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Abstract

The number of probe particles that is detected on a single pixel of a micrograph is finite, either due to
source (low power), detector (low dynamic range) or specimen damage constraints. The sensitivity of
an otherwise perfect microscope is then limited by the statistical fluctuations in the number of
detected particles. It is thus crucial to strive for the optimal signal-to-noise ratio per detected photon.
Here we analytically and numerically compare three different contrast enhancing techniques that are
all based on self-imaging cavities: CW cavity enhanced microscopy, cavity ring-down microscopy and
multi-pass microscopy. We show that all three schemes can lead to sensitivities beyond those
achievable with a single pass.

1. Introduction

Cavity enhanced measurements are ubiquitous in science and technology. In microscopy, the offered sensitivity
enhancement has for example been exploited in cavity scanning microscopy [, 2], in Tolansky interferometry
[3] and in multi-pass (MP) microscopy [4, 5]. While the former represents a point scanning technique, in which
a fiber based microcavity is scanned across a sample, the latter two offer a full field of view. In Tolansky
interferometry, cavity enhancement is achieved by placing a flat mirror at a slight angle on top of the sample,
which also has to be highly reflective. The incoupled light bounces back and forth between the two mirrors and
the interference between multiple reflected beams is highly sensitive to the distance between the specimen and
the mirror. Using this simple technique, metallic surface topographies are routinely characterized on the
nanometer level. However, the angle between the two mirrors leads to beam walk-off and therefore to a non-
local response. This reduces the achievable transverse resolution to a few wavelengths of the probe light [6]. This
can be avoided if the sample is placed in a self-imaging cavity [7, 8], as done in MP microscopy [4], a geometry
that allows for 2D imaging and that is applicable to a wider range of samples, as long as photon loss is small.

Here we analyze such cavity enhanced measurements based on self-imaging cavities and differentiate
between three different regimes: the continuous wave scheme (CW), in which a continuous beam of light is in-
and outcoupled into the self-imaging cavity via one of its end mirrors. The ring-down scheme (RD), in which a
pulse of light is incoupled into the self-imaging cavity and a fraction of it is outcoupled every time the pulse
interacts with one of the semi-transparent end mirrors of the self-imaging cavity. The detection can either be
done in a time-resolved way, in which the number of interactions is recorded for each detected photon, orina
time-integrating way. The MP scheme [4], in which a pulse of light is incoupled into the self-imaging cavity and
interacts with the specimen exactly m times before it is outcoupled and detected.

We first discuss these techniques analytically in the matrix optics formalism and derive expressions for the
expected signal strength of bright-field (BF), dark-field (DF) and Zernike phase contrast (Znk) microscopy
measurements (section 2). We then apply our findings to the cavity enhanced detection of mono- and few-
atomic films of different materials, such as carbon and boron nitride (section 3), and analyze the performance of
each technique in terms of the achievable signal-to-noise ratio (SNR) per absorbed photon or number of
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Figure 1. Setup for cavity enhanced microscopy. The self-imaging cavity consists of four lenses L; 4 in between an incoupling and an
outcoupling mirror (M; and M,, respectively). The lenses are spaced such that, according to their respective focal lengths f; 4, a
microscope is formed on either side of the sample plane S. For simplicity we will restrict the following analysis to the case where f; = f,
resulting in unity magnification on either side of the sample. When the sample is illuminated from the left, a mirror-flipped image will
be formed on M, and the reflected light will be re-imaged onto the sample, which is now illuminated with an image of itself. After
multiple m interactions, light is either actively or passively outcoupled through M, and imaged using the detection optics to the right
of M,. It consists of a standard microscope with optional additional optics in the Fourier plane allowing for dark field and phase
imaging.

photon-sample interactions. The analysis is carried out for the ideal situation where the SNR of the
measurement is limited by shot noise.

Our calculations show that all three cavity enhanced microscopy techniques outperform single-pass
measurements in these terms. Besides the sensitivity enhancement for the detection of weak signals, cavity
enhanced microscopy techniques will thus be of great interest for the study of photo-sensitive materials, for
which a higher SNR cannot be achieved by using more probe photons. One example is the study of live cells or
tissue [9], which can be damaged by light in various ways (e.g. photo-thermal damage of pigmented cells [10],
UV induced breaking of DNA strands [11, 12], single- or multi-photon absorption followed by cytotoxic
photochemical reactions [10, 13]). MP microscopy has also been proposed for transmission electron
microscopy [ 14], where sample damage sets bounds on the obtainable spatial resolution [15].

2. Theoretical model

A setup for cavity enhanced microscopy is shown in figure 1. The following analysis will be restricted to the
paraxial ray-optics regime, which is a good approximation in cases not affected by the diffraction limit. It will
further be restricted to scalar fields. In comparison to the treatment in [4], we do not neglect reflected fields and
we allow for arbitrary samples that affect both the amplitude and the phase of the incoming field.

The self-imaging cavity is placed in between two mirrorsatz = 0and z = 8f. Itis comprised of thin lenses
of infinite numerical aperture for perfect imaging, two idealized beam splitters as a model for the semi
transparent mirrors, and a thin refractive index profile representing the sample plane in the center of the
arrangement at z = 4f. Given an input light field coupled in from the left (z = 0), the optical response of the
sample will be encoded in the amplitude and phase of the field outcoupled through the right mirror (z = 8f)
after multiple cavity round trips and sample interactions. First the analytic expressions for the outcoupled field
and the energy absorbed by the sample will be derived in sections 2.1 and 2.2, respectively. In section 2.3, a
possible post-processing scheme in a subsequent 4f lens arrangement for Zernike and DF imaging [16, 17] will
be discussed.

2.1. The 8fimaging cavity

Let us start by modeling the self-imaging cavity and the effect on the light field as it bounces between the mirrors
and repeatedly interacts with the sample. The input field illuminating the first mirror is assumed to be a broad
Gaussian mode with central frequency w, a waist w greater than the sample dimensions, and a possibly time-
dependent input power Py, ()

Ein(x, 7, t) = 4Pi;(tie*(xzwtyl)/wl,imt' (1)
TCEGW

We will study both a CW scenario with time-independent input power and a pulsed scenario. In the latter case,
we restrict our considerations to moderate pulse lengths: they can be short enough to prevent the fields of
subsequent round trips from overlapping, while they are still sufficiently long to neglect the variation of the
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longitudinal wavelength, w = ck, for all frequency-dependent interaction processes. The longitudinal phase
factor exp(ikz) is omitted as we also operate in the paraxial regime.

Each mirror shall be treated as a simple beam splitter with amplitude reflectivity and transmissivity
parameters r, = — \/m and t, 5, where T; , = |fi o[> and R, , > T ». The propagation of the field through the
lenses between mirror and sample planes is described by an ideal (infinite-aperture) 4f transformation [17] that
produces the inverted image

E(x, y,t) — —E(—x, -y, t — i) 2)

c

A typical sample inserted into the cavity would be given by a thin layer on top of a transparent carrier plate of
known refractive index n,and thickness d, < f. Absorption and diffraction within the carrier are neglected. The
sample layer that is to be detected shall be described by a two-dimensional refractive index profile n(x, y) of
thickness d. The real and the imaginary part of n(x, y) will be imprinted in the detection signal of the microscope,
i.e. the phase and the amplitude of a probe light field. Unlike in single-pass imaging, which ‘sees’ only the
transmission profile of the sample (and holder), the present two-mirror MP scheme requires us to take also the
reflectivity of the sample into account. In the macroscopic limit of perfectly resolved sample structure, the
transmission and reflection can be obtained by solving the boundary conditions at the interfaces of sample layer
and holder material per ‘pixel’ (x, ) on the sample plane. For readability, we will omit the argument in the
following and abbreviate n; = n(x, y), keeping in mind that all expressions are defined per pixel.

The carrier glass slab is characterized by the transmission and reflection coefficients [18]

4ngeitns—Dkdg (ng — 1)(e?nekde — 1)

te = i > Tg = n .
¢ (”g + 1)2 — (Hg - l)zezmgkdg ¢ (ng + 1)2 — (ng — 1)252’”gkdg

3

For a clean signature of the substrate, the carrier can be made perfectly transmissive (non-reflective) by choosing
its optical thickness to be a half-multiple wavelength, n k d, = jm with integer j. In this case, t, = (—)/e % and
1, = 0. We obtain relatively simple expressions for the transmission and reflection coefficients of the whole
sample

4(—)in,ei(ns—Dkd—ikdy . (”52 — 1)e2ikd(g2inskd _ 1)
= . L= )
s (ns + 1)2 — (n, — 1)2621n5kd s (n, + 1)2 — (ns — 1)2621n5kd
ror = eXkd=doy (4)

Notice the difference in the reflection of fields impinging on the substrate side (L) and on the back side (R). All
reflected and transmitted field components are defined relative to the incident field on the sample plane, z = 4f,
which is set to be the interface between the substrate layer (to the left) and the carrier plate (right).

As the main application of the scheme is to enhance weak optical signatures, we focus here on optically thin
substrate layers, |n;|kd < 1. Tolowest order, their optical response can be characterized by the susceptibility
function

nr—1

S

2

where the real part represents the sample-induced phase shift and the imaginary part the extinction of the
incident field amplitude. The above sample coefficients are approximated by

X=Xz +ixqg= kd, (5)

2ikd,

to e (=) e ™ (1 4 i) m el kdetiX iy, rp A e MRy 6)

It turns out that the validity of these linearized expressions is limited in practice when it comes to the quantitative
analysis of MP imaging of thin films (see section 3). Nevertheless it can serve as a qualitative estimate for the
signal enhancement in MP imaging, and we shall occasionally refer to this as the weak-sample (WS) scenario
later.

In order to describe the transformation of an arbitrary input pulse at the 8f-cavity-sample system into a
(possibly overlapping) sequence of output pulses, we can make use of the matrix optics formalism [19]. Given
the light fields E;_,, Eg._ impinging on the sample plane from the left and right (with the arrows marking the
propagation direction), the sample interaction is described by a linear map for each sample pixel,

E._(1) Er_.(t) L I
= M , My = . 7
I:ERﬂ(l‘)] |:ERH(t) Iy TyR @)
Here we assume that the sample and cavity properties are approximately determined by their values at the central
frequency of the pulse. The passage back and forth through the 4f lens systems and reflection at the two outer

mirrors can be expressed by E; _.(t + 8f/c) = nE;(¢t)and Er._(¢t + 8f /c) = rEr_(t). Wearrive at the
following transformation matrix
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8f
E(t+ ) E_(b) nrgr  fits

N M E » M= nts nrr| ®)
Ep(t + ) k() .

for each sample pass followed by a half round trip. At this point, we shall introduce the eigenvalues of this matrix
for later use,

2 2
ff,L + hfsr £ \/ (ntsL — nryR)” + 4nnt;

= 9
+ 5 ©)
Given an incident pulse E;, (¢) that is initially coupled in through the left mirror (z = 0), the forward-running
pulse amplitude on the sample plane (z = 4f) after m > 1 passes through the sample reads as
B0 = [t~ @ - 02| 9] - [ 1]
A= A"
- —;tltsEin[t —Qm— 1)ﬁ]. (10)
Ay — A ¢

Note that the coordinate inversion by the first 4ftransformation according to (2) leaves the Gaussian input field
(1) invariant. The outcoupled train of pulses at the second mirror (z = 8f) is simply obtained by taking the sum
over m and multiplying with the transmission of the second mirror

XA = AT 8 mf
Eou() = titaty 3 ==y (¢ = *7), (11)
o1 A — Ao

Again, the output field is inverted with respect to the sample plane, i.e. the sample pixel (x, y) is imaged onto
(=%, =)

The input—output transformation can also be given in Fourier space, which for a fixed light frequency w
amounts to a stationary illumination, i.e. infinite pulse length. Given the temporal Fourier transform Ej;, (w) of
the input field (1) the transmitted output field becomes

it 1, Ein (w) ¥
a- eSikf)\+)(1 _ eSikf)\,).

Eout (W) = ( 12)
It follows either by carrying out the sum in (11) in Fourier space, or by directly solving the combined boundary
value problem at the sample plane and the mirrors. Additional losses in the cavity, e.g. at the lenses, can be
included by setting Ry , + T7, < 1.

Our main focus here are samples with weak optical response, which implies a low overall reflectivity,
Irspl* < |t> < 1. However, the degree to which the sample reflectivity influences the MP image depends
also on the reflectivity of the sample holder and on the number of round trips. If the 8f cavity is of high finesse,
i.e. supports many round trips, multiple sample- or holder-reflected fields interfere and may have a significant
impact on the cavity resonance and on the output field.

In the following, we distinguish two complementary regimes for cavity-enhanced microscopy by comparing
the characteristic duration 7 of the input pulse Py, () to the half round-trip time 8f /c. A quasi-stationary
frequency-domain description, (12),appliesin the CW limit 7 > 8f /¢, whereas a time-domain treatment,

(11), of individual non-overlapping pulses is more suitable for 7 < 8f /¢, i.e.in the MP and RD cases. The
intensity of the outcoupled light is then either given by the interference of many field components or a sum of
individual pulses.

The sample response in the output field can be made explicit in the WS limit (6). Using the approximation
1 + x ~ e*for |x| < 1, we obtain to lowest order

(=) ity Ejp (w) 8% —ikdetix

Eou(w) = 1 — riryelOk —2ikd 20X _ j o8k —ikdy [ ikdy | 1, o ikds]’ (13)
(o)
Eoqu(t) = (=) titye Mt S (11, 21X 2ikdy )
£=0
2ikd
nrn

The terms 'y and kd, are to be evaluated by their values at the mean pulse wave number k. The time-domain
expression (14) splits into contributions associated with odd and even numbers of sample interactions. The
latter terms describe the light that is reflected at the sample, whereas the former correspond to one pass and ¢
additional full round trips in the resonator, i.e.tom = 2¢ + 1 sample interactions, a total phase shift of

(2¢ + 1) xg>and an extinction of (2¢ + 1) x; per pixel. The signal enhancement by the number of passes is the
key feature of the studied MP imaging scheme, as we will discuss below.

4
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In the limit of stationary illumination, the mirror system acts like a resonator, and the signal enhancement is
expected to scale with the cavity finesse, i.e. the average number of photon round-trips. See section 3.1.

2.2. Sample damage

In the following we will rank the performance of different microscopy schemes by the SNR of the (phase or
absorption) images they produce at a fixed number of photon-sample interactions, i.e. absorbed energy. We
choose this figure of merit instead of using a fixed number of available/detected photons, as it is setup-
independent (source/detector limitations will be discussed briefly in the conclusions section). It also allows us to
assess the limited measurement sensitivity for photosensitive materials, which might already be damaged
irreversibly by the absorption of a single or a few photons. For other, more robust types of samples, on the other
hand, the quantity can just be seen as a measure of imaging efficiency.

In the following, our figure of merit will be referred to as SNR at constant damage, where we assume that
damage is proportional to the amount of energy absorbed by the sample. This represents a conservative
assumption. If damage scales super-linearly, the reduced number of interactions required for cavity enhanced
measurements leads to an even greater reduction in damage. A detailed sample-specific analysis may further
reveal that damage not only depends on the absorbed energy, but also on the peak and average power of the
illumination. In this case, pulsed illumination will generally induce more damage than CW schemes.

The net absorbed power per sample pixel is formally obtained by summing the inward-oriented Poynting
vectors left and right of the sample plane, assuming that the sample holder is transparent. Here, this amounts to
comparing the forward- and backward-running intensities

Laps (1) = I (1) — Ip—(t) + Ip—(t) — L—(¥). (15)

In the case of stationary illumination, this is directly proportional to the sample damage rate. The fields left and
right of the sample follow by solving the boundary conditions and can be expressed in terms of the output field
(12) at pixel (—x, —y). We arrive at a damage rate proportional to the cavity-enhanced output intensity

; 2
1 — Mg |
s

L (@) = I"%(“’)l& 1y (16)

2

ro + eWn@ = rang) [
. '
For time-dependent input fields, the overall absorbed energy Q. per pixel (corresponding to N,ps = Qaps/fw
absorbed photons) is obtained by integrating the intensity (15) over the interrogation time and the pixel area. We
conveniently express the fields on both sides of the sample in matrix notation, using (7) and

Bt =" - g)} (17)

ELﬁ(t)] — _¢ = M
[Efm 2, 0

where each summand represents the field after m sample interactions. A handy result is found in the case of non-
overlapping round trip pulses. Given the temporal power profile P;,(¢) of the input pulse with characteristic
duration 7and a small pixel area in the center of the pulse profile, A < w?, the input energy per pixel is

2A
Qu= =05 [ dt P, (1s)
™ T
Assuming also a constant (average) sample response over the size of each pixel, the absorbed energy per pixel
accumulated after m interactions reads as
2 1P
— ‘ MSM”[O] } (19)

m—1

1

QY = TQn Y {‘ ZH
n=0

In the WS limit (6), we find that the stationary absorption rate is proportional to the intra-cavity intensity times

the absorption strength of the sample

. . I
Ls(w) = 2xq |1 + rzeslkflekngL(”). (20)
T
For short pulses, a self-explanatory WS expression arises if  , = —+/R,
1+ R ()" n+n n—n
QW ~ 2T,Q; - + ()" —=
abs X RiR, 2n \1 — nn 1+ nn
1—-R"
— 2T T_R QinX- (21)
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2.3. Amplitude and phase measurements
In this ideal scenario of perfect resolution (neither limited by finite apertures nor by a finite pixel size in the
detector) the output field carries full information about the local amplitude and phase modulation for each point
on the sample plane. The measurement sensitivity would be limited only by shot noise. Depending on what
information is to be extracted, we distinguish three detection schemes: a direct measurement of the local output
intensity to image the light extinction profile of the sample (BF), a background-free DF measurement of the
diffraction profile (DF), and a Zernike phase measurement [16] (Znk). In the short-pulsed regime, the detection
signals are sequences of pulses arranged according to the number m of interactions with the sample (i.e. half
round trips through the 8f imaging cavity). We shall refer to their individual per-pixel energies as Qé’;’))DF) skt 110
a MP scheme where the mth pulse is outcoupled by a specific triggered mechanism, and not through the second
cavity mirror, the factor T, in ngl?,)DF, 7k Must be replaced by the transmission efficiency of the outcoupler.

In the BF case, the time-resolved detection signal will be determined by the absolute square of the field (11).
For non-overlapping short round trip pulses, the square of the sum of the fields reduces to a sum of squares, and
we obtain the BF signal

AT\

P —
A — M

W= TTQu —Qum, (22)

once again evaluated at the mirrored image pixel of the sample. This rather featureless expression exhibits a
dichotomic behavior between odd and even numbers m of sample interactions. The input light and the most
significant sample response appears in the transmission signal after full cavity round trips,i.e.odd m = 22 + 1.
The signal after an even number of interactions implies at least one reflection at the sample (or sample holder)
and is thus of higher order in its optical response.

In BF microscopy of weak samples, most of the output light is just the transmitted input beam distributed
over many round trips, with a small sample-induced modulation. We thus define the actual sample signal in
each pulse relative to a reference Qr(g?), which could be another spot on the detection plane with a different
sample profile (in a differential measurement), or an empty reference pixel. In the latter case, we obtain the
reference signal from the output field of the 8fimaging cavity and an empty sample plate, assuming
homogeneous illumination. It has the same form as (11), but with the reflection and transmission coefficients (3)
of the empty glass plate in place of the sample terms The eigenvalues of the corresponding round-trip matrix are

(it ) & JOi = 0?12 + e

(23)
- 2
They simplify to & /77, e~ in the non-reflective case, ngkdy = jm. Wearrive at
A — AT P
Qr(enz) =ThQnm |t H (24)

For non-reflective holders it is non-zero only after odd multiples m = 2¢ + 1, where it simplifies to
T, T Qin (R R,)? . Once again, we get a clearer picture in the WS limit (6). Expanding the eigenvalues (9) to lowest
non-vanishing order in x and integrating over the pulse duration, we obtain the BF signal

T~ 2 my QU (25)

for odd sample interactions, i.e. full round trips. The result is negative due to the accumulated extinction of the
input pulse at the sample, while the phase response does not enter this first order expression. In fact, the validity
of the approximation is restricted to not too many round trips and to samples with significant absorption,

m|x| < 2w and sz < x;- The signal in between full round trips at even m = 2¢ is comprised of light reflected
at the sample and is therefore of second order

ikd,
X|2|71621 ¢+ 1) Q(m—l)' (26)

(m=2¢)
QBnI; ~ |m 4 ref

In DF and Zernike phase imaging, the outcoupled field (11) passes another 4f configuration before detection,
hitting either a small absorber (DF) or a phase plate (Znk) in the Fourier plane at the distance 2f behind the exit
mirror. The 2f transformation of a paraxial field amplitude yields the spatial Fourier transform [17, 20]

ke2ikf P of
Eout(x, y, t) — ——Equ (—x, =y, t — 7). 27
(oo 1) = B0 @7)

Being subject to a thin absorbing or phase-shifting plate, the field is then multiplied by a transmission function
[1—b(x, )], modulating its amplitude or phase where b(x, y) = 0. This is followed by another 2f transform
leading to the detection field
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Edet(-x> )/> t) = 7e4ikf|:E0ut(7x> *)’> t— g) - Eb(*x) *}/, t— %)]y (28)
_ kzdx/dy’~ k.1 k1 / /
Ey(x, y, t) = be (?X > ?)’ )Eout(x +x 9 +y ). (29)

The DF image of a homogeneously illuminated sample structure is obtained by blocking the undiffracted
forward component from the outcoupled field. This can be realized here by placing an absorbing element in the
origin of the Fourier plane (see figure 1), e.g. a circular obstacle with radius ¢ > f/kw, so

that b(q) = Ji(q0)2mo/q.

If the relevant sample size is much smaller than the Gaussian waist w of the incident probe field (1), we can
choose an absorber size g that blocks only the undiffracted beam and lets almost all the diffracted light pass. The
blocked field (29) is then approximately given by the output field of the 8f imaging cavity with an empty sample
plate. Note that the sample pixel is now imaged onto the same pixel on the detection plane.

In the short-pulse limit, the DF detection signal becomes

AT\ AT — AP

]glr:l):ETZQin ts)\ \ _tgA A
+ A + = A

(30)

The output pulses associated to even and odd sample interactions are now of the same magnitude, and there is
no need to subtract another reference term. In the WS limit (6), the even orders are identical to (26) before, and
the odd ones are also of second order in the weak sample response
=2/41
QU "V & Imx P QLY (31)

ref *

For the Zernike phase contrast method, the opaque plate in the Fourier plane behind the exit mirror is
replaced by a phase plate that shifts the undiffracted background field component by +7/2 [16]. The field
arriving at the detector in the Zernike scheme can be understood as a superposition of the background-free DF
signal and the 7/2-shifted undiffracted field without sample. Depending on the sign of the phase shift the
technique is referred to as negative (Znk—) or positive (Znk+) phase contrast microscopy. We obtain the signal
from the DF case by inserting a complex prefactor, b(x, y) — (1 F i)b(x, y). Repeating the above
approximation steps then yields

AT — A" Nt A P 5
Qe = TBQ | 65— ~ A F Dty — = | = Q& (32)
+ = A= +— A_

Once again, we subtract the bright offset from the actual sample response, because, contrary to the DF case, the
phase plate does not remove the reference signal (24). The Zernike configuration can provide strong signals even
for weak phase shifts of optically thin, transparent samples, as the phase response now appears in first order after
full round trips. The WS limit yields

Q! ~ 2 mx QY

ref *

(33)

It has the same form as the BF signal (25), but with F x, instead of ;.

2.4. Enhanced phase estimation by multi-passing

We have shown that the phase or extinction signature of weak optical samples is generally enhanced linearly (in
BF and Znk schemes) or quadratically (DF) by the number m of times a probe field interacts with the specimen in
the imaging cavity. This gain in measurement sensitivity with respect to the accuracy of a single-pass microscope
(limited by shot noise) becomes apparent if we view the WS imaging as a parameter estimation problem.

In the absence of extinction losses and sample holder, a WS imprints the phase y = Xy onto the coherent
probe light upon each interaction. This phase can be estimated in the Znk+ scheme, where the purpose of the
phase plate in the outcoupling stage is to interfere the phase-shifted component of the probe field with the
unshifted one. The MP scheme implements the sequential application of the phase shift to one of the two
interfered components. We then estimate the phase after 1 passes by means of the difference between the
detected photon numbers of the sample pixel and an empty reference pixel. Using simple error propagation of
the respective shot noise, we get a mean estimate and error [21, 22]

- VN 4 N
N — Neet Sy ~ #, (34)

2 ml\fref ’ - 2 ml\]ref

Xest ~

with Nand N,.rthe mean photon numbers of sample and reference pixel, respectively. Given that the latter are of
about the same magnitude, we find 6 ~ 1/./2N,¢f m. Compare this to the 1/,/2N,,; scaling of a single-pass
measurement with the same number N, = m N,.¢of photon-sample interactions, or ‘physical resources’ for
that matter [23]. By increasing the number m of passes (‘queries’) at the expense of input light intensity the MP
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scheme beats the single-pass scaling. In the optimal case when the imaging cavity supports many passes, the 1 /m
scaling will dominate, and the phase uncertainty approaches the limit of 1 /Ny scaling [21, 24-27].

If sample damage is an issue, one can adjust the input intensity for a fixed number of photon-sample
interactions, i.e. constant N,¢ 7. In this case, which will be studied in detail below, the error scales like 1/ /.
For an equivalent CW or RD detection scheme, the same proportionality holds with 2(#) > 1instead of m.

3. Signal to noise at constant damage

We will now compare the various imaging modalities in terms of signal to noise at constant damage. As an
illustrative example we will discuss the use of cavity enhanced microscopy for the characterization of ultra thin
films of carbon and boron nitride (BN) with light of 632 nm wavelength. Density functional theory calculations
yield an index of refraction of graphene of 2.71 + 1.41i [28]. At this wavelength BN has a refractive index of 1.8
[29], where the imaginary part is negligible due to the large bandgap of 5 eV [30]. The susceptibility of the two
materials can be obtained from (5). The thickness of a monolayer of graphene and BN is 3.35 A and 3.33