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Abstract
Estimating smallholder crop yields robustly and timely is crucial for improving agronomic practices,
determining yield gaps, guiding investment, and policymaking to ensure food security. However,
there is poor estimation of yield formost smallholders due to lack of technology, andfield scale data,
particularly in Egypt. Automatedmachine learning (AutoML) can be used to automate themachine
learningworkflow, including automatic training and optimization ofmultiplemodels within a user-
specified time frame, but it has less attention so far. Here, we combined extensive field survey yield
across wheat cultivated area in Egypt with diverse dataset of remote sensing, soil, andweather to
predictfield-level wheat yield using 22Mlmodels in AutoML. Themodels showed robust accuracies
for yield predictions, recordingWillmott degree of agreement, (d> 0.80)with higher accuracy when
super learner (stacked ensemble)was used (R2= 0.51, d= 0.82). The trainedAutoMLwas deployed to
predict yield using remote sensing (RS) vegetative indices (VIs), demonstrating a good correlation
with actual yield (R2= 0.7). This is very important since it is considered a low-cost tool and could be
used to explore early yield predictions. Since climate change has negative impacts on agricultural
production and food security with some uncertainties, AutoMLwas deployed to predict wheat yield
under recent climate scenarios from theCoupledModel Intercomparison Project Phase 6 (CMIP6).
These scenarios included single downscaledGeneral CirculationModel (GCM) as CanESM5 and two
shared socioeconomic pathways (SSPs) as SSP2-4.5and SSP5-8.5during themid-termperiod (2050).
The stacked ensemblemodel displayed declines in yield of 21%and 5%under SSP5-8.5 and SSP2-4.5
respectively duringmid-century, with higher uncertainty under the highest emission scenario (SSP5-
8.5). The developed approach could be used as a rapid, accurate and low-costmethod to predict yield
for stakeholder farms all over theworldwhere ground data is scarce.

1. Introduction

Smallholder farms are increasing around theworld, particularly in arid and semi-arid regions, despite regular
natural disasters and food insecurity [1, 2]. Accurate and timely estimation of smallholder production is crucial
for agronomicmanagement optimization, investment guidance, yield gap analyses, and policy formulation to
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improve food security [3, 4]. Furthermore, climate change [5], management practices, and land fragmentation
all contribute to considerable heterogeneity in yield productivity by smallholders in arid and semi-arid areas [6].
Yield estimates necessitatemassive ground observations and specialized technologies, yetfield scale yield and
weather observations are sometimes unavailable,making smallholder yield assessment a challenge.

Satellite remote sensing (RS) can be utilized to estimate smallholder yield in a fast and low-cost approach on
a spatial explicit system [7–10]. RS can be used in crop typemapping and estimating yield using various
vegetative indices (VIs) [11–13]. Among these indices are normalized difference vegetation index (NDVI), and
enhanced vegetation index (EVI), both of which are widely used [14–16]. However, the applicability of using
NDVI and EVI to estimate crop yield has some limitations due to their dependence on crop types and region
conditions, requiring the development of other indices such as green chlorophyll vegetation index (GCVI), wide
dynamic range vegetation index (WDRVI), andGreenNormalizedDifferenceVegetation Index (GNDVI)
[17–20]. In the current study, we used allfiveVIs, NDVI, EVI, GCVI,WDRVI, andGNDVI, to estimate wheat
crop yield with low constraints.

However, relying solely onVIs to estimate yield is insufficient because they do not consider the effects of
environmental stresses on crop growth and development [21, 22]. This emphasizes the significance of
incorporating other variables such as climate, soil qualities, and terrain.Weather variables such as air
temperature and rainfall are commonly utilized to predict agricultural productivity [23]. Because of the
relevance of griddedweather data as crucial inputs for yield prediction systems, the use of direct weather data has
lately spread [24, 25]. Furthermore, climate change has a negative impact on crop production [26], necessitating
ongoing research to investigate these impacts and create viable solutions. Thus, considering weather data
variables in yield prediction systems is not only important for current yield predictions, but also in the future
predictions. Because of the complex relationships between soil properties and crop yield [27], soil properties are
also important variables in crop yield predictions [28], necessitating the best understanding of landscape and soil
property variability and their effect on crop yield, which is a critical component of site-specific and sustainable
management systems [29, 30]. Topography is considered one of themost important factors affecting crop yield
[31], yet it has less attention so far to be used in crop yield predictions at scale. Elevation, slope, and aspect are
topography factors that are important for characterizing spatial heterogeneity and the abiotic environment in a
given region [32]. Nevertheless, integrating thesemultivariate variables of RS, climate data, soil properties and
topography in a fusion approach to predict crop yield at scale has less attention so far, confirming the
importance of the current study to develop this approach to predict wheat yield spatially in Egypt.

Yield prediction is often done dynamically using cropmodels [33–35], or statistically using statistical
regressionmodels [36, 37], depending on the dataset availability and user knowledge. Cropmodels are powerful
tools in predicting yield and attributed physiological processes of crop growth and development under different
Genotype (G)×Environment (E), andManagement (M) [38–40]. Cropmodels, on the other hand, require
high-quality inputs such as soil, weather,management practices, genetics, and costly computations [41],
restricting their application in yield prediction at scale and presenting uncertainties [42, 43]. Furthermore, crop
models have restricted inputs, and integrating extra variables such as remote sensing indices and geographic
characteristics necessitated subroutine development, whichmight take a long time [44].Machine learning (ML)
uses training and testingmethods to estimate crop production based on crop yield and region characteristics
(i.e., RS, climate, soil, and topography), demonstrating their ability to include broad and diverse dataset [45, 46].
ML often beats traditional linear regression because it can separate the effects of co-linear factors and examine
hierarchical and nonlinear interactions between predictors and target variables [47, 48]. Furthermore,MLoffers
additional benefits such as, but not limited to, decreased computation requirements, working simply and
quickly in big data at spatial explicit routine, explore the important features (predictors), and the ability to
include different variables influencing the response variable [49]. Thus, AutoML could be used as a fast, robust
and cheaper tool to help decisionmakers with yield predictions at scale. There are differentMLmodels which
could be used in crop yield predictions such asNeural Networks [50], clustering, random forest and support
vectormachines [51, 52], and deep learning [53].

Integrating severalMLmodels is crucial in applications to enhance prediction andminimize uncertainty,
requiring an integrated library for rapidly and robustly using numerousMLmodels. Previously, the
development of traditionalML focused on design procedure ofMLmodels (i.e., feature engineering,model
selection, algorithm selection, hyperparameter tuning, etc), which are time-consuming and cannot be easily
redesigned by non-experts [54]. To this end, several AutoML frameworks includeAuto-Sklearn [55], tree-based
pipeline optimization tool [56], Genetic automatedmachine learning assistant [57], AutoGluon [58], andH2O
AutoML [59] has been proposed to automatically compare and deploying high-performanceMLmodels. These
AutoML frameworks have been applied in various disciplines including the estimation of crash severity [60],
classification [61], and epidemiology predictions [62]. Nevertheless, AutoMLhas not been tested in yield
predictions based different data sources of remote sensing, field surveys, soil grids andweather conditions,
emphasizing the current study novelty. Creating straightforward, uniform interfaces to a range ofmachine
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learning algorithmswas one of the first steps towards simplification ofmachine learning (e.g. H2O) [63]. H2O’s
AutoML can be used to automate themachine learningworkflow,which includes automaticmodel training and
tuningwithin a user-specified time constraint [64], outperforming the traditionalML techniques. Because of the
importance of employing a stacked ensemblemodel (a combination of severalmachine learningmodels) in
improving predictions, H2O’s AutoML can prepare it automatically in a limited number of scripts code and in a
straightforwardmanner. Nonetheless, this librarywas newly launched and has received less attention in
agricultural systems and crop yield estimates thus far. Furthermore, integrating various predictors such as RS,
soil properties, topography, andweather data intoML to predict crop yield at scale still needmuch attention,
particularly in arid and semi arid regions.

Therefore, the overall objective of this work is to develop a fusion approach inH2O’s AutoML that combines
various variables of RS, soil, weather, and topography dataset to predict wheat yield at scale in Egypt (area of
interest). To achieve such goal, different objectives were considered and included: (I) collection of ground truth
points of winter crops and farmerwheat yield; (II) crop typemapping using ground truth points, and random
forest classification; (III) developing fusion approach of yield predictions at spatial explicitmanner; and (IV)
determiningwheat yield based onRS indices and climate change scenarios.

2.Materials andmethods

2.1. Study region
Egypt is the area of interest (figure 1) as it is the largest wheat importer countryworldwide, its strategic location
between three continents (Africa, Asia, and Europe), its rapid population growth, land fragmentations, and its
arid climate. The geographical boundary of Egypt is latitude 22°–32°Nand longitude 25°–35°E (figure 1).
Wheat is the dominant winter crop in Egypt, and the total cultivation area of wheat is around 1.5 M ha. In
general, Egypt’s climate is dry and hot in summer (April-September) and somewhat damp and cold inwinter
(October toMarch) [65]. Temperature increases fromNorth to South of Egypt and the average increase ofmean
temperature reaches about 3 °C–5 °Cduringwheat growing season (November—April) [25].

2.2.Data processing
Different geospatial datasets were collected and included vegetation indices (Eq1-Eq5), topography, soil
properties, weather dataset, and field survey data. Five RS indices such asNormalizedDifference Vegetation
Index (NDVI), EnhancedVegetation Index (EVI), green chlorophyll vegetation index (GCVI), Green
NormalizedDifference Vegetation Index (GNDVI), andWideDynamic RangeVegetation Index (WDRVI)were
processed and downloaded inmonthly time steps using TerraVegetation Indices 16-DayGlobal at 250 m
resolution fromGoogle Earth Engine (GEE). Other static variables as topography (elevation, aspect, and slope),
as well as soil properties (i.e., sand, silt, clay, soil organic carbon, pH, and bulk density)were also downloaded by
MODIS at 250 m resolution and calibrated using observed dataset in two locations. Tomatch the yield data in
Egypt, we aggregated such indices to thefield level. Such processes were implemented inGoogle Earth Engine
(GEE).Monthly weather data such asmaximum temperature,minimum temperature, solar radiation, and
precipitationwere collected fromThe ERA5 global reanalysis at 31 km resolution [66].Meanwhile, CMIP6
climate scenarios include oneGeneral CirculationModel (GCM) as CanESM5 and two shared socioeconomic
pathways (SSPs) as SSP2-4.5 and SSP5-8.5 during themid-termperiod (2050)were extracted from recent
downscaled data by [67]. To alignwith the response variable (yield) of refined 2000 yield survey locations, we
extracted the geospatial dataset of RS, soil, andweather for the same yield sites from the area of interest’s raster
dataset (Egypt). Analysis and description of all yield data and secondary dataset are presented in S. Table 1.
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Where, NIR is the near-infrared band, R is the red band,G is the green band, and B is the blue band.
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2.2.1. Field survey wheat yield
TheAgricultural ResearchCenter in Egypt (ARC) employed agricultural specialists and agronomists to evaluate
yields in over 2500fields annually through 2020/2021 and 2022/2023 growing seasons2, covering theNile valley
andDelta. The experts took five 3× 3m2 plots diagonally, one from each of thefield’s four corners and its
center, at random from eachfield. Threemeasurement replications were used to examine the 1000-grainweight
and quantity of kernels in 20 typical ears within the sample plot. The following equationwas used for the final
yield estimation:

Y EN KS GW 0.85 6= ´ ´ ´ ( )

Where Y is the final yield (kg ha−1), EN is the number of ears, KS is the number of kernels per spike, andGW is
the 1000-grainweight. To ensure that the yield is totally drywithoutmoisture, the product wasmultiplied by
factor 0.85. For the growing season 2021/2022, farmers’field surveys were deployed by ICARDAusing a
structured questionnaire withfields geotagged from the particular plot. Data cleaning processes were done on
the rawdata to remove any outliers. The detailed outputs of wheat yieldwhich includes different cultivars and
planting dates were presented infigure 2.

2.2.2.Wheat cultivated area
Ground truth points of wheat and otherwinter cropswere collected over three growing seasons (2020, 2021, and
2022) for preparing crop typemapping. RandomForest classificationmachine learningmodel was used to train
and test these points by Sentinel 2 [68] at 10 m resolution inGEEusing free cloud images (https://github.com/

DrAhmedKheir/CropTypeMapping.git) . Supplementary figure 2 represent crop typemapping in Egypt for
threewinter growing seasons, 2020,2021, and 2022with accuracy 0.912, 0.90, and 0.913 respectively. From these
maps, wheat cultivated areawas extracted (figure 1), and used as amask for the estimated yield.

Figure 1.The analytical framework of the developed approach to achieve the study objectives. Ground truth points of winter crops
during three successive growing seasons (2019/2020, 2020/2021, and 2021/2022)were used in random forest classifier for producing
crop typemapping inGoogle Earth Engine. Thewheat cultivated areawas extracted from thesemaps and used as amask of the spatial
predicted yield. The developedH2OAutoML approachwas trained and tested using a fusion ofmultiple dataset such as soil grid, ERA5
weather data, topography (i.e., elevation (S. Figure 1), aspect, and slope), and remote sensing vegetation indices which are used as
predictors. The actual wheat yield collected bymany survey roundswas used as a target variable (response) to train and test theML
approach. The default testing by dividing the entire data set into 80% training and 20% testing using a random selection approachwas
used in training and testing the dataset. Following the training, the validatedmodels were deployed for unseen predictions of wheat
yield using two approaches, thefirst approach is to predict wheat yield usingRS vegetative indices; and the second approach is to
predict wheat yield usingCMIP6 climate scenarios in themid term (2050).
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2.3.H2OAutoML
The open source, scalable, networkedmachine learning frameworkH2Ohas a completely automatic supervised
learningmethod calledH2OAutoML. In addition to awebGUI,H2OAutoML is also accessible in Python, R,
Java, and Scala. The technique is entirely automated, butmany of the settings aremade available to the user as
parameters so that some parts of themodelling phases can be changed. In our case, we developedH2OAutoML
inR language and the full script is hosted onGitHub at https://github.com/DrAhmedKheir/H2O_
AutoML.git.

2.3.1. Dataset preprocessing andAutoML training
Currently, all H2O supervised learning algorithms offer the same kind of automatic data-preprocessing asH2O
AutoML. Categorical data can be handled natively becauseH2O tree-basedmodels (Gradient Boosting
Machines, RandomForests) provide group-splits on categorical variables. Although it is not yet included in the
most recent stable release (H2Ov3.30.0.3), there are benchmarked several automatic target encoding strategies
for high cardinality features in experimental versions of the algorithm. TheH2OAutoML roadmap includes
additional data pre-processing procedures like automatic text encoding usingWord2Vec, feature selection, and
feature extraction for automatic dimensionality reduction [63]. TheAutoML techniques can assist in designing
the optimalMLmodels in a constrained amount of time by automatically choosingMLmodels and stack
ensembles based on various algorithms and training strategies [54].With just one function, theH2OAutoML
offers a distributedML learning platform that can quickly and thoroughly automate the training of candidate
models and stacked ensembles. A scoreboard based on a variety ofmodel performance indicators, training
duration, or average prediction speedwill list all candidatemodels. Fast random search and stacked ensembles
are combined inH2OAutoML to trainmany algorithms, including deep neural networks, random forests,
XGBoost gradient boostingmachines (GBM), and generalized linearmodels.

Figure 2.The Sankey diagram shows the actual yield from farmers subjected to different cultivars and sowing dates. About 60 cultivars
and 40 sowing dateswere used in the analysis.
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2.3.2.Models
H2OAutoML includes basemodels and Stacked Ensembles. The basemodels include XGBoostGradient
BoostingMachines (GBM), Gradient BoostingMachines (GBM), RandomForests10 (Default and Extremely
Randomized Tree variety), DeepNeuralNetworks andGeneralized LinearModels (GLM), allowingGPU
acceleration of training. If the basemodels are each strong and have uncorrelated errors, stacked ensembles, or
super learners, perform especially well. A very diversified set of basemodels are produced via random search
across numerous algorithm families, andwhen stacking is added, powerful ensembles are created. Here, we
chose 20models inH2OAutoML, and the outputs comprised 22models, implying that two stacked ensembles
were created, one for allmodels and another for the best of allmodels. Table 1 displays the names and accuracy
of thesemodels.

2.3.3. Random grid search parameters
To offer the optimalmodel, AutoML conducts a hyperparameter search over a range ofH2O algorithms. The
hyperparameters and all possible values that could be selected at random for the search are listed in
Supplementary table 2. It’s interesting to note that AutoMLdoes not perform a conventional grid search for
GLM that returns all potentialmodels. As an alternative, AutoML creates a singlemodel while enabling
lambda_search and passing a list of alpha values. Instead of returning onemodel for each alpha-lambda
combination, it just returns themodel with the best alpha-lambda combination.

2.4. Performance assessment of the bestmodels
In addition to previous indicators used inH2OAutoML (table 1), we introduced other statistical indicators to
assess themodel performance. These indicators included determination coefficient (R2), relative bias (RB), root
mean square deviation (RMSD) [69], andWillmott degree of agreement (d) [70]. Detailed description of
calculating each parameter are presented by [36]. The indicator R2 provides ameasure of howwell the
independent variable(s) in themodel explain the variability in the dependent variable. The R-squared value
ranges from0 to 1, with 0 indicating that themodel does not explain any variability in the dependent variable,
and 1 indicating that themodel perfectly explains all the variability. Relative Bias is a normalizedmeasure that
expresses the bias as a percentage of the true values. It is particularly useful when comparingmodels or assessing
the accuracy of predictions in different contexts. Relative Bias is calculated by summing the differences between
predicted and observed values, dividing by the sumof true values, and thenmultiplying by 100 to express the
result as a percentage. ARelative Bias of 0% indicates no bias, positive values indicate overestimation bias, and
negative values indicate underestimation bias. RMSD is particularly useful when youwant to penalize larger

Table 1. List ofmodels and related accuracies fromH2OAutoMLordered fromhigher accuracy [1] to lower accuracy [22].

No Model_id RMSE MSE MAE RMSLE MRD

1 StackedEnsemble_AllModels_1_AutoML 1.225725 1.502401 0.902811 0.198735 1.502401

2 StackedEnsemble_BestOfFamily_1_AutoML 1.229863 1.512562 0.905335 0.19929 1.512562

3 GBM_4_AutoML 1.237023 1.530225 0.907529 0.19986 1.530225

4 GBM_5_AutoML 1.237726 1.531965 0.915031 0.201057 1.531965

5 GBM_2_AutoML 1.240838 1.53968 0.912857 0.201092 1.53968

6 XRT_1_AutoML 1.243359 1.545941 0.90307 0.200125 1.545941

7 GBM_3_AutoML 1.244005 1.547549 0.914904 0.201274 1.547549

8 GBM_grid_1_AutoML 1.245269 1.550696 0.910393 0.199793 1.550696

9 DRF_1_AutoM 1.246086 1.552732 0.903185 0.20058 1.552732

10 GBM_grid_1_AutoML 1.250137 1.562842 0.919526 0.202063 1.562842

11 GBM_grid_1_AutoML 1.254352 1.573398 0.932354 0.203407 1.573398

12 GBM_grid_1_AutoML 1.264679 1.599413 0.941779 0.205372 1.599413

13 GBM_grid_1_AutoML 1.264712 1.599497 0.941486 0.206597 1.599497

14 GBM_1_AutoML 1.324547 1.754425 1.008931 0.217644 1.754425

15 DeepLearning_grid_2_AutoML 1.457579 2.124536 1.094931 0.240186 2.124536

16 DeepLearning_grid_2_AutoML 1.480585 2.192131 1.113768 0.246797 2.192131

17 DeepLearning_grid_3_AutoML 1.484668 2.204238 1.09328 0.244963 2.204238

18 GLM_1_AutoML 1.492311 2.226993 1.170025 0.245378 2.226993

19 DeepLearning_grid_1_AutoML 1.522751 2.31877 1.16936 0.248795 2.31877

20 DeepLearning_grid_3_AutoML 1.531571 2.34571 1.18382 0.254437 2.34571

21 DeepLearning_1_AutoML 1.562223 2.440539 1.195309 0.254975 2.440539

22 DeepLearning_grid_1_AutoML 1.58321 2.506554 1.190176 0.262548 2.506554

RMSE: RootMean Square Error;MSE:Mean Square Error;MAE:MeanAbsolute Error; RMSLE: RootMean Squared Log Error;

MRD:MeanResidual Deviance
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errorsmore heavily than smaller errors. Smaller RMSDvalues indicate better agreement between predicted and
observed values. However, like anymetric, it should be interpreted alongside other relevantmetrics to obtain a
comprehensive understanding ofmodel performance. TheWillmott Degree of Agreement ranges from0 to 1,
with 1 indicating perfect agreement between the observed andmodeled values. A higher value of (d) suggests
better agreement and robustmodel accuracy.

3. Results

3.1. Actual wheat yield and secondary dataset
The dataset from thefield survey included 60 local wheat cultivars and 40 sowingwindows to ensuring a large
number of sites covering all agroclimatic zones in Egypt. The Sankey diagram represented the complex
interrelationships between locations, cultivars, and sowing dates (figure 2). Geiza171, Sakha95, Beniseuf5,
Misr1, andGamizah11were the highest yielding cultivars (figure 2). Furthermore, using awide range of sowing
windows [40], it was found that sowingwheat on the first and/orfifth ofNovember had themaximumyield
(7.5–10 t ha−1). Respecting to the highest yield cultivars and their relationships withmost related locations and
best sowing dates, analysis showed that the cultivarGeiza171 is common in East delta and upper Egypt (Sharkia
and Bani-Suef)while the best sowing date windows ranging 01–05November. The cultivar Sakha95 is very
common inNile delta with broad range of sowing dates (10November—10December). This is a high yielding
and recent cultivar introduced recently to Egyptian local cultivars with high resistance to rust and salinity stress.
There is also another high yielding cultivar inNileDelta calledGamizah11with dominant sowing dates from01
November to 20November.Moving fromhigh latitude (low temperature) to high latitude (high temperature,
South of Egypt), the cultivar Beniseuf5 is very common in such conditions and the best sowing dates are from01
November to 15November. Considering all conditions in Egypt, the cultivarMisr1 showed superiority in either
North or South of Egypt while the best sowing dates are from01–05November.

In terms of secondary datasets such as soil parameters, topography, RS indices, andmeteorological data and
their associations with actual yield, data infigure 3, S. Figure 3, and S. Figure 4 revealed a variety of relationships.
During thewheat growing seasons (November—April), the probability density differed between investigated
vegetative indices (supplementary figure 3). The highest values and densities ofNDVI, EVI, GCVI, GNDVI, and
WDRVIwere 0.8, 0.6, 10, 0.8 and−0.2 respectively. For all indices, themaximumpeakwas noticed during the
months January—March. Different soil properties were considered include soil bulk density (BD), clay
percentage, and organicmatter content (OM). Soil showed heterogeneity fromNorth to South, but the
probability densities showed that the highest values and probability densities of BD, clay andOMwere
1.5Mgm−3, 30%–40%, and 0%–2% respectively. Sincemaximumandminimum temperatures are critical
variables in determining crop yield, analysis showed that growing seasonmaximum temperature ranged from
22 °C–26 °C,whileminimum temperature ranged from11 °C–13 °C (supplementary figure 3). Correlation
analysis showed that therewere positive correlations between clay content in soil, soil organicmatter, andRS
indices (NDVI, EVI, GCVI, GNDVI, andWDRVI)with actual yield.Meanwhile, the yield correlated negatively
withweather data (maximumandminimum temperatures, and solar radiation), elevation and soil bulk density.
This confirms the importance of data diversity and heterogeneity to be used in yield predictions.

3.2. Regression analysis betweenRS indices and actual yield
Remote sensing indices showedweak correlationwith yield though the overall relationship is positive (figure 4).
Yield increasedwith increasing vegetative indices recording R2= 0.035, 0.022, 0.025, 0.022, and 0.022 forNDVI,
EVI, GCVI, GNDVI andWDRVI respectively with significant effect (P< 0.001). Theweak correlationmay be
attributed to considering themonthly average value of each index, rather than considering themaximumpeak
value for each index.Nonetheless, linear regression is a straightforwardmethod that was not considered enough
for predicting yield from vegetative indices, opening theway to various non-linearmachine learning approaches
capable of disentangling the non-linear correlations betweenVIs and yield. There are other reasons for theweak
relationship between vegetative indices and yield using linear regression. Aside fromvegetative indicators, a
variety of factors influence yield, including environmental conditions (i.e., temperature, rainfall, humidity), soil
quality, insect and disease pressure,management strategies (fertilization, irrigation), and genotype. If these
parameters are not considered orfluctuate greatly, the correlation between vegetative indices and yieldmay be
weakened. Furthermore, remote sensing data can be spatially and temporally variable, whichmeans that the
conditions viewed by the satellite or sensormay not exactlymatch those on the ground at the time of data
collection. This unpredictabilitymay contribute noise into the link between vegetative indices and yield,
weakening the correlation. The relationship between vegetative indicators and yieldmight not be strictly linear.
While simple linear regression assumes a linear relationship, the actual relationship between these variablesmay
be non-linear or have diminishing returns. In such circumstances, amore complicated regressionmodel or
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nonlinearmodeling techniquesmay be required to accurately capture the link. Accordingly, we can notice here
in the trainedML improved the accuracy of predicting yield fromvegetative indices since it ismore sophisticated
and considered nonlinear relationships, avoided theweakness of simple linear regression.

3.3. Training and testingH2OAutoML
Ahuge number of candidatemodels are trained automatically byH2O’s AutoML.H2O’s AutoML can also be a
useful tool for advanced users because it offers a straightforwardwrapper function that executesmany
modeling-related tasks that ordinarily requiremany lines of code, freeing up their time to concentrate on other
data science pipeline tasks like feature engineering,model deployment, and data preprocessing.Here we
integrated diverse dataset of soil, weather, RS indices, and topography as predictors while yield represented the
response to train and test 20models inH2O’s AutoML. The automatic training and testing inH2O’s AutoML,
resulted in obtaining 22models, 20models as potentialmodels for the current dataset, in addition to two stacked
ensemblemodels (best of family and allmodels), (table 1). Figure 5 shows the performance of training two
models, random forest, and stacked ensemble (best of family). Although, allmodels (22models, table 1) showed
high accuracy, the stacked ensemble outperformed othermodels include RF and deep learningmodels. The
stacked ensemble (allmodels) outperformed all othermodels, includingGBM,XRT,GBMgrid, RandomForest
(DRF), and deep learning (table 1). The stacked ensemble (allmodels) had lower values for RMSE,MSE,MAE,
RMSLE, andMRD: 1.22, 1.5, 0.9, 0.19, and 1.5, respectively. Such values rapidly grew as othermodels recorded
1.5, 2.5, 1.19, 0.26, and 2.5 using deep learningmodels. Consideringmulti-indices is important to specify the
perfectmodel accuracy, howeverwe included other statistical indicators which aremore common inmodel
performance evaluation such as R2, RB, RMSD, and d. The additional indices were used to compare the accuracy
of the stacked ensemblemodel (allmodels)with another standard andwidely usedmodel such as Random
Forest (figure 5). Suchmetrics indicated that RFR predicted the yield robustly recording 0.48, 2.92%, 0.9 t ha−1,
1.22 t ha−1, and 0.81 for the indices R2, RB,MAE, RMSD, and d respectively (figure 5(A)). Such values improved
to 0.51, 1.03%, 0.85 t ha−1, 1.17 t ha−1, and 0.82when the stacked ensemblemodel was considered (figure 5(B)).

Figure 3.Correlation plot between different variables of vegetation, topography, soil, weather, and yield. TminAvg (averageminimum
temperature), DEM (elevation), TmaxAvg (averagemaximum temperature), SRADAvg (solar radiation), OM (soil organicmatter),
BD (soil bulk density), andRainAvg (rainfall).Weather andRS indices averaged over growing season ofwheat (November to April).
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This confirms the robust accuracy of the stacked ensemble, and the potential of its deployment in yield
predictions using diverse dataset. One of the best advantages ofML, is to explore the important features
contributing significantly to determining the response factor (yield). SHAPplot (figure 6) summarized the
important features from all datasets used in a sequence order. The important features determined the yieldwere
elevation, sand, rainfall, solar radiation, EVI atfirstmonth of growing,maximum temperature, EVI at the fourth
month, averaged EVI over the growing season, silt, EVI at the thirdmonth,minimum temperature, bulk density,
EVI at the secondmonth, clay, soil organicmatter, GNDVI at the firstmonth, GCVI at the secondmonth,
GNDVI at fifthmonth, averagedGNDVI over the season, andWDRVI at the fourthmonth. Interestingly, EVI

Figure 4.Regression analysis between different remote sensing indices such asNDVA (a), EVI (b), GCVI (c), GNDVI (d), andWDRVI
( e)with actual yield.
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andGNDVI outperformed other RS indices in determining yield in the study region.Overall, theWilmott
degree of agreement (d) is greater than 80%, demonstrating the robustness of themodels’ training and their
potential for future predictions.

3.4. Prediction ofwheat yield byAutoMLusing RS indices
The trainedMLmodels were deployed to predict RS yield usingVIs as predictors and actual yield as response.
Figures 7 and 8 show that, theAutoMLpredicted well the spatial wheat yield in Egypt, achieving (R2= 0.70,
P< 0.001)using the stacked ensemblemodel (figure 5(B)). TheML slightly underestimates the yields relative to
the observations, at higher ranges and vice versa in lower ranges. TheAutoML approach can be used accordingly
to early predict the yield before harvesting, provided that determining the RS indices in the target area. Actual
andMLprojected yields ranged from1.0 to 9 t ha−1, with substantial heterogeneity and lower yields in Egypt’s
northern, western, and southern regions (figure 7).

3.5. Yield change under future climate change
Due to using diverse dataset to train and test theML, including weather data, the trainedmodels can be
deployed for predictions under future climate change scenarios. Exploring the future impacts of climate
change on food securitymay help decision-makers with potential adaptations. CoupledModel
Intercomparison Project Phase 6 (CMIP6) scenarios provide valuable information for predicting future
climate change. These scenarios are developed by a suite of climatemodels from research institutions
throughout the world, and they predict possible future trajectories of greenhouse gas emissions, land use
changes, and other climate-influencing factors.While CMIP6 scenarios offer valuable insights into potential
future climate conditions, their coarse resolutionsmay not be suitable for local or regional impact
assessments. Downscaling is a process used to bridge the gap between the coarse resolution of global climate
models and the finer scales required for local or regional analysis. Thus, we used here a downscaledGCM
under two SSPs in Egypt to explore the climate change impacts using the trainedMLmodel. By replacing
maximum and lowest temperatures from the trainedweather dataset with those from SSP4.5 and SSP8.5
(Supplementary figure 5), the trained AutoML accurately predicted yield under future climate conditions
(figures 9(A) and (B)). The Fossil-FueledDevelopment scenario (SSP8.5) showed lower spatial yield than
themoderate scenario (SSP4.5) over Egypt in themid century (figures 9(A) and (B)). The results showed
that wheat yield is projected to decline by 21% and 5%under SSP8.5 (pessimistic) and SSP4.5 (moderate)
respectively during themid of century, 2050 (figure 9(C)). The uncertainty associatedwith SSP8.5 was
bigger than that in SSP4.5. AutoML is a promising tool for predicting wheat yield using RS signals and
under future climate change scenarios, confirming its applicability to update the yield gapmapping
platform.

Figure 5.Actual versus predicted yield by RandomForest (A) and by Ensemble of 20Mlmodels, best estimator (B)usingH2OAutoML
routine.
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4.Discussion

The developed approach (AutoML) is very important in yield predictions outperforming the conventionalML,
since it is capable of producing a large number ofmodels in a short amount of time [63]. Theworld population is
growing faster, in addition to limited natural resources, a wide disparity between food production and
consumption happened, increasing the pressure on food security [71]. Digital agriculture and smart applications
such asML are potential solutions to predict smallholder yields and contribute to enhance their production
using site specific recommendations.We therefore developed a novelML approach (AutoML) to predict yield at
scale using diverse dataset. The developed approachwas built usingmulti-sources data (soil, weather,
topography, and remote sensing), since heterogeneous data include unique information on crop growth
development and yield, improving the crop yield predictions [11, 13, 72]. Although different dataset was
considered, AutoML trained rapidly and accurately than conventionalMLmodels, enabling the predictionwith
large number ofmodels in less time. The important features fromAutoML showed that EVI, GNDVI andGCVI

Figure 6. Feature importance for grain yield (t ha−1) based on SHAP-values for the RandomForest regressionmodel. The local
explanation summary on the right illustrates the relationship between a feature and themodel output in terms of direction.While
negative SHAP-values indicate a decrease in grain yield, positive SHAP-values indicate an increase in grain yield. The features are
elevation (dem), sand, rainfall averaged over the sixmonths from sowing to harvest (RainAvg), solar radiation averaged over the six
months from sowing to harvest (SRADAvg), EnhancedVegetation Index at thefirstmonth (EVIM1), maximum temperature averaged
over the sixmonths from sowing to harvest (TmaxAvg), EnhancedVegetation Index at the fourthmonth (EVIM4), Enhanced
Vegetation Index averaged over the sixmonths from sowing to harvest (MeanEVI), silt content in soil (silt), EnhancedVegetation
Index at the thirdmonth (EVIM3), minimum temperature averaged over the sixmonths from sowing to harvest (TminAvg), soil bulk
density (BD), EnhancedVegetation Index at the secondmonth (EVIM2), clay content in soil (clay), soil organicmatter (OM), Green
NormalizedDifference Vegetation Index at thefirstmonth (GNDVIM1), green chlorophyll vegetation index during the second
month (GCVIM2), GreenNormalizedDifference Vegetation Index at the fifthmonth (GNDVIM5), GreenNormalizedDifference
Vegetation Index averaged over the sixmonths from sowing to harvest (MeanGNDVI), and theWideDynamic RangeVegetation
Index over the fourthmonth (WDRVIM4).
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outperformed other RS indices (NDVI andWDRVI) in determiningwheat yield. There were considerable
disparities inVIs selection and yield estimation accuracy due to varied crop growth stages and cultivars [73]. The
outperforming ofGNDVI andGCVI could be explained by the strong correlation between chlorophyll content
and LAI [74, 75]. However, due to land fragmentation in Egypt, and using different cultivars and agronomic
practices by smallholder farmers, it is recommended to use all VIs inML to predict the yield. The lower yield at
someNorthern,Northern-Western and Southern parts of Egypt (figure 7), ismainly attributed to soil salinity
issues atNorth [34, 76], and higher temperatures in the South [25]. This is another proof supporting our
approachwhich uses heterogeneous data sources include soil and climate in crop yield predictions.

Our research presents an accurate and low-cost framework to predict smallholder production over timeway
by integrating disparate source data, theGEEplatform, and the AutoML technique, which has substantial
implications for crop yield forecasting and site-specificmanagement practices. However, likemany others, our
study has some uncertainties which need to be covered as future directions. AlthoughVIs successfully caught
some yield variability, some significant variability remains unaccounted for. Some of these variabilities could be

Figure 7. Spatial distribution of actual wheat yield (A), and remote sensing yield (B) over Egypt during the growing season 2021/2022.
Remote sensing yieldwas predicted using different vegetative indices (figure 4) and the super learnermodel (stacked ensemble-best of
family, figure 5(B)).

Figure 8.Actual yield versus remote sensing yield predicted byH2OAutoML approach using different vegetation indices such as
NDVI, EVI, GCVI, GNDVI, andWDRVI.
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attributed to errors infield survey, cloud cover impacts, aerosol, field size (edge pixel effect), and poor
management by smallholders [77, 78]. Statisticalmeasures in Supplementary table 1 revealed that the standard
deviation of predicted yield is 1.58, indicating that the data is dispersed around themean. Furthermore, the
mean absolute deviationwas 1.07, indicating some fluctuation around themean. The−0.59 skew indicates a
longer left tail. Such heterogeneity can be attributable tofield survey data received from farmers using diverse
cultivars andmanagement approaches.Moreover, the interacting effects of various uncontrolled environmental
and socioeconomic factorsmight have a significant impact on the results of farm surveys [79]. In addition to
survey data variability, there is also variability fromother factors such as cloud cover effect onRS signals, as
noticed by increasing standard deviation and skews (S. Table 1). All these variabilities contributed to causing the
model performance uncertainties. Overall, a novel and robust AutoML approach has been developed achieving
satisfactory accuracy and could be applied in other environments to predict smallholder yield using different
data sources, rather than using the traditionalmachine learning approaches [80–82]. Thework strengths could
be summarized in developing a novel automaticmachine learning library for fast, quick, and robust predictions
using themaximumnumber ofmodels include the ensemblemodel. This is thefirst paper to develop an
automatedmachine learning approach the agricultural systemsworldwide. Furthermore, the trainedAutoML
was deployed for early yield predictions using RS vegetation indices, achieving robust accuracy. This can help
farmers and decisionmakers for early prediction of yield before harvesting, contributing to preparing economic
recommendations for stakeholders. As climate change is a hot spot right nownegatively affected global
production and food security, the developed approachwas deployed for a single GCMand two SSPs inCMIP6
scenarios. Nevertheless, further application of the developed approachwithMultiple GCMs in different
locations could be a future direction. The application of the trainedAutoMLmodels in other geographic
conditionswith different environments and crop types requires careful consideration of factors such as transfer
learning, feature engineering, ensemble learning, adaptive learning, domain adaptation, and collaborative
learning. By leveraging these approaches in conjunctionwith domain knowledge and stakeholder engagement, it
is possible to developmore resilient andwidely applicableML solutions for agriculture. Furthermore,
integrating this approachwith cropmodels will enhance the yield prediction, taking advantage of process-based
models in integrating crop physiological processes and cultivar genetics. Cropmodels andML approaches offer
distinctmethodologies for predicting crop yields, eachwith its own strengths and limitations.While crop

Figure 9.Predictedwheat yield under future climate during themid century (2020–2050) using two SSPs (SSP2-4.5 (A) and SSP5-8.5
(B) under oneGCM (CanESM5) using the super learnermodel from the developedH2OAutoML approach (stacked ensemble-best of
family, figure 5(B)), as well as the change of wheat yield under future climate change scenarios relative to current yield (C). CMIP6
scenarios included oneGCMasCanESM5 and two shared socioeconomic pathways (SSPs) as SSP2-4.5 and SSP5-8.5 which
downscaled statistically byKheir et al 2023 for the study area.
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models providemechanistic insights into crop growth processes and explicit representation of uncertainty,ML
models offer flexibility, scalability, and potential for high predictive accuracy. Integrating both approaches can
leverage their complementary strengths to enhance yield predictions and better understand the impacts of
environmental variability and climate change on agriculture. Cropmodels andmachine learning can be
integrated [83] by employing cropmodel inputs and outputs as predictors inML, togetherwith other external
variables that cropmodels cannot include, such as salinity, pests, diseases, and terrain, to predict yield at spatial
explicit. Therefore, future directions could be done by coupling the developed approach (H2OautoML)with
cropmodels to not only predict the current spatial yield, but also to explore future impacts, adaptation, and
mitigation to climate change. This will be taking advantage of each other, and eliminate their limitations,
improving the prediction and reducing uncertainty, which is important to policy recommendations for food
security and nutrition.

5. Conclusion

Based onmulti-source dataset and extensive field surveys over Egypt, we integrated soil, topography, weather,
and remote sensing data to build a novel and automaticmachine learning approach (AutoML) for estimating
smallholder yield. Training and testingwere accomplished quickly and accurately using 20models in the new
approach, proving AutoML’s outperformance over conventionalML. Considering different VIs as predictors,
AutoMLpredicted yield accurately when comparedwith actual yield.When compared to traditional
correlations, the developedML approach (AutoML) predictedwheat yield using remote sensingVIswith a high
correlation to actual yield. The developed approach also demonstrated the capability of predicting yield under
future climate change. Thismethod could be used to forecast yield for stakeholder farms all over theworldwhere
ground data is scarce.
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