gaussian distribution more suited for sampling underrepresented cases
(i.e. distribution tails). Their study emphasized the need to capture the variability in the data to a degree that
depends on the goals of the in silico study. In particular, it is important to determine if the goal of the study is
to replicate the variability seen in a clinical trial population or, rather, to investigate the performance of a
device across all population subgroups.

Through in silico enrollment, digital cohorts {fs}Ss=1 are generated. We denote the distribution of the
population of digital humans as fd, where d represents the digital world, and the distribution of subjects in
the intended population as f i. In this context, the goal of the in silico enrollment is to minimize the difference
∆f= |fd − fi| between the digital (d) and physical-world intended distributions, where |.| denotes a statistical
distance measure. Clinical trial enrollment programs in the physical world require strategies to ensure a
reasonable∆f given available sampling resources. The goal of in silico enrollment is to capture the intended
distribution to a greater extent than possible in the corresponding clinical trial patient enrollment.

Analyzing∆f corresponding to an in silico enrollment strategy may be needed to understand how the
difference across study subject characteristics could affect the outcome of the trial. Here, we discuss a
simplified test case scenario (see figure 3) that compares different enrollment strategies for an in silico trial
comparing digital mammography and digital breast tomosynthesis (DBT) derived from the VICTRE [15]
project. In this section, we utilize metrics and analysis analogous to those used in the VICTRE study. Here,
we assume the populations (digital and physical) consist of normal and diseased subjects with a prevalence of
0.5. These two classes of patients are therefore sampled with equal probability. We calculate the difference of
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Figure 3. Effect of sampling strategies on performance assessment. Top: sample mammographic images from the four different
distributions considered in this work, from top to bottom: uniform, matched, simpler, and narrow. Bottom: sampling is from a
bimodal distribution of subjects (seen in 3D insert in the second panel from the left) described by two random parameters: (from
left to right) uniform, matched, simpler, and narrow. Only 20 samples are shown here for ease of visualization. The gray shading
depicts the distribution from which samples are taken in each of the four cases. The contour lines indicate 0.1, 0.01, and 0.001
levels with respect to the maximum in the distributions. Dots represent data points illustrating the coordinates of sample cases.
AM, AT, and∆A refer to the lesion detection average AUC for mammography, average AUC for digital breast tomosynthesis, and
the average AUC difference, respectively.

performance (measured using the area under the receiver operating characteristic curve, or AUC, in the task
of differentiating between normal and disease subjects) between mammography and DBT. We consider the
following four sampling approaches. In the first approach (uniform), f i is unknown and subjects are sampled
uniformly within a range of interest, from all possible combinations of the input parameters that define f. In
the second approach (matched), f i is known and subjects are sampled from the true underlying distribution.
In the third approach (simpler), f i is unknown, but can be approximated by another, simpler distribution
from which samples are obtained. Finally, in the fourth approach (narrow), f i is known to be a narrow,
well-defined subset of the general population of subjects of particular interest (e.g. rare diseases or very obese
subjects).

For this simplified example, let f i be a bimodal distribution defined by two parameters (e.g. breast size
and glandularity). Using equation (3), we can express the model through two expansion functions ϕ1,2, each
associated with one of the two random variables affected by a random parameter set given by θ1,2. As seen in
figure 3, one of the modes of the distribution has twice the amplitude and half the variance of the other. The
four density plots illustrate a top view of the distribution contour plot with the individual samples drawn
using the four different sampling strategies. The results demonstrate that the choice of sampling strategy can
have a significant effect on the difference in AUC, which for this example case, ranges from a difference of
0.01 (almost zero) to 0.11 in terms of device performance.

A graphical representation of the populations obtained for each sampling approach is depicted in
figure 3) where the model variability from each sampling approach are observed. The first row shows
samples from the uniform approach with variability across size and density. The second row shows the
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matched approach with samples that are drawn primarily from the two components of the bimodal
distribution f i. The third row depicts more gradual variability as the sampling draws examples from wider
distributions around the peaks, while the fourth row clearly depicts samples from a narrow distribution with
well-defined size and density. It is notable that a relatively small change in the population of models obtained
from using different sampling strategies yields measurable and significant change in the figure-of-merit
metric used to compare imaging technologies.

The effect of patient distributions on the results of a trial has been well documented [89, 90]. Depending
on the objective of the trial or the claims of the device, the sampling strategy needs to be considered. Full
statistical representation of all possible cases (or completeness) of the population participating in a clinical
trial is an onerous target. However, digital human cohorts built stochastically from in silicomodels offer the
potential to reduce bias [91], either by complementing the patient population in a clinical trial [92] or by
providing a diverse all-in-silico population [15, 93]. The test case described in this section is an example of
how validated and detailed computational tools can be leveraged to simulate and analyze rare cases or
underrepresented populations. Specifically, we show that by independently sampling breast density and
breast size one can create cases that would fall far from the average, rendering them hard to obtain in a
real-world clinical trial.

9. Summary and conclusions

In silico trials are an emerging area of regulatory research that offer the ability to capture highly diverse
patient distributions at a significant time and cost savings, compared to traditional physical clinical trials. To
conduct in silico trials, realistic digital representations of humans are needed. In this paper, we reviewed and
discussed existing techniques for generating digital humans, including disease models, for in silico imaging
trials. Digital humans can be created using image-based or knowledge-based techniques. In summary, we
favor techniques with object-based representations (rather than images of objects) in order to decouple the
characteristics of the image acquisition system from the characteristics of the object (true representation of
the physical-world human). In generating digital humans for in silico trials, one should consider the quality
and quantity of the source data or knowledge used, and whether the models represent a single patient, a
small cohort, or a sizable population with realistic patient variability.

It remains a crucial next step to evaluate the quality of the digital human models and the images that can
be generated with them. In particular, it is essential to carefully identify the patient distribution that the
particular digital human model can and cannot capture, in order to prevent misuse and ensure patient safety.
We need to study to what extent model-derived data contributes to our understanding of performance levels
for populations with rare diseases or for populations underrepresented in traditional clinical trials. Future
work should examine the ethical and safety considerations of relying on digital humans for clinical trials.
Overall, the use of in silico imaging trials and in silico trials in medicine is a rapidly developing field and has
the potential to address many of the emerging challenges in the regulatory evaluation of medical devices.
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