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Abstract

We present a theoretical framework for nonlinear optics of graphene and other 2D materials in layered
structures. We derive a key equation to find the effective electric field and the sheet current density in
the 2D material for given incident light beams. Our approach takes into account the effect of the
surrounding environment and characterizes its contribution as a structure factor. We apply our
approach to two experimental setups, and discuss the structure factors for several nonlinear optical
processes including second harmonic generation, third harmonic generation, and parametric
frequency conversion. Our systematic study gives a strict extraction method for the nonlinear
coefficients, and provides new insights in how layered structures influence the nonlinear signal
observed from 2D materials.

1. Introduction

Graphene possesses extraordinary optical properties [1], including broadband absorption [2], the existence of
tightly confined plasmon modes [3-5], and extremely strong optical nonlinearities [6—8]. Most of these
properties strongly depend on the chemical potential, which can be controlled chemically [9, 10], optically [11],
or with the use of an external gate voltage [12]. Since the first experimental demonstration of strong parametric
frequency conversion (PFC) in graphene [13], much attention has been paid to its optical nonlinearities. With
the integration of graphene onto photonic chips becoming a mature technology [1, 14, 15], graphene is
recognized as a potential resource for many photonic devices that exploit optical nonlinearities, including
saturable absorbers [16], broadband optical modulators [17-19], optical switches [20], and wavelength
converters [ 15]. For these applications to be developed, a full understanding of the nonlinear radiation of
graphene is necessary. In general, this is determined by both the intrinsic optical nonlinearity of graphene, and
the effects of the surrounding environment. Neither is sufficiently understood at this point.

The intrinsic optical nonlinearity of graphene has been studied extensively. Various experiments with
graphene in free-space configurations, on waveguides, and on photonic crystals have been performed to
investigate different nonlinear phenomena, including PFC[13, 21], third harmonic generation (THG) [21-25],
second harmonic generation (SHG) [26-31], Kerr effects (or self-phase modulation, SPM) and two photon
absorption [32-39], and coherent current injection [40, 41]. The extracted effective bulk third order
susceptibilities Xffz arein therange of 10~ '°~107"° m?* V2, while the values of the effective bulk second order
susceptibilities Xizﬁ)' are seldom extracted. Recent experiments have shown the unusual negative sign of
graphene’s nonlinear refractive index [37, 38, 42], the ability to tune the nonlinearity by varying the chemical
potential [21, 25], and the possibility of having quasi-exponentially growing SPM in graphene on waveguides
[39]. Most of the existing microscopic theories [43—56] focus on the dependence of the sheet conductivities o™
(x— iwx(e’;f)) on incident light frequencies, temperature, and doping levels. When scattering is described within a
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phenomenological relaxation time approximation, the calculated X(:fz are about two orders of magnitude
smaller than most values extracted from earlier experiments for lightly doped graphene [43—46, 48]. Several
effects have been considered that might bring theory in better agreement with these experiments, including
saturation of the optical nonlinearity [47, 54], the influence of cascaded second order processes [55, 57], and
novel plasmonic effects [55, 58], but none of them can sufficiently enhance the calculated conductivities.
Recently, free-carrier refraction has been shown to play an important role for understanding the above
mentioned strong SPM in graphene, where a perturbative approach fails [39]. However, agreement with
perturbative calculations is satisfactory in recent free-space experiments, where the doping level of graphene is
tuned over alarge range [21, 25].

Besides the insufficient understanding of the physical mechanism for the intrinsic optical nonlinearity, the
accurate extraction of the effective susceptibility itself from experimental data is also an outstanding problem,
especially considering the one-atom thickness. Experimentally, two methods are widely used, both treating
graphene as a thin film [ 13] with an effective thickness dg, ~ 3.3 A. Oneis simply to compare the radiation signal
to a film with known susceptibility, and the other is to utilize the well-known results for a thin bulk sample in the
limit of an undepleted fundamental [22, 59]. Neither strategy is based on a strict derivation of the response of a
monolayer sample, and the effective susceptibility extracted from either method depends on the artificial
thickness assigned to the graphene layer. For usual bulk materials, the generated nonlinear radiation can be
worked out using coupled-mode theory [59], in which a coherence length associated with the phase-matching
condition arises in the derivation of the equations for the propagating fields. It has been pointed out that for
weakly coupled 2D layers the atomic spacing between the layers should guarantee coherent radiation from the
layers [8, 60]. Despite many investigations using standard software [22, 61, 62], and nonlinear boundary
conditions [63—66], there is still no systematic treatment of the response of graphene, taking into account its 2D
nature, which could later be generalized to treat multilayer samples.

In this work we focus on how the surrounding environment affects the nonlinear radiation of general 2D
materials inside layered structures. We model the current density in graphene as a ‘current sheet’ described by a
Dirac é-function, and derive a key equation for graphene nonlinear optics, from which the effective electric fields
and current density inside 2D materials can be determined as a response to incident laser beams. These results
are easily combined with the transfer matrix formalism, and are used to analyze the nonlinear fields generated by
agraphene sheet on multilayered structures. The output fields E,,, are connected to incident fields E;;, in a form
Eoue o< 0™ BME! with the structure factor 5" describing the environmental effects. In certain structures, the
contribution from the structure factor can be extremely large, providing a controllable way to enhance the
generated nonlinear signals [57, 61, 62, 67, 68]. The equations we establish can be readily applied to the entire
family of 2D materials, including bi-layer graphene, functionalized graphene, monolayer transition-metal
dichalcogenides, black phosphorene, silicene, stanene, and so on. We also discuss whether or not a cascaded
second order response can modify extracted effective third order nonlinear response coefficients.

We organize this paper as follows: in section 2 we work out the equations for a suspended 2D layer, and
obtain a consistent set of equations for the second and third order nonlinear response; in section 3 we extend
these results to a system with 2D materials embedded inside a multilayered structure; in section 4 we apply these
results to a graphene-covered multilayered structure. We conclude in section 5.

2. Suspended 2D layer

We first consider the optics of a suspended monolayer (or nearly-monolayer) structure, which is centered at

z = 0,as shown in figure 1. In the neighborhood of the monolayer the microscopic electric field and current
density have a very complicated spatial dependence, with variations on an atomic scale, and their full description
requires a very careful treatment [69], similar to that used for a graphene nanostructure [70]. However, for the
calculation of radiation at optical frequencies with wavelengths much larger than these dimensions, a ‘6-model’
for the current density can be introduced

J(z k) = 6(2)] (), M

where k = (K, w) indicates the in-plane wave vector Kk and frequency w; for details of the notation see
appendix A. Here J (k) is a sheet current density. We will see that it mostly appears in the form

J (k)

b
2C€0

T (k) = 2
which has the dimension of an electric field.

Within this 6-model all of space is split into three regions, z > 0,z = 0,and z < 0, and both the regions
z > 0andz < Oarevacuum. The electric field in the latter two regions are described by amplitudes E) (k),
wherej = 1,2 isan index identifying the region (z > 0 and z < O respectively), A = +(—) stands for the upward

2
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o

B, (k) By (k)

Figure 1. A suspended 2D layer at position z = 0. Here Ef) (k) are the amplitudes of the a-polarized components of the electric field
propagating (or evanescent) in the jth region in the A direction; § and p, are polarization vectors, with a compact notation

k = (k, w). The sketch of the polarization vectors and the propagation directions is schematic, since in general p, can have complex
Cartesian components and the fields can be evanescent (see appendix A). The 2D layer experiences an electric field E.g (k) and
possesses a sheet current J (k).

(downward) propagating or evanescent direction, and o = s (p) identifies the s (p)-polarized component. Using
a Green function strategy [71] (see appendix B), we can connect the fields in the 1st and 2nd regions by

EfL (k) = S, (k) + F(k), 3)
Ej_(k) = Efj_(k) + F2(k), (4)
with
el Uz pNe!
Filk) = — T (k) - &g;5 (k). (5)
Wo k)

The vectors &), (k) are the polarization vectors for the indicated polarizations o and propagation (or evanescent)
directions \, which are defined in appendix A; & = w/c and wy(k) = v@? — k2. The fields in equations (3)
and (4) include any incident fields that are present, from sources or media above (amplitude E;}_(k)) or below
(amplitude E;' , (k)) the monolayer.

To determine 7 (k) and thus find the total fields above and below the monolayer one needs to specify the
response of the medium to the full field, including that from the monolayer itself. Dealing with the Z component
of the response is here particularly difficult, because the Z component of the field would vary strongly over that
microscopic thickness. Largely this strongly varying field would be included in a standard calculation of the
response as done in condensed matter physics, and thus would be included in such a calculation of the linear or
nonlinear response coefficients; we need to identify an effective driving field E.¢ (k) that wouldlead toa
calculation of these response coefficients. We follow the standard approach (see, e.g. [65]) and take E.¢ (k) to be
the average of the fields above and below the 2D layer,

Eer (k) = %Z[Eﬁ&(k) +ES (0188, (k). ©)
Ao

The task of determining the dependence of T (k) on E.g (k) is then assigned to condensed matter physics; it has
been widely studied both perturbatively [43-46, 49, 50, 55] and numerically [47, 56]. Other strategies and their
associated definitions of E.g (k) could be considered, but would just shift how much of the problem was
relegated to the task of determining J [k; Eci (k)], and how much was relegated to the task of constructing

E.¢ (k) from the incident field and the field from the microscopic current density itself. The advantage of the use
of equation (6) is that it is a simple expression but still completely contains the radiation reaction field due to the
current sheet, so that the effect of E.¢ (k) on the sheet includes the consequences of its radiation carrying energy
away; energy conservation is thus respected.
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2.1. Effective fields and sheet current density inside the 2D layer
Once the functional J [k; E.g]is known, equations (3), (4), and (6) are closed. Substituting equations (3) and (4)
into equation (6) we express the effective fields from T (k) as

Euit (k) = Egp (k) + Q°(0) J (k). )
Here E{ (k) = Z E (k)ég (k) + >, E;. (k)ey., (k) istheincident field at the 2D layer (the field without

the presence of the 2D layer ), and Q°(k) = — el (k) (k) — %Fu% - W”—’;éé is a radiation coefficient tensor
W, 0

matrix associated with the 2D layer. The second (t)erm at the right hand side of equation (7) gives the onsite fields

induced by the sheet current. Equation (7) is our key result; what is also needed to solve for the radiated fields is

the identification of the functional 7 [k; E¢] from a response theory in condensed matter physics. Using

Tlk; E.¢] together with equation (7) then leads to a self-consistent solution for the fields and the sheet current.
For weak electric fields, the sheet current density can be written into a power expansion of the effective fields.

Up to the third order terms, it is

T (k) = nO(k) Eegr (k) + T (k) ©)
7 — dky 2) _ _
Ttk = [ 550k = k) B k) Bk — R
dk, dk
+ f ﬁﬂm(’q, ky k — ki — k)
X Eeff (ki) Eegt (k) Eee (k — ki — k). )

Here the tensors V' (k) = oD(k) /(2cey), 1P (ky, ko) = 0@ (ky, k) /(2cey), and 13 (ky, ks, k3)

= 0¥ (ky, ky, ks) /(2cey) are associated respectively with the linear, second order, and third order conductivities.
The expansion in equations (8) and (9) is for an extended 2D material, where the translation symmetry is
preserved. For a graphene structure with a finite size, the situation is different: (1) for a structure with a size much
larger than the wavelength, a classical conductivity can be employed at each position, and our formulas can be
directly applied, considering all diffraction wave vectors in equation (7). (2) for a nano structure with a size much
smaller than the wavelength, it is necessary to include the quantum mechanical correction to the

conductivity [70].

The linear conductivity o*"(k) has been widely discussed [72, 73]. In our calculations it is a good
approximation to set oV (k) ~ o(V(0, w) = ¢ (w) because in the microscopic calculation of the conductivity
the light wave vector is much smaller than the involved electron wave vectors, and is usually ignored.
Furthermore, for most 2D materials, the linear conductivity tensor only has nonzero components
oW = My = aﬁl)(w) and 0% = ¢V (w). Although " (w) is usually ignored, its value is not zero and it is
important for certain applications [5]; as well, including it would be useful in characterizing samples. As with
o'V(k), itis also a good approximation to neglect the dependence of o on the wave vector and setall £ = 0.
While for @ this would hold if the material lacked inversion symmetry, in the presence of such symmetry (such
asin graphene), at least the dependence on & to first order must be kept, which corresponds to keeping electric-
quadrupole-like and magnetic dipole-like contributions to the second order nonlinear response [51, 52, 55].
Note that for 2D nano structures there will be scattered light with many different wave vectors, for some of which
the k dependence of the conductivity could be important.

Usually the nonlinear term in equation (8) is much smaller than the linear term, so it is convenient to isolate
the nonlinear response. From equations (7) and (8) the effective field at the 2D layer is formally given by

Eer(k) = [I — QU)nO ()T [Esp (k) + Q°(k) Tu(k)], (10a)
and the sheet current density is
Tk = [I — nOk) Q) ™M (k) ESp (k) + Tk, (10b)

with [ = §(k)§ (k) + kk + 22 being the unit dyadic.
In this paper, we focus on the perturbative solutions of equations (10a) and (9). With respect to the effective
fields, we can expand E. (k) = Ee(flf) (k) + Ee(?f) k) + ---and Jy(k) = jfl)(k) + jfi)(k) + .-, with

EQk) = [T — Q1 () Edp (K), (11a)
=2 _ dk1 @) -
Falto= [ S5k k= ko
x E(k)ER (k — k), (11b)
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and
EQ(k) = {[Q0)]" — nW()} 1 T3 k), (11¢)

dk dk
Fulto= [ G ke k =k~ ko

x B () B () B (k — ki — ko)
+ f ﬂg,n@’(kl, k — KER*)EZ (k — k)
é}f)(kl)Eé?z(k — k1. (11d)

The third order term j Sl)(k) has two contributions: one is from the direct third order processes, which is widely
discussed in literature; the other is from the cascaded second order processes. The results of a carefully designed

experiment [57] suggest that cascaded second order processes could lead to a significant change in the reflection
spectrum due to the generation of surface plasmons.

2.2. Outgoing fields
Substituting equation (100) into equations (3) and (4), we get the outgoing fields as

Ef (k) =r*(HE: (k) + t*(k)E5' (k)

+ 1 000 0+ 05, (126)
Es_(k) = r* (k) E5., (k) + t*(k)E{_(k)
+ ﬂg (k) + ”(k) GSp.4 (k). (12b)

Here r“(k) and £ (k) are Fresnel coefficients of a suspended 2D layer, and are given by
1

ts(k) = w—(l) Ts(k) = ts(k) — 1, (13a)
L+ S @i @
1 1
rP (k) = — GO 2 W (130)
L+ = W) 1+ LA (w)
I, S P S— (130)
o wo(k) (1) DN
I+ = (w) 1+ LA (w)
The radiation term from the nonlinear current is
o W oz ~
oiak) = ———Tn(k) - €y, (k). (14)

wo (k)

Note that in the absence of a nonlinear current the results in equations (12a) and (12b) in terms of the Fresnel
coefficients are just what one would expect.

For use in the next section it is convenient to write these results in a transfer matrix formalism. We can
rewrite equations (12a) and (12b) to give

L) _ o o B ®)
EX () TP ER (b

a o (k
+ MZD (k) + 1 g22,+( ) , (15)
2 - 2D;7(k)
where M, (k) is a transfer matrix for the 2D material layer, and it is given from the Fresnel coefficients as
a L ([P = [r* ()P ro(k)
Mip (k) = —— . 16
(0 t‘l'(k)( —ro(k) 1 (16

For a s- or p-polarized light beam incident from above, the absorption induced by this suspended layer is given
byl — |r%? — |t®2. For s-polarized incident light, the absorption is 2 Re [%nul)(w)] /
Wo
Atnormal incidence, where the difference between s- and p-polarized light vanishes, it is
2775” / a+ nf)l) )2 ~ 2.24% for intrinsic graphene with 775)1) =0 / (2¢€p) and the universal conductivity
0y = e*/(4h), which agrees with the experimental value [2].

77”1)((*1) i

Wo (k)

5
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(@)  cladding
Eg; (k) Eg, (k)

substrate

Figure 2. (a) 2D layer (red in the middle) within a multilayered structure. The incident fields are E§, (k) from claddingand Eg; ., (k)
from substrate, while the outgoing fields are EJ,, (k) and Eg, (k). (b) An equivalent structure of (a) by formally inserting a vacuum
region around the 2D layer, similar to figure 1. The transfer matrix Mg, (k) is for the region from the cladding to the upper surface of
the region containing the 2D layer, and My, (k) is for the region from the lower surface of the region containing the 2D layer to the
substrate.

3.2D layer inside multilayers

In this section we consider the effects of the surrounding environment on the nonlinear optics of a 2D material,
with a structure shown in figure 2(a). The incident fields are Ej., (k) from the claddingand Eg; ., (k) from the
substrate, while the outgoing fields are EJ,, (k) and E§, (k). We only consider the nonlinear optics from the 2D
layer; for other layers, nonlinear radiation can be obtained from the coupled-mode theory [59] or, in an
undepleted pump approximation, by the bulk medium version of these equations [71] . To utilize the transfer
matrix formalism, we slightly deform the structure into figure 2(b), anticipating that we will treat the thickness of
the vacuum region containing the 2D layer as vanishingly small. Now the expressions in section 2 can be
straightforwardly extended. We denote the transfer matrix for the multilayered structure from the cladding layer
to the upper surface of the 2D layer region as M, (k), and the transfer matrix for the multilayered structure

from the lower surface of the 2D layer region to the substrate as Mj; (k). Then we have

5 (K EL (k)
? = M% (k ' N 17
( 3;_<k)) ol )(Ef.f_(k)) (A7)
ES () @)
> = Yk ’ . 17b

Eliminating jc;’i (k) from equations (15), (17a), and (17b), the fields at the cladding connect with the fields at the
substrate by a transfer matrix formalism as

E3-+ (k) Es% i+ (k) ggD +(k)
o = Mc®| Lo + Muol o) , (18)
(Ech(k) E§,_(k) i CY S ()
with the total transfer matrix
M (k) = MG, (k) Map (k) Mg (), (19)
and a transfer matrix for the nonlinear radiation
My = Myt ZROEL o)
Converting to a scattering matrix form, we obtain the outgoing fields as
S0\ (RO TER))( B
Eg, (k) Te(k) R\ Eg,. (k)
1 —R2(k) Gop,1 (k)
+ o [Muf "2 , (21)
(0 _Tsc(k)) : (_QZD;—(k)
where the Fresnel coefficients appearing here are associated with the total transfer matrix MY (k) by
1 (TS TE(k) — RE(ORG (k) R (k)
M(k) = —— N . 22
® Tf;(k)( ~RIK) 1 ] 22
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air Eq. (k) /Fs . (k)
graphene

substrate b (k)

Figure 3. [llustration of a graphene-covered multilayered structure.

In the absence of the nonlinear terms the results from equation (21) for EJ., (k) and Eg, (k) in terms of the
Fresnel coefficients are just what one would expect. For the nonlinear radiation, the key quantity is still G5y, (k),
or equivalently the nonlinear current 7,,(k), which strongly depend on the total field E. (k) at the 2D layer.
Again, similar to the strategy for a suspended 2D layer, it can be found from equations (3), (4), (6), (174), and
(17b) as

Eus (k) = Exp(k) + Q(k) T (k), (23)

where the incident fields E,p (k) at the 2D layer, and the radiation coefficients Q(k) are given in appendix C.
Equation (23) has the same structure as equation (7), but each term is modified to include the effects from the
environment, i.e. other layers. All the results from equation (104) to (11d) can be simply transferred here after
replacing E;p, (k) and Q°(k) by E,p (k) and Q(k), respectively. For example, comparing to equation (10a), the
effective field depends on the nonlinear current according to

Er (k) = [ — QUnV ()] [Eap (k) + Qk) Tu(h)]. (24)

4. Results for a graphene monolayer

We illustrate our approach by considering a graphene-covered multilayered structure shown in figure 3. We
assume there is incident light only from the cladding layer, so Eg ., (k) = 0, and we are interested in the output
field EJ.,, (k). We ignore any nonlinear sources in the multilayer, cladding, and substrate. In the widely accepted
treatment for graphene the optical response in the z direction is ignored, so we put n(j) (w) — 0,and assume as
well that the nonlinear current has only in-plane components and responds only to the in-plane electric field
components. We then require only the in-plane components of the effective fields, which we write as

Eef; (k) = Eegrs (k)8 (k) + Eef o (k) K, and similarly will have only an in-plane nonlinear current jnl; (k). With
the z-component of the current sheet thus ignored and the z-component of the effective field not required,
equation (24) is greatly simplified to give

EZD;j(k) + Q]](k) jnl;j(k)
1 — Qi (k)

forj = sor k. Using equation (C6a) and (C6b) for E;p;j(k), the in-plane effective electric fields are found to be

Eeff;j (k) = (25)

w

wo (k)

Eefis(k) = [1 + RS (0)] [Eé;(k) - ﬁl;s(k)], (26)

wo (k)

Eefry(k) = [1 — REGOIIES, (k) — le;n(k)]T 27)
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and from the transfer matrices the total reflectivity R (k) is found to be
t* (k)R (k) (k)

R (k) = r*(k) + T REG ()

«

= (A — 7o (28)
_t v (1
1+ 7°RE (k) + I:wo(k)] Y @)
Here R (k) is the reflection coefficient without the presence of graphene, 7° = 1,and 7¥ = —1;in the second

expression the result is displayed explicitly in terms of the linear conductivity of the 2D layer. Finally, from
equation (21) the output fields can then be written into terms of the nonlinear current as

d+ (k) = RS (K)Eg, (k)
—[1 + 7°RS (0] ok )Jnl () - &g’y (29)

According to earlier results [45, 46, 52], the nonlinear currents up to the third order terms are

2 dk
T =2 [ 5

+ K1 Eef;| (K1) - Eefr|(ka)] + S§7 (w1, wa) k1 - Eef|| (k) Eefr (ko) }

S (Wi, wa) [k X Eef (k)] X Eef (ko) + S5 (w1, wa) [Eefr| (k) K1 - Eefy (ko)

dk, dk.
+3 f (21 )62 N> (w1, wa, wp) Eetty| (k) Eetty (k) + Eetty|(kp)s (30)

withk, = k — kyandk, = k — k; — k,. For the second order response, S5 and S§™ are response
coefficients associated with the quadrupole-like contribution, and S37” is a response coefﬁc1ent associated with
the magnetic dipole-like contribution; they are related to the parameters Sg‘}l}@ defined earlier [52] by

S = S/(2ce). For later use, the components along the x-direction of the conductivity tensors are given by

P (k, k) = U(z);m (ki, k)
= 5wy, wo) K] + S (W, wi) K, (31a)

N3 (Wi, Was w3) = NP (W, w), W)
= N (Wi, Wy, ws) + NI (W, W, wy)
+ O (w3, wi, wy), (31b)
with Sxxxx(wl, w2) = zsxxyy(wh wz) + Sxyxy(wl’ WZ)
We note that the argument k = (k, w) of EJ._ (k) varies continuously, and thus the equations can describe a

pulse of light with arbitrary polarization 1nc1dent on only a finite region of the structure shown in figure 3. Here
we consider simple cases with incident plane waves at discrete kj, which is performed by the transformation

4_(k) — @S] 8(k — k)ES_ (k). (32)
j

All new k; generated by the nonlinearity are then also discrete.
In the following two subsections, we explicitly give the perturbation formulas for SHG, THG, and PFC.

4.1.SHG and THG

In this section we derive the formulas for the SHG and THG signals, induced by a single p—polarized incident
laser beam with amplitude E C’i; _(k),as shown in figure 3. We list all perturbative quantities with respect to the
incident fields. The perturbative effective fields at the graphene layer are given as

EG (k) = POES_(b&,
EQ () ==Ph) TG, (KR,

nlx
with
P = 1 - RGN 2L, (33)
The perturbative current responses for SHG and THG are
7% @k = nyk, HAED, 0P, (34a)
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Figure 4. (a) Illustration of the structure analyzed, (b) the angle dependence of | Bs (k) |, | Bruc (k) |, |P(2k) |, and | P(k) |. The y-axis of
|P| s is at the right, as indicated.

T30 = ny(w, w, WAIEY, (P
+ 2, (k, 2k) RES, (W ES, (2K). (34b)

Substituting them into equation (29), the radiation fields for SHG and THG only include the p-polarized
components as

EJ.. k) = 156 (k) Bsua (k) [ES,_ (0T, (35a)
EL.. BK) = N1uc (k) Bruc (O [EL,_ (BT, (35b)

with nspg(k) = 1,(k, k) and
nTHG(k) = 773(‘»’; w, w) — 2772(k) 2k)7’(2k)172(k, k). (36)

Here all quantities indicated by 3 are dimensionless structure factors, which include the effects from the lower
layers of the structure. They are given by

Bsuc(k) = [1 — REQOIPK)P, (37a)
Bruc(k) = [1 — REGOIIPK)P. (37b)

As an example, we consider these structure related quantities for a THG experimental setup as used by
Kumar et al [22]. The layer structure is shown in figure 4(a); it is composed of air cladding/graphene/300 nm
thick SiO,/silicon substrate. The incident light is at fuv = 0.72 eV, with an incident angle 6 or in-plane
wavevector Kk = @ sin 0x. The dielectric constants we used are listed in table 1, and the linear conductivity of
graphene is taken as o,

In figure 4(b), we plot the 6 dependence of | Bsug (k) |, | Bruc (k) |, and | P(2k) |. As the incident angle is
increased, they decrease. At normal incidence, the values of | Gspi¢| and | By are of the order of 102 and 102,
respectively. Both of them are much smaller than 1, which means the layer structure greatly reduces the
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SiO, substrate Esb

Figure 5. [llustration of the structure in the experiment of Constant et al [57].

Table 1. The values for the dielectric constants of SiO, and Si (taken
from website http://refractiveindex.info /), the total reflection
coefficient at normal incidence, and the optical conductivities of
graphene. The nonlinear conductivities of graphene are taken from
earlier work [45, 46, 52], with parameters ;1 = 0.2 eV, I, =I'; = 33
meV,and T = 300 K. The linear conductivity of graphene is

approximated as oy.
e(w) eQuw) e(Bw)
SiO, 2.08 2.11 2.13
Si 12.01 13.27 4 0.022i 16.03 + 0.189:
RE(ky) RE(2k) R (3ky)
0.744-0.001i 0.57-0.0071 0.71 + 0.0061)
graphene
n,(k, k)/sin @ (1.1 — 0.6i) x 10°5m V™!
n,(k, 2k)/ sin 6 (1.2 - 053) x 107'°m V™’
(W, w, W) (6.4 + 1.6i)) x 1072 m>V 2

harmonic radiation signal. This is because the value of | P(k) | is less than 0.3, and as it is raised to a power of 2 and
3 the resulting values are much smaller. At normal incidence k = k; = (0, w), the structure factors can be
written as ﬁSHG (k) = PQk)) ['P(kL)]z ~ 2.9 x 107%2and ﬁTHG (k) = P(3k)) [,P(kL)]a ~ 5 x 1073
Compared to a suspended graphene, where both of them are around unity, the layers underneath reduce the
harmonic radiation significantly. The dependence of these structure factors on the substrate reflection
coefficient is clear.

Equation (36) includes the contribution to the THG coefficients from the cascaded processes, with the values
of |P(2k)| smaller than 0.5. By checking graphene’s conductivities listed in table 1, we find the contribution from
the cascaded second order processes to the THG process are about 9 orders of magnitude smaller than the direct
third order response. This is not surprising, because the second order response in graphene is induced by
theoretically forbidden optical processes and is a weak effect, which gives very small ,(k, k) and 7,(k, 2k). And
‘P(2k) does not undergo any resonance for the structure and parameters used in the experiment.

Following a similar strategy, in the next section we look at PFC.

4.2. Parametric frequency conversion (PFC)

The PFC process occurs when the structure is excited by two laser beams: one is a pump beam at k,,, the otherisa
signal beam at k,. We are interested in the output light at a difference frequency k; = k, — k, which is generated
by the second order nonlinearity, and in the idler light at k; = 2k, — k,, which is generated by the third order
nonlinearity. In the experiment of Constant et al [57], due to a carefully designed structure and appropriate
incident angles the light at k; can be evanescent and on resonance with the plasmon modes of the whole
structure. As shown in figure 5, the structure is composed of graphene-covered SiO,. For simplicity, we consider
that the p-polarized incident beams are in the same incident plane, with in-plane wave vectors Kk, = k&, and
K; = K(—K,),and with frequencies w, > w..

10
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Figure 6. (a) k-dependence of the reflection coefficients. The orange dashed line is the light line, the red dashed line is the graphene
dispersion, and the black line is the trajectory of k; when \,, varies from 547 nm to 615 nm for A\, = 615 nm, 6, = 125°,and §, = 15°.
(b) The structure factors Bprc(ky, ko), Bpra(kp, ki), and P(k,). (c) nﬁl) (k) for k = ky, ks, kg and k;. (d) nprc(Kps ks) and my(kys ka). (€)
Nprc(Kps ko)y M50 (kps ko)s 1m3(Wps wpy —wy), and P(k,). All curves indicated by horizontal arrows use the right y-axis. In the calculation,
the parameters for graphene are takenas ¢ = 1.11meV,I'; = I, = 1meV,and T = 0 K.

In a calculation similar to that of the previous section, we find the output fields at k;and k; are

E£;+(kd) = *277DFG(kp’ ks)ﬂDFG(kp, ks)

X Eclf;f(kp) [Ecll);f(ks)]*: (380)
Eclth(ki) = _3nPFC(k > ks)ﬁPFC(k > ks)
x [Ef (k)P [ES_ (k)T (38b)

The prefactors 2 and 3 come from the permutation of the incident field components, and the minus signs appear
due to the opposite incident directions of these two beams. The terms related to the conductivities are

Mo Kps ks) = 1, (kp, —ks) and nppe(kp, ks) = 15 (wps wps —ws) + 5.(kp, k). The term 7, includes the
contribution from the cascaded second order processes to the third order response, and is given as

Do Uy k) = —§n2<k k) Py, (kypy — ko). (39)

Here only the cascaded process involving the light at k,, is taken into account. The dimensionless structure
factorsare

Borc (kp, ko) = [1 — REk)] Plhp) [Pk, (40a)
Brrc(kp, k) = [1 — REk)I[P(kp) P [P(kT*. (400)

Besides involving a product of two second order conductivities, the cascaded process coefficient 7. (k,, k;)
in equation (39) is also proportional to the term P(k,;). This illustrates how the structure underneath the
graphene can be used to tune the cascaded process: In the experiment by Constant et al [57], this term is
maximized by matching k,; with the surface plasmon polariton (SPP) resonance of the entire structure. In an
ideal case, when all losses are ignored, R2 (k;) diverges at the resonance; with losses, its value becomes finite, but
still very large. As an illustration, this can be clearly seen in figure 6(a). For the parameters of graphene we choose
the chemical potential as © = 1.11eV, the relaxation parameters I'; = ', = 1 meV, and assume zero
temperature. The very high chemical potential, which can be realized by a gate voltage [21], is chosen to satisfy
resonant conditions in calculating the second order and third order conductivities. The calculation is made for
signal light at wavelength 615 nm (@, = 10.22 um™ ') with an incident angle §, = 125°, and pump light at
wavelength \, varying from 547 to 615 nm (&, varying from 11.49 to 10.22 pm~ ") with an incident angle
6, = 15°. As the pump light wavelength varies, the in-plane wave vector and frequency of the light at
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ks = k, — ksvaryalong the black line in figure 6(a). The linear conductivities for graphene are shown in
figure 6(c). The maximal value of |R 2 (k) | along the black line in figure 6(a) is about 41, and occurs for
W, = 11.22 pum™ 'where the SPP is excited.

We first check the structure factor for PFC, which is shown in figure 6(b). As A, varies, | Bpgc| is at the order of
0.05 and changes only slightly. This small value results mostly because of the oblique incidence of the light, as
captured by the term wy (k) /@ in the expression of equation (33) for P(k). For the difference frequency
generation, the structure factor | 3pgg| can be as large as 10 at the SPP resonance at @, = 11.22 pum™'. Obviously,
the light at k; is evanescent in air; however, it is could be detected by the use of near field techniques.

Interestingly, the cascaded second order processes can exceed the direct third order process at certain
frequencies, mainly because in this case we have very large second order conductivities as well as a SPP
resonance, as shown in figures 6(d) and (e). There are in total three possible resonances for the conductivities
with varying @, the firstisat &y = [&; + 2p/ ()] /2 = 10.73 pm™ !, corresponding to the condition
2hwy — hw, = 2p; the second is at Ty = @;; and the thirdisat Te = 2/ (fic) = 11.25 um ™', corresponding to
the condition 7w = 2. Our calculations show that 7,(k,, —k,) shows peaks at &g and &c; 7,(kp, k) shows
peaks at &y, Wp, and Wc; and 173(wp, Wy, —ws) shows peaks at @y and &@,. For &, around Wp and &g, the cascaded
second order processes dominate because of the very large second order conductivities. But there is another peak
for @, ~ 11.22  pm,located at the same peak position of P(k,), which is induced by the SPP resonance.

All these calculations are for ideal parameters. For higher temperature, larger relaxation parameters, and
smaller chemical potential, the second order conductivities can be reduced greatly, as well the value of
13c(kps k). Because the graphene layer is put in an asymmetric environment, an additional contribution to the
second order nonlinearity can arise from the interface effect. However, it contributes only to the out-of-plane
tensor components, which are ignored in the usual model for graphene.

5. Conclusion

We have derived the basic equations for analyzing the linear and nonlinear optics of graphene and other 2D
materials in layered structures. For linear optics, we obtained the Fresnel coefficients of a suspended 2D layer.
Complementing existing work in the literature, these coefficients take into account the optical response along
the out-of-plane direction of the 2D layers, which is usually ignored, so they can be used to extract the out-of-
plane linear conductivity components from experimental data. In the nonlinear regime, we derived an equation
for the total electric field at the 2D material including the feedback radiation of its own sheet current density.
After combining this with current response theory, which is widely adopted for calculating the conductivities, a
set of consistent equations for the total field and the current can be obtained; after solving them either
analytically or numerically, the nonlinear radiation can be found. We also derived the perturbative expressions
at weak incident light beams. We discussed how the structures themselves affect the output field intensity. For
some experimental scenarios the structures can reduce the radiation by several orders of magnitude, compared
to that for a suspended sample. Our results can serve as a starting point for further nonlinear optical
investigations of graphene or 2D materials in layered structures.
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Appendix A. Notations

In ahomogeneous medium with dielectric constant e(w), the electric fields can be written as

Ez R, 1) = foc W g R wye @+ e, (A1)
o 27
E(z R, w) = f(j:)ZE(z; K, w)e~ R, (A2)

with R = xX + yp. Throughout this work, we use a compact notation k = (k, w), and so
E(z; K, w) = E(z; k). The fields can be decomposed into upward and downward propagating (or evanescent)
fields
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E(z; k) = Y Ex(k)e™®7, (A3)
At

with s- and p-polarized components
E\(k) = > E{ (el (k). (A4)
a=s,p

The polarization vectors, &' (k) with o = s, p for the field polarization and A = +, — for the propagation
direction, are defined by

Bk =8k =& x 3, (A5)
oIk = poky = 2T VDR (A6)
@)

where w(k) = \/e(w)@?* — k? with @ = w/c,is taken such that Im[w] > 0, with Re[w] > 0if Im[w] = 0.
The polarization vectors are in general complex quantities; for propagating fields in lossless materials, their
directions are shown in figure 1. Although these vectors satisfy § (k) - §(k) = 1and p,_(k) - p_(k) = 1,the

‘length’ \/p_(k) - [p.(k)]* canbe far larger than unity for an evanescent field.

To identify different regions or layers, we will use an extra subscript jin Ej;) (z; k), wj(k), €, (k), and so on.

Appendix B. Green function method for a sheet current density

For a sheet current density J (z; k) embedded in ahomogeneous medium with dielectric constant € (w), the
radiation field can be calculated using a Green function strategy [71] as

JEb

Enaz k) = [Ge— 23 k) o 1)
with
Gz b=~ =S8R + . (WR, WP e
— B3RS0 + p(Rp(RNO(—2)e b2
w (k)
we (w)

In theregionz > 0 of the setup in figure 1, the induced field E;,4(z > 0; k) only propagate upwards, and it can
be written as

Eng(z > 00 = Y Frkye®ze0 (k) (B3)

a=s,p

with F§ given in equation (5). Then the upward fields E, ., (k) include two contributions: one is from the
incident fields E, ., (k) thatis propagated from the region z < 0, asif the sheet current density were absent; the
other is the induced field F¢ (k). Then we get equation (3). Similarly, we can get equation (4).

Appendix C. Incident field E.¢ (k) at the 2D layer and the radiation coefficients Q(k)

For a 2D layer inside a multilayered structure, it is convenient to write the incident field E,p atthe 2D layerina
coordinate formed by {$, &, Z} as

E»p = Eyp,$ + Epyuk + Eopy 2. (C1)

Without causing any confusion, the k-dependence of each quantity is implicitly shown. From equations (3), (4),
(6), (17a), and (17b), the effective field E. at the 2D layer can be written into equation (23) with

EZD;s = [ECSS — RCS“][I ;:5 R;C] i Tcsu T;C Ecsl;f + [1 ik RS;C] TCSS Essb;+’ (C2a)
—[RF — REI[1 — RE] + T2 TE —1+ RETF
Eapy = { [Rs all = ue) + T T Eclf;— + %Eﬁ)ﬂ_}@, (C2b)
RY — REI[1 + RE1 + TETE 1+ REITY K
E2D;z = {[ ][ P ] Ecllj;, + %E:}’);+ - (CZC)
Tcu Tcu w
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Here T and R are the Fresnel coefficient for the structure without the presence of 2D material, which are

given from
1 (TYTY — RYRY RY
M?;Mg — __a[ cs sC — cs SC CS); (C3a)
Tsc _Rsc 1
while R and T are the Fresnel coefficients for the substrate multilayers, which are given as
1 (TSTS — RSRS RS
Mélu — T(y( cu M:Ra cu”ruc ICIA). (C3b)
uc uc
Along the directions {$, &, Z}, the radiation coefficient is a tensor matrix with a form
Q= Q.85 + Q..kk + 9,22 + Q.,RZ + Q,.2k with elements
Qs = _E[ECSS — R0 +S Ri) + T, T 1 +5R;C , (Cda)
Wo Tcu Tuc
w % I
0 — IR RAL 4 RE) 4 TETE L+ RE 0
Wow Tcu Tuc

T8 T

We give these quantities for two special cases:

(1) For a suspended system,

all reflection coefficients associated with additional material are zero and all

transmission coefficients are 1. Therefore we can get the effective incident field at the 2D layer is

~ w A~
Ed =I[E_ +E5_ 18 + gO[EfZ, — Ef &

and the radiation coefficient matrix becomes diagonal,

(2) When the 2D layer is put
effective field is

with R} = R and T, =
The Q is then given as

K N
+ —[Ef_+ Ef. 1%, (C5a)
w
0 W .. 0 ~ A K2,
Q= —-——8§ - —Rk — —22. (C5b)
Wo w Wow

directly on top of a substrate, we have R, = R = 0, and T, = T,. = 1. The

Expys = [1 4+ RYEY + TREy. (Céa)
w

Eopyr = {[1 — sz]Eﬁ;f - ’I}I:Essb;Jr}gO’ (Ceb)
K

Exp = {[1 + RZIES_ + TPES, )=, (Céc)
w

i+ being the Fresnel coefficient associated with the lower multilayered structure.

Qi = ——[1 + R, (C7a)
)

Quw = —2[1 — Rf), (C7b)
@
2

Q= — — [le + 1], (C7¢)
Wow

QH,Z = - an = gle (C7d)

@
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