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Abstract
The number of probe particles that is detected on a single pixel of amicrograph isfinite, either due to
source (low power), detector (low dynamic range) or specimen damage constraints. The sensitivity of
an otherwise perfectmicroscope is then limited by the statisticalfluctuations in the number of
detected particles. It is thus crucial to strive for the optimal signal-to-noise ratio per detected photon.
Herewe analytically and numerically compare three different contrast enhancing techniques that are
all based on self-imaging cavities: CWcavity enhancedmicroscopy, cavity ring-downmicroscopy and
multi-passmicroscopy.We show that all three schemes can lead to sensitivities beyond those
achievable with a single pass.

1. Introduction

Cavity enhancedmeasurements are ubiquitous in science and technology. Inmicroscopy, the offered sensitivity
enhancement has for example been exploited in cavity scanningmicroscopy [1, 2], in Tolansky interferometry
[3] and inmulti-pass (MP)microscopy [4, 5].While the former represents a point scanning technique, inwhich
afiber basedmicrocavity is scanned across a sample, the latter two offer a fullfield of view. In Tolansky
interferometry, cavity enhancement is achieved by placing a flatmirror at a slight angle on top of the sample,
which also has to be highly reflective. The incoupled light bounces back and forth between the twomirrors and
the interference betweenmultiple reflected beams is highly sensitive to the distance between the specimen and
themirror. Using this simple technique,metallic surface topographies are routinely characterized on the
nanometer level. However, the angle between the twomirrors leads to beamwalk-off and therefore to a non-
local response. This reduces the achievable transverse resolution to a fewwavelengths of the probe light [6]. This
can be avoided if the sample is placed in a self-imaging cavity [7, 8], as done inMPmicroscopy [4], a geometry
that allows for 2D imaging and that is applicable to awider range of samples, as long as photon loss is small.

Here we analyze such cavity enhancedmeasurements based on self-imaging cavities and differentiate
between three different regimes: the continuouswave scheme (CW), inwhich a continuous beamof light is in-
and outcoupled into the self-imaging cavity via one of its endmirrors. The ring-down scheme (RD), in which a
pulse of light is incoupled into the self-imaging cavity and a fraction of it is outcoupled every time the pulse
interacts with one of the semi-transparent endmirrors of the self-imaging cavity. The detection can either be
done in a time-resolvedway, inwhich the number of interactions is recorded for each detected photon, or in a
time-integratingway. TheMP scheme [4], inwhich a pulse of light is incoupled into the self-imaging cavity and
interacts with the specimen exactlym times before it is outcoupled and detected.

Wefirst discuss these techniques analytically in thematrix optics formalism and derive expressions for the
expected signal strength of bright-field (BF), dark-field (DF) andZernike phase contrast (Znk)microscopy
measurements (section 2).We then apply our findings to the cavity enhanced detection ofmono- and few-
atomicfilms of differentmaterials, such as carbon and boron nitride (section 3), and analyze the performance of
each technique in terms of the achievable signal-to-noise ratio (SNR) per absorbed photon or number of
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photon-sample interactions. The analysis is carried out for the ideal situationwhere the SNRof the
measurement is limited by shot noise.

Our calculations show that all three cavity enhancedmicroscopy techniques outperform single-pass
measurements in these terms. Besides the sensitivity enhancement for the detection of weak signals, cavity
enhancedmicroscopy techniqueswill thus be of great interest for the study of photo-sensitivematerials, for
which a higher SNR cannot be achieved by usingmore probe photons. One example is the study of live cells or
tissue [9], which can be damaged by light in variousways (e.g. photo-thermal damage of pigmented cells [10],
UV induced breaking ofDNA strands [11, 12], single- ormulti-photon absorption followed by cytotoxic
photochemical reactions [10, 13]).MPmicroscopy has also been proposed for transmission electron
microscopy [14], where sample damage sets bounds on the obtainable spatial resolution [15].

2. Theoreticalmodel

A setup for cavity enhancedmicroscopy is shown infigure 1. The following analysis will be restricted to the
paraxial ray-optics regime, which is a good approximation in cases not affected by the diffraction limit. It will
further be restricted to scalarfields. In comparison to the treatment in [4], we do not neglect reflectedfields and
we allow for arbitrary samples that affect both the amplitude and the phase of the incoming field.

The self-imaging cavity is placed in between twomirrors at z=0 and =z f8 . It is comprised of thin lenses
of infinite numerical aperture for perfect imaging, two idealized beam splitters as amodel for the semi
transparentmirrors, and a thin refractive index profile representing the sample plane in the center of the
arrangement at =z f4 . Given an input lightfield coupled in from the left (z= 0), the optical response of the
samplewill be encoded in the amplitude and phase of the field outcoupled through the rightmirror ( =z f8 )
aftermultiple cavity round trips and sample interactions. First the analytic expressions for the outcoupled field
and the energy absorbed by the samplewill be derived in sections 2.1 and 2.2, respectively. In section 2.3, a
possible post-processing scheme in a subsequent 4flens arrangement for Zernike andDF imaging [16, 17]will
be discussed.

2.1. The 8f imaging cavity
Let us start bymodeling the self-imaging cavity and the effect on the lightfield as it bounces between themirrors
and repeatedly interacts with the sample. The input field illuminating thefirstmirror is assumed to be a broad
Gaussianmodewith central frequencyω, a waistw greater than the sample dimensions, and a possibly time-
dependent input powerPin (t)

p e
= w- + -( ) ( ) ( )( )E x y t

P t

c w
e, ,

4
. 1x y w i t

in
in

0
2

2 2 2

Wewill study both aCWscenario with time-independent input power and a pulsed scenario. In the latter case,
we restrict our considerations tomoderate pulse lengths: they can be short enough to prevent thefields of
subsequent round trips fromoverlapping, while they are still sufficiently long to neglect the variation of the

Figure 1. Setup for cavity enhancedmicroscopy. The self-imaging cavity consists of four lenses L1K4 in between an incoupling and an
outcouplingmirror (Mi andMo, respectively). The lenses are spaced such that, according to their respective focal lengths f1K4, a
microscope is formed on either side of the sample plane S. For simplicity wewill restrict the following analysis to the casewhere fi=f,
resulting in unitymagnification on either side of the sample.When the sample is illuminated from the left, amirror-flipped imagewill
be formed onMo and the reflected light will be re-imaged onto the sample, which is now illuminatedwith an image of itself. After
multiplem interactions, light is either actively or passively outcoupled throughMo and imaged using the detection optics to the right
ofMo. It consists of a standardmicroscopewith optional additional optics in the Fourier plane allowing for dark field and phase
imaging.

2

J. Phys.: Photonics 1 (2019) 015007 SNimmrichter et al



longitudinal wavelength,ω=ck, for all frequency-dependent interaction processes. The longitudinal phase
factor ( )ikzexp is omitted as we also operate in the paraxial regime.

Eachmirror shall be treated as a simple beam splitter with amplitude reflectivity and transmissivity
parameters = -r R1,2 1,2 and t1,2, where = ∣ ∣T t1,2 1,2

2 andR1,2?T1,2. The propagation of the field through the
lenses betweenmirror and sample planes is described by an ideal (infinite-aperture) 4f transformation [17] that
produces the inverted image

 - - - -
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4
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A typical sample inserted into the cavity would be given by a thin layer on top of a transparent carrier plate of
known refractive index ng and thickness dg=f. Absorption and diffractionwithin the carrier are neglected. The
sample layer that is to be detected shall be described by a two-dimensional refractive index profile n(x, y) of
thickness d. The real and the imaginary part of n(x, y)will be imprinted in the detection signal of themicroscope,
i.e. the phase and the amplitude of a probe lightfield. Unlike in single-pass imaging, which ‘sees’ only the
transmission profile of the sample (and holder), the present two-mirrorMP scheme requires us to take also the
reflectivity of the sample into account. In themacroscopic limit of perfectly resolved sample structure, the
transmission and reflection can be obtained by solving the boundary conditions at the interfaces of sample layer
and holdermaterial per ‘pixel’ (x, y) on the sample plane. For readability, wewill omit the argument in the
following and abbreviate ns=n(x, y), keeping inmind that all expressions are defined per pixel.

The carrier glass slab is characterized by the transmission and reflection coefficients [18]
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For a clean signature of the substrate, the carrier can bemade perfectly transmissive (non-reflective) by choosing
its optical thickness to be a half-multiple wavelength, ng k dg=jπwith integer j. In this case, = - -( )t eg

j ikdg and
rg=0.We obtain relatively simple expressions for the transmission and reflection coefficients of thewhole
sample

=
-

+ - -
=

- -
+ - -

=

- - -

-

( )
( ) ( )

( ) ( )
( ) ( )

( )

( )

( )

t
n e

n n e
r

n e e

n n e

r e r

4

1 1
,

1 1

1 1
,

. 4

s

j
s

i n kd ikd

s s
in kd s L

s
ikd in kd

s s
in kd

s R
ik d d

s L

1

2 2 2 ,

2 2 2

2 2 2

,
2

,

s g

s

s

s

g

Notice the difference in the reflection offields impinging on the substrate side (L) and on the back side (R). All
reflected and transmitted field components are defined relative to the incident field on the sample plane, z=4f,
which is set to be the interface between the substrate layer (to the left) and the carrier plate (right).

As themain application of the scheme is to enhanceweak optical signatures, we focus here on optically thin
substrate layers, ∣ ∣n kd 1s . To lowest order, their optical response can be characterized by the susceptibility
function

c c c= + =
- ( )i

n
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2
, 5s
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2

where the real part represents the sample-induced phase shift and the imaginary part the extinction of the
incident field amplitude. The above sample coefficients are approximated by
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It turns out that the validity of these linearized expressions is limited in practice when it comes to the quantitative
analysis ofMP imaging of thinfilms (see section 3). Nevertheless it can serve as a qualitative estimate for the
signal enhancement inMP imaging, andwe shall occasionally refer to this as theweak-sample (WS) scenario
later.

In order to describe the transformation of an arbitrary input pulse at the 8f-cavity-sample system into a
(possibly overlapping) sequence of output pulses, we canmake use of thematrix optics formalism [19]. Given
the lightfields  ¬E E,L R impinging on the sample plane from the left and right (with the arrowsmarking the
propagation direction), the sample interaction is described by a linearmap for each sample pixel,
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Herewe assume that the sample and cavity properties are approximately determined by their values at the central
frequency of the pulse. The passage back and forth through the 4flens systems and reflection at the two outer
mirrors can be expressed by + = ¬( ) ( )E t f c r E t8L L1 and + =¬ ( ) ( )E t f c r E t8R R2 .We arrive at the
following transformationmatrix
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for each sample pass followed by a half round trip. At this point, we shall introduce the eigenvalues of thismatrix
for later use,
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Given an incident pulseEin (t) that is initially coupled in through the leftmirror (z= 0), the forward-running
pulse amplitude on the sample plane ( =z f4 ) afterm�1 passes through the sample reads as
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Note that the coordinate inversion by thefirst 4f transformation according to (2) leaves theGaussian inputfield
(1) invariant. The outcoupled train of pulses at the secondmirror ( =z f8 ) is simply obtained by taking the sum
overm andmultiplyingwith the transmission of the secondmirror
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Again, the outputfield is invertedwith respect to the sample plane, i.e. the sample pixel (x, y) is imaged onto
(−x,−y).

The input–output transformation can also be given in Fourier space, which for afixed light frequencyω
amounts to a stationary illumination, i.e. infinite pulse length. Given the temporal Fourier transform Ein (ω) of
the inputfield (1) the transmitted outputfield becomes

w
w
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It follows either by carrying out the sum in (11) in Fourier space, or by directly solving the combined boundary
value problem at the sample plane and themirrors. Additional losses in the cavity, e.g. at the lenses, can be
included by settingR1,2+T1,2<1.

Ourmain focus here are samples withweak optical response, which implies a lowoverall reflectivity,
∣ ∣ ∣ ∣( )r t 1s L R s, ,

2 2 . However, the degree towhich the sample reflectivity influences theMP image depends
also on the reflectivity of the sample holder and on the number of round trips. If the 8f cavity is of highfinesse,
i.e. supportsmany round trips,multiple sample- or holder-reflectedfields interfere andmay have a significant
impact on the cavity resonance and on the outputfield.

In the following, we distinguish two complementary regimes for cavity-enhancedmicroscopy by comparing
the characteristic duration τ of the input pulsePin (t) to the half round-trip time f c8 . A quasi-stationary
frequency-domain description, (12), applies in theCW limit t  f c8 , whereas a time-domain treatment,
(11), of individual non-overlapping pulses ismore suitable for t < f c8 , i.e. in theMP andRDcases. The
intensity of the outcoupled light is then either given by the interference ofmany field components or a sumof
individual pulses.

The sample response in the outputfield can bemade explicit in theWS limit (6). Using the approximation
1+x≈e x for ∣ ∣x 1, we obtain to lowest order
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The termsχ and kdg are to be evaluated by their values at themean pulsewave number k. The time-domain
expression (14) splits into contributions associatedwith odd and even numbers of sample interactions. The
latter terms describe the light that is reflected at the sample, whereas the former correspond to one pass andℓ
additional full round trips in the resonator, i.e. tom=2ℓ+1 sample interactions, a total phase shift of

c+ℓ( )2 1 R, and an extinction of c+ℓ( )2 1 I per pixel. The signal enhancement by the number of passes is the
key feature of the studiedMP imaging scheme, aswewill discuss below.
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In the limit of stationary illumination, themirror system acts like a resonator, and the signal enhancement is
expected to scale with the cavity finesse, i.e. the average number of photon round-trips. See section 3.1.

2.2. Sample damage
In the followingwewill rank the performance of differentmicroscopy schemes by the SNRof the (phase or
absorption) images they produce at afixed number of photon-sample interactions, i.e. absorbed energy.We
choose this figure ofmerit instead of using afixed number of available/detected photons, as it is setup-
independent (source/detector limitationswill be discussed briefly in the conclusions section). It also allows us to
assess the limitedmeasurement sensitivity for photosensitivematerials, whichmight already be damaged
irreversibly by the absorption of a single or a few photons. For other,more robust types of samples, on the other
hand, the quantity can just be seen as ameasure of imaging efficiency.

In the following, our figure ofmerit will be referred to as SNR at constant damage, wherewe assume that
damage is proportional to the amount of energy absorbed by the sample. This represents a conservative
assumption. If damage scales super-linearly, the reduced number of interactions required for cavity enhanced
measurements leads to an even greater reduction in damage. A detailed sample-specific analysismay further
reveal that damage not only depends on the absorbed energy, but also on the peak and average power of the
illumination. In this case, pulsed illuminationwill generally inducemore damage thanCWschemes.

The net absorbed power per sample pixel is formally obtained by summing the inward-oriented Poynting
vectors left and right of the sample plane, assuming that the sample holder is transparent. Here, this amounts to
comparing the forward- and backward-running intensities

= - + -  ¬ ¬( ) ( ) ( ) ( ) ( ) ( )I t I t I t I t I t . 15L R R Labs

In the case of stationary illumination, this is directly proportional to the sample damage rate. Thefields left and
right of the sample follow by solving the boundary conditions and can be expressed in terms of the output field
(12) at pixel (−x,−y).We arrive at a damage rate proportional to the cavity-enhanced output intensity
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For time-dependent inputfields, the overall absorbed energyQabs per pixel (corresponding toNabs=Qabs/ÿω
absorbed photons) is obtained by integrating the intensity (15) over the interrogation time and the pixel area.We
conveniently express the fields on both sides of the sample inmatrix notation, using (7) and
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where each summand represents thefield afterm sample interactions. A handy result is found in the case of non-
overlapping round trip pulses. Given the temporal power profile Pin(t) of the input pulse with characteristic
duration τ and a small pixel area in the center of the pulse profile,A=w2, the input energy per pixel is
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Assuming also a constant (average) sample response over the size of each pixel, the absorbed energy per pixel
accumulated afterm interactions reads as
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In theWS limit (6), wefind that the stationary absorption rate is proportional to the intra-cavity intensity times
the absorption strength of the sample
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2.3. Amplitude and phasemeasurements
In this ideal scenario of perfect resolution (neither limited by finite apertures nor by afinite pixel size in the
detector) the output field carries full information about the local amplitude and phasemodulation for each point
on the sample plane. Themeasurement sensitivity would be limited only by shot noise. Depending onwhat
information is to be extracted, we distinguish three detection schemes: a directmeasurement of the local output
intensity to image the light extinction profile of the sample (BF), a background-free DFmeasurement of the
diffraction profile (DF), and a Zernike phasemeasurement [16] (Znk). In the short-pulsed regime, the detection
signals are sequences of pulses arranged according to the numberm of interactions with the sample (i.e. half
round trips through the 8fimaging cavity).We shall refer to their individual per-pixel energies as 

( )Q m
BF,DF,Znk . In

aMP schemewhere themth pulse is outcoupled by a specific triggeredmechanism, and not through the second
cavitymirror, the factorT2 in 

( )Q m
BF,DF,Znk must be replaced by the transmission efficiency of the outcoupler.

In the BF case, the time-resolved detection signal will be determined by the absolute square of thefield (11).
For non-overlapping short round trip pulses, the square of the sumof the fields reduces to a sumof squares, and
we obtain the BF signal

l l
l l

=
-
-

-+ -

+ -
( )( ) ( )Q T T Q t Q , 22m

s

m m
m

BF 1 2 in

2

ref

once again evaluated at themirrored image pixel of the sample. This rather featureless expression exhibits a
dichotomic behavior between odd and even numbersm of sample interactions. The input light and themost
significant sample response appears in the transmission signal after full cavity round trips, i.e. oddm=2ℓ+1.
The signal after an even number of interactions implies at least one reflection at the sample (or sample holder)
and is thus of higher order in its optical response.

In BFmicroscopy of weak samples,most of the output light is just the transmitted input beamdistributed
overmany round trips, with a small sample-inducedmodulation.We thus define the actual sample signal in
each pulse relative to a reference ( )Q m

ref , which could be another spot on the detection planewith a different
sample profile (in a differentialmeasurement), or an empty reference pixel. In the latter case, we obtain the
reference signal from the outputfield of the 8f imaging cavity and an empty sample plate, assuming
homogeneous illumination. It has the same form as (11), but with the reflection and transmission coefficients (3)
of the empty glass plate in place of the sample termsThe eigenvalues of the corresponding round-tripmatrix are

L =
+  - +



( ) ( )
( )

r r r r r r r r t4

2
. 23

g g g1 2 1 2
2 2

1 2
2

They simplify to -r r e ikd
1 2

g in the non-reflective case, ng k dg=jπ.We arrive at

=
L - L
L - L
+ -

+ -
( )( )Q T T Q t . 24m

g

m m

ref 1 2 in

2

For non-reflective holders it is non-zero only after oddmultiplesm=2ℓ+1, where it simplifies to
( )ℓT T Q R R1 2 in 1 2 . Once again, we get a clearer picture in theWS limit (6). Expanding the eigenvalues (9) to lowest

non-vanishing order inχ and integrating over the pulse duration, we obtain the BF signal

c» -= + ( )ℓ( ) ( )Q m Q2 , 25m m
BF

2 1
I ref

for odd sample interactions, i.e. full round trips. The result is negative due to the accumulated extinction of the
input pulse at the sample, while the phase response does not enter thisfirst order expression. In fact, the validity
of the approximation is restricted to not toomany round trips and to samples with significant absorption,
c p∣ ∣m 2 and c cR

2
I. The signal in between full round trips at evenm=2ℓ is comprised of light reflected

at the sample and is therefore of second order

c»
+= -∣ ∣ ∣ ∣ ( )ℓ( ) ( )Q m

r e r
Q

4
. 26m

ikd
m

BF
2 2 1

2
2

2

ref
1

g

InDF andZernike phase imaging, the outcoupled field (11) passes another 4f configuration before detection,
hitting either a small absorber (DF) or a phase plate (Znk) in the Fourier plane at the distance f2 behind the exit
mirror. The f2 transformation of a paraxial field amplitude yields the spatial Fourier transform [17, 20]

p
 -( )( ) ˜ ( )E x y t

ke

if
E x y t, ,

2
, , . 27

ikf
k

f

k

f

f

cout

2

out
2

Being subject to a thin absorbing or phase-shifting plate, the field is thenmultiplied by a transmission function
[1−b(x, y)], modulating its amplitude or phase where ¹( )b x y, 0. This is followed by another f2 transform
leading to the detection field
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TheDF image of a homogeneously illuminated sample structure is obtained by blocking the undiffracted
forward component from the outcoupledfield. This can be realized here by placing an absorbing element in the
origin of the Fourier plane (seefigure 1), e.g. a circular obstacle with radius ñ>f/kw, so
that  p=˜( ) ( )qb J q q21 .

If the relevant sample size ismuch smaller than theGaussianwaistw of the incident probefield (1), we can
choose an absorber size ñ that blocks only the undiffracted beam and lets almost all the diffracted light pass. The
blockedfield (29) is then approximately given by the output field of the 8f imaging cavity with an empty sample
plate. Note that the sample pixel is now imaged onto the same pixel on the detection plane.

In the short-pulse limit, theDF detection signal becomes

l l
l l

=
-
-

-
L - L
L - L

+ -

+ -

+ -

+ -
( )( )Q T T Q t t . 30m

s

m m

g

m m

DF 1 2 in

2

The output pulses associated to even and odd sample interactions are nowof the samemagnitude, and there is
no need to subtract another reference term. In theWS limit (6), the even orders are identical to (26) before, and
the odd ones are also of second order in theweak sample response

c»= + ∣ ∣ ( )ℓ( ) ( )Q m Q . 31m m
DF

2 1 2
ref

For the Zernike phase contrastmethod, the opaque plate in the Fourier plane behind the exitmirror is
replaced by a phase plate that shifts the undiffracted background field component by±π/2 [16]. Thefield
arriving at the detector in the Zernike scheme can be understood as a superposition of the background-free DF
signal and theπ/2-shifted undiffracted fieldwithout sample. Depending on the sign of the phase shift the
technique is referred to as negative (Znk−) or positive (Znk+)phase contrastmicroscopy.We obtain the signal
from theDF case by inserting a complex prefactor,  ( ) ( ) ( )b x y i b x y, 1 , . Repeating the above
approximation steps then yields

l l
l l
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+ -
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m m
m
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2

ref

Once again, we subtract the bright offset from the actual sample response, because, contrary to theDF case, the
phase plate does not remove the reference signal (24). The Zernike configuration can provide strong signals even
forweak phase shifts of optically thin, transparent samples, as the phase response now appears infirst order after
full round trips. TheWS limit yields

c» 
= + ( )ℓ( ) ( )Q m Q2 . 33m m

Znk
2 1

R ref

It has the same form as the BF signal (25), but with c R instead of cI.

2.4. Enhanced phase estimation bymulti-passing
Wehave shown that the phase or extinction signature of weak optical samples is generally enhanced linearly (in
BF andZnk schemes) or quadratically (DF) by the numberm of times a probe field interacts with the specimen in
the imaging cavity. This gain inmeasurement sensitivity with respect to the accuracy of a single-passmicroscope
(limited by shot noise) becomes apparent if we view theWS imaging as a parameter estimation problem.

In the absence of extinction losses and sample holder, aWS imprints the phase c c= R onto the coherent
probe light upon each interaction. This phase can be estimated in the Znk+ scheme, where the purpose of the
phase plate in the outcoupling stage is to interfere the phase-shifted component of the probe fieldwith the
unshifted one. TheMP scheme implements the sequential application of the phase shift to one of the two
interfered components.We then estimate the phase afterm passes bymeans of the difference between the
detected photon numbers of the sample pixel and an empty reference pixel. Using simple error propagation of
the respective shot noise, we get amean estimate and error [21, 22]

c dc»
-

»
+ ( )N N

mN

N N

mN2
,

2
, 34est

ref

ref

ref

ref

withN andNref themean photon numbers of sample and reference pixel, respectively. Given that the latter are of
about the samemagnitude, we find dc ~ N m1 2 ref . Compare this to the N1 2 tot scaling of a single-pass
measurement with the same numberNtot=mNref of photon-sample interactions, or ‘physical resources’ for
thatmatter [23]. By increasing the numberm of passes (‘queries’) at the expense of input light intensity theMP
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scheme beats the single-pass scaling. In the optimal case when the imaging cavity supportsmany passes, the 1/m
scalingwill dominate, and the phase uncertainty approaches the limit of 1/Ntot scaling [21, 24–27].

If sample damage is an issue, one can adjust the input intensity for afixed number of photon-sample
interactions, i.e. constantNrefm. In this case, whichwill be studied in detail below, the error scales like m1 .
For an equivalent CWorRDdetection scheme, the same proportionality holds with á ñ ℓ2 1 instead ofm.

3. Signal to noise at constant damage

Wewill now compare the various imagingmodalities in terms of signal to noise at constant damage. As an
illustrative examplewewill discuss the use of cavity enhancedmicroscopy for the characterization of ultra thin
films of carbon and boron nitride (BN)with light of 632 nmwavelength. Density functional theory calculations
yield an index of refraction of graphene of + i2.71 1.41 [28]. At this wavelength BNhas a refractive index of 1.8
[29], where the imaginary part is negligible due to the large bandgap of 5 eV [30]. The susceptibility of the two
materials can be obtained from (5). The thickness of amonolayer of graphene andBN is 3.35Å and 3.33Å [29],
respectively.

In traditionalmicroscopy these samples provide very low contrast and their detectability depends strongly
on the thickness of the substrate and the probingwavelength [31, 32]. Already now, several optical techniques
are being used to characterize thin film growth [33], andmultibeam interference schemes, such as Tolansky
interferometry [34], are used to enhance themeasurement sensitivity [35]. The self-imaging capabilities of the
cavity enhancedmicroscopy techniques discussed here offer the advantage that spatial film thickness variations
can be detected locally (and in principle at diffraction-limited resolution).

So let us assume a samplewith a substrate layer spatially varying in thickness ormaterial. In order to detect
such variations, we shall select two areas of the substrate that differ in their optical responses and image them
onto twodifferent pixels, (x1, y1) and (x2, y2). Depending on the imaging scheme,N1,2 photonswill be detected
on the two pixels, respectively (where the photon number is given by the pulse energy divided by ÿω). In a
differentialmeasurement, and assuming shot noise in the photodetector signal, the SNRof detecting the
variationwill then be

=
-
+

∣ ∣ ( )N N

N N
SNR . 351 2

1 2

Wewill evaluate and compare it at afixed damage level for CW,RD andMPmicroscopy, using the various
imagingmodes discussed in the previous chapter. For simplicity, we focus on the case studied in the previous
sectionwhere the second pixel corresponds to an empty reference area,χ(x2, y2)=0. At uniform illumination,
this is equivalent to imaging a single pixel with andwithout the substrate layer.We assume uniform illumination
of the relevant pixels with the samemean energyT1Qin of the incident light.

Due to the low sample absorption and high number of round trips considered, theWS approximationwill
not always be valid; we use it to discuss the qualitative scaling of the signal enhancement. The numerical
simulations are based on the full expressions derived in the previous section. For all scenarios, wewill use an
inputmirror of reflectivityR1=0.98, a realistic value given current coating technology, accounting for both the
finite transmission and the light losses in the 4f imaging optics left of the sample plane. For the outputmirror, we
shall assume = -( )R T0.98 12 2 , either with variable transmissionT2>0 to control the output light in theCW
andRD scenario, or with negligibleT2=0.01 tominimize round trip losses in theMP case.

3.1. CWcavitymicroscopy
Formally, the CWscenario corresponds to the stationary limit of a constantfixed-frequency input power Pin. In
practice, it is achieved in the limit of very long input pulses, such that the constructive interference over all round
trips can lead to an enhanced intra-cavity field. TheCWdescription applies if in addition also fringe effects due
to the initial buildup and thefinal decay of the cavity enhancement are small, i.e. themean pulse duration τ far
exceeds the inverse linewidth of the 8f cavity system. The time-integrated detection signal transmitted by the
cavity and the energy absorbed by the sample can then be expressed in terms of the input power times a detection
window. A further division by ÿω results in the respective photon numbers and in the dimensionless SNR
evaluated below.

We expect a high sensitivity to the phase shift and absorption of aweak optical sample if the cavity is of high
finesse, i.e. supportsmany round trips. The empty imaging cavity has its resonances where kf16 is amultiple of
thewavelengthλ, and it supports themean number of round trips á ñ = -ℓ ( )R R R R11 2 1 2 . A non-
reflective sample holder shifts the resonances to p- =( )k f d K8 g .When the input field is tuned close to or on
resonance, any sample-induced phase shift or extinctionwill result in a sharp change of the transmitted output
signal, according to the Lorentz function. This is nicely illustrated in theWS approximation, wherewe can
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expand the stationary outputfield (13) around resonance. Omitting the glass plate and considering the limit of
highly reflectivemirrors at odd orderK, we obtain to lowest order

c
» -

-
+

-

⎛
⎝⎜

⎞
⎠⎟ ( )E

E

t t

r r

i

r r1
1

4

1
. 36out

in

1 2

1 2 1 2

This illustrates how the sample response is enhanced by the cavity finesse, i.e. the number of supported round
trips á ñ » - ℓ ( )R R1 1 11 2 . Given the detected light of an empty pixel, » á ñℓQ T T Qref 1 2

2
in, the BF and

Zernike signals reduce to c» á ñℓQ Q8BF I ref and c»  á ñ ℓQ Q8Znk R ref . TheDF signal becomes
c» á ñℓ ∣ ∣Q Q16DF

2 2
ref , and the absorbed energy simplifies to c»Q Q T8abs I ref 2. Forweak samples, we thus

find a common enhancement of the SNR in proportion to á ñℓ T2 at constant damage.Notice that this scaling

factor reduces to á ñℓ2 if the inputmirror is set to be almost perfect and other intra-cavity losses are neglected.
Figure 2 shows the SNRobtained for the detection of a graphenemonolayer as a function of the effective

cavity length (or detuning) and ofT2. (a)–(d) show the results obtained in a BF,DF, negative (Znk−) and positive
(Znk+) phase contrast detection scheme, respectively. For all these plots the damagewas kept constant at about
26 absorbed photons, which is the damage that a short pulse of energyT1Qin=1000 ÿω does in a single pass
through the sample. The best SNR is found around cavity resonance, which getsmore pronounced for lowerT2,
corresponding to a cavity of higher quality.

Infigure 3(a)weprovide a horizontal cut through the previous diagrams at a fixed detuning and plot the SNR
as a function ofT2. For each of the four detection schemes, we chose the cavity length that supports the
maximumSNR infigure 2. The graphenemonolayer yields the highest SNR in a BF detection scheme (green),
followed byDF (black), Znk− (blue) andZnk+ (red). The dotted lines represent theWS approximation based
on the outputfield expression (13), whichmatches remarkably well even at lowT2 when the cavity supports
many round trips.

For comparison, we list the SNR values for single-pass detection at the same damage level in table 1. A cavity
with thementioned specifications enhances the detection SNRby up to a factor of ten as compared to the
optimal single-passmicroscopy technique. Even forT2=1 the cavity simulations differ from these results due
to light reflected from the specimen.

The results for amonolayer of BN are shown infigure 3(b), again for a total of 1000 photon-sample
interactions.We use the same reference value for all detection schemes and in all the following. Since BNhas a
negligible imaginary component of the refractive index, the number of absorbed photonswill nowbe less than
one.Hence for everyT2 infigure 3, the SNR is evaluated at about the samemean number of light-sample
interactions, albeit at a varying damage level in each sample. Given the real index of refraction, the best SNR in
the BN case (b) is obtained in phase contrast readout schemes. The BF detection scheme gives theworst SNR. For
a range of values ofT2 around 0.04 also BF gives a considerable SNRmainly because the interactionwith the
stationary cavity field translates phase to amplitude contrast. For 20monolayers of BN infigure 3(c) the
detection SNR is generally higher.However, the accumulated phase shifts can nowbe significant, which is why
BF andDFdetection can out-compete phase contrast detection schemes, and alsowhy the SNR in positive phase
contrast readout goes to zero forT2∼0.23. The latter occurs when the sample phase accumulates enough so

Figure 2. SNR for detecting a graphenemonolayer withCW light as a function of the effective cavity length and endmirror
transmissivity.We compare the BF readout (a), DF imaging (b), and the phase contrast schemes Znk+ (c) andZnk− (d). For all plots
the damagewas kept constant at the level obtained in a single interactionwith a pulse of energy 1000 ÿω, which corresponds to about
26 absorbed photons.
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that the outputfield interferes destructively with the sample-free field component passing the Zernike phase
plate. Yet theWS approximation (dotted) still captures this behavior well.

The above calculations were done for free sample layers without glass carrier plates, dg=0. For non-
reflective glass slabs, i.e.multiples of half-wavelengths in optical thickness, the cavity resonances are shifted, but
the achievable SNR are similar. For direct comparisonwithfigure 3, we show the results for a specimen carrier
with ng=1.5 and ngkdg=π infigure 4.We remark that for dg=0 the best SNR values are obtained close to an
odd cavity resonance, l »[ ]f8 mod 0.5, whereas now they are slightly lower and situated at

l- »[( ) ]f d8 mod 0g . The glass plate induces an effective phase shift 2kdg between the left- and right-running
components that not only shifts the cavity resonance, but alsomodulates the reflections at the sample layer, as
seen explicitly in (14). In the pulsed imaging schemes discussed below, this willmainly affect the sample-
reflected pulses outcoupled after an even number of sample interactions, see (26).

A qualitatively different sample imagewould be observed if light were reflected by the carrier plate itself, i.e.
for p¹n kd jg g . Theweak response of the specimenwould then be interlacedwith the signature of the semi-
transparent carrier, which typically results in a lower SNR for weak samples.We do not discuss this regime here.

3.2. Cavity RDmicroscopy
After the stationary scenario, where the light is allowed to interfere constructively in the imaging cavity, we now
discuss the contrary regime of short, non-overlapping probe pulses. The straightforwardway to enhance the

Figure 3. (a) SNR at constant damage as a function of outputmirror transmissivityT2 for CWdetection of a graphenemonolayer
using BF imaging (green), DF (black), Znk+ (red), and Znk− (blue). For each scheme, we chose the cavity lengthwith the highest
maximumSNR (horizontal cut infigure 2 at l »f8 mod 0.5), at the same damage level as before. Panels (b) and (c) show the SNR for
detecting 1 and 20monolayers of BN, respectively.

Table 1. SNR for the detection of 1 graphenemonolayer, 1 BN
monolayer, and 20BNmonolayers in conventional single-pass
microscopy, where an input pulse of energy 1000 ÿω interacts with the
specimen only once.

Cmonolayer BNmonolayer 20 BNmonolayers

BF 5.86×10−1 3.07×10−4 1.22×10−1

DF 4.75×10−1 1.17×10−1 2.34

Znk+ 3.3×10−1 1.66×10−1 3.29

Znk− 3.22×10−1 1.66×10−1 3.29
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sample signal bymultiple sample interactions is a RD scheme [36, 37]. A single input pulse of energyQin and
temporal width t < f c8 is sent through the imaging cavity, accumulating losses and phase shifts as it bounces
between themirrors. The resulting outputfield is an attenuating train of pulses spaced by d =t f c8 , which can
be either deposited as a cumulative signal in an integral detector or recorded individually in a time-resolved
manner.

Wewillfirst discuss the performance of the time-integrated RD scheme. The experimentallymore
demanding time-resolved detection of individual pulses providesmore options for signal analysis, and it can be
seen as a serial implementation of theMP scheme discussed in section 3.3. Each subsequent pulse corresponds to
an increasing number of sample passes, but only a small fraction of it is then transmitted through the cavity end
mirror,T2=1.

In order to assess the performance of RD imagingwith respect to a conventional single-pass image, we vary
the effective number of passes by tuning the transmissionT2 of the exitmirror and again adjust the input pulse
energy accordingly to keep the total sample damage accumulated over all passesfixed,  ¥m in (19). The BF,
DF, andZnk±detection signals are given by the sums of the individual pulses fromm=0 to¥ in (22), (30),
and (32), respectively. For the BF andZnk±signals, we also subtract an empty reference pixel; its output signal

= -( )Q Q T T R R1ref in 1 2 1 2 then contributes to the noise.
In theWS limit (6), we can compare the performance of the RD and theCWscheme by looking at the scaling

with the empty-cavity round trip number á ñℓ at highmirror reflectivities, á ñ » -ℓ ( )R R2 1 1 2 . The

accumulated sample damage (21) can be expressed as c»¥( )Q Q T4abs I ref 2. The accumulated signals, on the

other hand, reduce to c c» á ñ »  á ñℓ ℓQ Q Q Q2 , 2BF I ref Znk R ref , and c» á ñℓ ∣ ∣Q Q4DF
2 2

ref , as follows after
summing equations (25), (31), and (33) over all numbersm of sample interactions.

Notice that all the signals are four times smaller than their CWcounterparts, whileQabs is only two times
smaller. Hence, at equal damage in theWS and high-reflectivity limit, the RD signals are by a factor of twoworse
than theCWsignals and the SNRdrops by 2 2 . This interferometric advantage is due to the coherent
amplification of the intra-cavity field amplitudes that are transmitted and reflected by the sample in theCWcase.
Even in the limit ofT1→1, we find that the linear sample response differs by a factor of two between theCW
outputfield (13) and thefirst output pulse in (14). TheCWadvantage comeswith the experimental difficulty of

Figure 4. SNR at constant damage as in figure 3, but with a sample holder of thickness ngkdg=π at ng=1.5.Once again, we chose the
optimal cavity length for BF (green), DF (black), Znk+ (red), and Znk− (blue). It is now at l- »( )f d8 mod 0g .We compare the
results for a graphenemonolayer (a), a BNmonolayer (b), and 20BNmonolayers (c). In (b), both Znk schemes give almost the same
curve.
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having to stabilize the cavity at its resonance. Nevertheless, the SNR scalingwith á ñℓ remains the same in both
schemes.

The numerical results are plotted infigure 5 for the same samples and damage levels as infigure 3.While
there aremany similarities to the previous CWcase there are also some striking differences: first, the achieved
SNR is consistently smaller, as discussed before.Moreover, theWS approximation, based on linearized
expressions for the absorbed and detected pulse energies, quickly ceases to be valid asT2 decreases. For the BN
samples infigures 5(b) and (c), which are characterized by a real index of refraction, we notice that the time-
integrated BF signal vanishes. In this case, the sample acts like a lossless beam splitter that redistributes the
incident light energy over a trail ofmultiply reflected and transmitted pulses. Hence the time-integrated output
energy is conserved and equal to the reference signal. This BF signal cancellation could be avoidedwith time-
tagged detection, e.g. by using an avalanche photodiode array detector [38]flipping the sign of subsequent pulses
in the post-processing stage. The same techniquewould also avert SNR cancellation in the negative phase
contrast detection of 20 BNmonolayers, which is reflected in the dip of the blue curve infigure 5(c).

The results were again evaluatedwithout sample holder, dg=0.Using a non-reflective glass plate as in
figure 4 for theCWcase, the achievable SNR values in RD imagingwould also exhibit a slightly different
T2-dependence and overall decrease. This ismainly due to the suppression of sample reflections, as seen
explicitly in theWS limit. There, only the (weaker) even pulse orders (26) are affected by the sample holder, in
proportion to - -( )T kd T2 1 cos 2 g2 2. One thus obtains slightly better SNR values if kdg is zero or amultiple
ofπ.

3.3.MPmicroscopy
InMP imaging the goal is to limit and control the number of sample interactions of a short pulse entering a high-
finesse imaging cavity. This can be achieved, for instance, by placing a fast outcouplingmechanismbehind the
sample plane that is locked to the input pulse timing and triggers after a delay corresponding to a selected
numberℓ of full round trips. This allows one to choose between odd numbers of sample interactions,
m=2ℓ+1. Ideally, the outcoupling occurs at unit efficiency, while the imaging cavity should be of high finesse
tominimize any sample-independent round trip losses. In practice, one can implement the outcoupling by
means of a Pockels cell and a polarizing beam splitter. A Pockels cell is routinely incorporated in optical cavities
and its losses can be neglected compared to realistic losses at lens interfaces. For convenience, we shall assume

Figure 5. SNR at constant damage as a function of outputmirror transmissivityT2 for RDdetection of (a) amonolayer of graphene,
(b) amonolayer of BN, and (c) 20monolayers of BN. As in theCWcase in figure 3we compare BF imaging (green), DF (black), Znk+
(red), and Znk− (blue). In (b), the SNR for BF imaging is zero. The dotted lines show theWS approximation, which is omitted in (c) as
it already diverges from the full result atT2<0.5.
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R1=R2=R, usingR=0.98 for the numerical examples. The empty reference pixel yields the signal
= ℓQ TR Qref

2
in. (Note that one could also outcouple after even numbers of sample interactions, which captures

the fraction of light reflected at the sample. The outcoupled light would not contain the bright background
contributionQref, but rather resemble theDF image after full round trips.)

Once again, we can estimate the explicit scaling of the SNRwith the selected number of round trips in theWS
limit. Here, the damage reduces to c» - -+ +( ) ( )ℓ ℓ( )Q TQ R R2 1 1abs

2 1
in I

2 1 . The BF andZnk signals follow
from (25) and (33) after removingT2 and subtracting the empty pixel, c» +ℓ( )Q Q2 2 1BF I ref and

c»  + ℓ( )Q Q2 2 1Znk R ref , whereas c» +ℓ∣ ∣ ( )Q Q 2 1DF
2

ref
2. Dividing by the respective shot noise

amplitudes leaves uswith an SNR that growswith the number of passes like

- - ++ ℓ( ) ( ) ( )ℓ ℓR R R1 1 2 12 1 . For amoderate number of round trips, we can expand to lowest order in

e = - R1 andfind a square-root enhancement, µ +ℓSNR 2 1bf,df,Z . Aftermanymore round trips, the
SNRdecreases again exponentially with ~ e-ℓ ℓR e . Sowe expect a sweet spot ofmaximumSNRat roughly

e~ℓ 1 , provided the extinction at theweak sample is lower than the cavity loss and the accumulated phase
shift c p+ ℓ( )2 1 R .

The achievable SNR as a function ofm is plotted infigure 6. The damage levels were again chosen as in the
CWandRDcase. At that illumination intensity the single-pass SNR for detecting amonolayer of graphene or
BN is below unity, irrespective of whether the sample is investigated in a BF (green circles), DF (black), Znk+
(red) or Znk− (blue)microscope, see leftmost data points infigures 6(a) and (b).Multiple passes initially
increase the SNR, until losses eventually outweigh the gain in sensitivity offered by each additional pass. Due to
the negligible loss in BN, its optimum sensitivity is reached after a higher number of round trips than for
graphene. Given that all the light can be outcoupled after the optimal number of interactions, itmight be
surprising that the achievable SNR are very close to the ones observed infigure 5 for the RD case. This is because
the light that underwent an odd number of reflections from (i.e. even numberm of interactionswith) the sample
forms a counter-propagating pulse that is not outcoupled to the detector. It thus neither cancels the BF signals,
as observed in a RD scheme for the BN samples, nor does it contribute to theDF or phase-contrast signals. The
performance of aMP scheme can potentially be improved by adjusting the timingwindowof the detection to
also include the counter-propagating pulse. Figure 6(c) shows the signal for 20monolayers of BN. The obtained
SNR for this thicker sample is higher and shows oscillations as the phase shifts accumulate. TheWS

Figure 6. SNR at constant damage forMPdetectionwith a probe pulse that passesmultiple times through (a) amonolayer of graphene,
(b) amonolayer of BN, and (c) 20monolayers of BN.We assume perfect outcoupling efficiency after each oddmultiplem. The green,
black, red, and blue circles correspond to BF,DF, Znk+, and Znk− imaging, respectively. In (a) and (b), we plot theWS
approximation (large brightmarkers) up to c =∣ ∣m2 1, where it is certainly no longer valid.
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approximation (brightmarkers) is only valid for several tens of passes in (a) and (b); it does not hold for the 20
monolayers thick sample and is therefore omitted in (c). In particular, the zeros in (c) arewhere the total phase
shift assumesmultiples ofπ. So theWS expressions (14) for the outputfield and (25), (31), (33) for the detection
signals (derived under the assumption c ∣ ∣m 1) are not valid. Nevertheless, the single-pass phase shift
c = ´ -7.4 10 2 is still small, which allows us to use (6) and expand the eigenvaluesλ± that determine the
relative weight of themth pass in the outputfield (11). ForR1,2=R and dg=0, we get

l l
l l

-
-

»
- - c

+ -

+ -

- ( ) ( )( )t R
e1

2
. 37s

m m
m

m im
1 2

2

That is, the sample signal should vanishwhenever cm R is close to amultiple ofπ, irrespective of the detection
scheme. For 20 BNmonolayers, the firstmultiples are reached close tom≈43, 85, 127, in agreementwith
figure 6(c). The Znk±schemes have additional destructive points when c  ( )m2 arctan 4 3R is close to an odd
multiple ofπ, as follows by inserting (37) into (32). Here, this occurs e.g. aroundm≈15, 57, 99 for Znk− and
m≈27, 69, 113 for Znk+.We note that samples of sub-diffraction limited dimensionswould represent even
weaker samples than the ones given here, and theWS limitmight be appropriate also at high interaction
numbers.

In the case of afinite carrier plate, ngkdg=π as studied in section 3.1, we expect (and numerical simulations
confirm)no significant change in the SNR associated to odd interaction ordersm that are plotted for the single
monolayers infigures 6(a) and (b). The behavior does change for 20 BNmonolayers (c)where theWS
approximation is no longer valid.We plot the results with sample carrier infigure 7.

Note that the picture changes completely if we consider reflective sample holders, p¹n kd jg g . Light that has
undergonemultiple reflections and transmissions at the sample would then be redistributed over several pulses
by the carrier plate, which acts as a semi-transparentmirror. No clear distinction between even and oddm could
bemade in terms of the sample response any longer.

4. Conclusions

MPmicroscopy [4, 5] has recently been demonstrated to allow for increased signal-to-noise per photon-sample
interaction as compared to traditional single-passmicroscopy.Here we showed analytically and numerically
that this is also true in RD andCWapproaches, inwhich the enhanced interaction strength is set by the finesse of
the cavity. All three approaches can be applied towide-fieldmicroscopy, using self-imaging cavities to amplify
the phase and amplitude contrast of optically thin, weak samples.

Wefind that in the limit of weak samples and lossless cavities, the sensitivity of appropriate (optimal)
detection schemes always growswith the square root of themean number of light-sample interactions. Note
however that we assumemeasurements limited by shot-noise here. For imperfectmeasurements that are rather
limited by read-noise, lens aberrations, or other technical sources of uncertainty,multi-passingwould still
linearly enhance the SNRper detected photon.Hence at a constant number of available/detectable photons, the
advantage compared to single-pass schemes remains. At constant damage, however,multi-passingwould no
longer improve upon the single-pass performance when read-noise dominates themeasurement.

Note that, depending on experimental constraints, the analysis could also be done in terms of SNRper
detected photon, or per photon entering the setup.We chose to discuss the SNRper absorbed photon, but our
results are easily adaptable to the other two cases. For example, the SNRper detected photonwould scale in
proportion to themean number of times it interactedwith theweak sample.

Figure 7. SNR at constant damage forMPdetection of 20monolayers of BNon a glass plate of optical thickness ngkdg=π at ng=1.5.
The green, black, red, and blue circles correspond to BF,DF, Znk+, and Znk− imaging, respectively. Compare to figure 6(c)without
glass plate.
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When the detection scheme is not ideal with respect to the properties of the specimen, the sensitivity
enhancement (in terms of SNRper absorbed photon) can even surpass the square-root scaling, as we have shown
for BF images of non-absorbing phase shifters, for instance. Thismight be a desirable feature if the detection
technique can not be altered due to other experimental constraints, or if the sample properties are completely
unknown in thefirst place.

In the presented case studies, the detection of a few atomic layers of graphene or boron nitride, all cavity-
enhancedmicroscopy techniques could clearly outperform a conventional single-pass image in terms of signal-
to-noise at afixed number of photon-specimen interactions.We obtained the best results with theCW
approach, which profits from the interference between co- and counter-propagating components of the intra-
cavity field that does not occur in a pulsedMPor RD scheme. The resonance behavior also leads to a conversion
fromphase contrast to amplitude contrast, such that a pure phase sample can be detected using a BF detection
scheme.However, the sensitivity enhancement requires the imaging cavity to befine-tuned to its sample-
dependent resonance and is thusmore challenging to realize in an experiment.

In the pulsedMP andRD schemes, co- and counter-propagating light pulses will reach the detector at
different times. Even though no interference takes place between those pulses, the phase or amplitude signal of
the sample can still be amplified, de-amplified, or canceled, depending on the chosen imaging technique. For
further improving the SNR, one can employ time-gated detection (e.g. using an avalanche photodiode array
detector [38]), or consider ring resonators that outcouple co- and counter-propagating pulses in different
directions and onto separate detectors.

While the analysis was done for scalar fields, it was shown that polarization-sensitivemeasurement
techniques are also enhanced bymulti-passing [4], with potential applications such as ellipsometry.We also
expect that inelastic contrastmechanisms can be performed at higher SNRper absorbed photon, as long as the
scattering is stimulated, e.g. in cavity enhanced stimulated Raman scattering [39], or stimulated fluorescence
microscopy.

Further numerical studiesmay givemore insights to the diffraction-limited detection of sub-wavelength
samples such as nano-structuredmaterials or biological specimen. First results were only obtained for CW
imaging via the transversemodes of a resonant, degenerate cavity [8]. It remains to be investigated how the less
stringent requirements of a pulsed detection schemewould affect the signal, and possibly the resolution and
depth offield obtainedwhen imaging sub-wavelength structures.
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