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Abstract
Broadband electromagnetic characterization offers useful tools for the quantitative estimation of
water content in a insulating solidmaterials. However, the correlation between electromagnetic
characteristics and the amount of water in solids needs to be characterized using precise direct
measurementmethods. In this study, a two-port coaxial transmission cell has been characterized for
water content estimation based on a studywith the thermo-coulometric water detectionmethod. The
latter allows us to determine the proportions of the different water bonding forms that can exist in the
material. The purpose of this paper is to provide a dielectric relaxation behavior study of the kaolinite
clay from10MHz to 1.5 GHz, whichwas preceded by an experimental analysis ofα-D-lactose
monohydrate and the calciumoxalatemonohydrate, which have stable water content under various
humidity conditions.

1. Introduction

Thewater content is a key parameter in several domains such as industrial production processes,
pharmaceuticals and civil engineering. Consequently, the number of studies and the amount of research in this
field is constantly increasing in recent years, especially tomeasure the quantity of waterwhich is difficult to
access, usually named boundwater. In the case of soil science and geology, boundwater can be defined as the
water held in soils bymolecular or electromolecular forces [1]. On the other hand, freewater is defined as the
water that is related only by the gravitational forces in the clefts andmacropores and can be evaporatedwithout
external energy.

In order to quantify the different types of water bonds in solids, usually Thermal analysis (TA)methods [2, 3]
aswell as the chemicalmethods like Karl Fischer titration [4] are used as references techniques.

For indirectmethods, NMR relaxationmeasurements [2] and 1Dmagnetic resonance imaging [5]have been
used to estimate free and boundwater fractions in solides.

In terms of electromagneticmethods, the incomplete definition of the properties of boundwater are
discussed in [6]. However, the idea, that is widely accepted from a long time, that the relaxation frequency of
boundwater should be positioned between the relaxation of liquidwater (10 GHz) and that of ice (5 kHz) [7].

Inporouswetmaterials, thewatermovement is inducedbydifferent surfacebonding forcesdue to interface
processes [8–11]. Therefore, these interface effects cause anoverlapofnumberof dielectric relaxationsprocesses (free
andboundwater,Maxwell-Wagner and surface-polarization effects). All these relaxationprocesses are the effects of the
particular deformations in thedielectric spectrumof thematerial at frequencies less than1.5 GHz [1, 9, 12].

In addition to the aforementioned relaxation processes, the dielectric spectrum can be affected also by ionic
conductivity. This is especially significant for samples with very highwater content, where itmasks all other
phenomena.Hence, the contribution of this dc-conductivity can be easily identified by the change in the
dielectric spectral behavior in low frequencies.
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Therefore, in this work the two-port coaxial transmission cell (1”5/8) [13]has been characterized forwater
content estimation based on the complex relative dielectric constantmeasurement in the frequency range from
10MHzup to 1.5 GHz.

In this study, kaolinite, with varyingwater content,α-D-lactosemonohydrate and calciumoxalate
monohydrate were investigated using the thermo-coulometric water detectionmethod, which allows us to
determine the proportions of variouswater bonding forms that can exist in thematerial (free and bound). The
measurementsmadewith this directmethodwere carried out in parallel andwith the same samples that were
measuredwith the coaxial cell.

2. Experimentalmethods

2.1. Sample preparation and experimental protocol
The samples studiedwereα-D-lactosemonohydrateC12H22O11.H2O , CASNumber: 5989-81-1, calcium
oxalatemonohydrateCaH2O4.H2O , CASNumber: 5794-28-5, both fromACROSOrganics and kaolinite clay
Al2Si2O5(OH)4 . Thefirstmaterial, is often used in the pharmaceutical field and inmany dry foodmixtures. Its
key property is a stable lowwater content, around 4.9% (wet basis). This corresponds to the ‘water of
crystallization’ and is strongly bound to the solidmatrix. Therefore, this water cannot be releasedwithout
heating thematerial [14–16].

´ + ⟶C H O H O C H O H O12 22 11 2 12 22 11 2

The secondmonohydrate has a higherwater content thanα-D-lactose, around 13% [17]. As thismaterial is
only 98%pure, the impurities increase the probability of absorbingwater from the environment. The latter
would exhibit different properties from themonohydrate water as itʼs not bound by the same phenomena.

´ + ⟶CaH O H O CaH O H O2 4 2 2 4 2

Numerous experiments using directmethods, both thermo-coulometric and loss-on-drying, with the
monohydrate samples have established that thewater content of thesematerials is distributed homogenously in
the powderedmaterial.

In this paper, all the reportedmeasurements are carried out in an air-conditioned laboratory (temperature
20±1 °Cand air humidity 40±4%RH). To have a better correlation between dielectricmeasurement and
water content, the same sample is used in parallel in both coaxial cell and in thermo-coulometer.

2.2.Dielectricmeasurement using coaxial line
Measurements of the complex dielectric permittivity weremadewith the same two-port coaxial transmission
cell (1”5/8 figure 2) in the frequency range between 10MHz and 1.5 GHz usingAnritsuMS2038CVector
NetworkAnalyzer (VNA).

The sample for coaxialmeasurements is in the shape of hollow cylinder with an outer diameter of 38.8 mm
and an inner diameter of 16.9 mmwith a thickness equal to 3 cm (figure 1).

The calculation of the complex permittivity wasmade using theNicolson- Ross andWeir (NRW) algorithm
as described in [18–20]which correlates the S-parameters of the sample with the Transmission (T) andReflexion
(Γ)coefficient G∣ ∣ 1 , and consequently with the complex permittivity and complex permeability, as described
in the following equations:
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Where L is the sample length.

2.3. Thermo-CoulometricWater detection
Tomeasure thewater content and the proportions of the variouswater bonding forms that can exist in the
materials, we used the thermo-coulometric technique. The instrument, EasyH2O one thermo-coulometer
(Berghof Products+Instruments GmbH,Germany)uses a P O2 5 sensor for the direct quantification of thewater
content via the Faradays law. An electric current occurs at the sensor is proportional to themass of the absorbed
water according to this equation:
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D = ( )I t F
m
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Where:

• I is the sensor electric current

• Δt is the time of analysis

• F is the Faraday constant

• mwater ismass of absorbedwater

• Mwater is themolarmass of water

• z is the number of electrons exchange

The specified sensitivity of the system is 1 μg of water, the applied carrier gas speed is 50ml/min and the
maximumheating temperature is 400 °C.

The instrument is controlledwithAqualys software. For referencemeasurements, a solid certified reference
material with 1 g/100gwater content was used (Water StandardOven 1%,MerckKGaA,Germany). Samples
wereweighed on anAE240 analyticalMettler-Toledo International balancewith 0.01 mg resolution.

By choosing appropriate temperature programs, the device allowed us to quantify separately different
bounding forms of water, as illustrated by figure 3. To compensate for anywater bound to the surface of the
sample boat, a ’tare’measurement was also performedwith an empty vessel. This result was automatically
subtracted from the samplemeasurement.

Figure 1. Schematic illustration of the dielectricmeasurement experimental setup.

Figure 2.Disassembled coaxial (1”5/8) cell.
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3. Results

3.1.Model
Asmentioned before (Introduction), itʼs known from literature that inwet porousmaterials (powder)multiple
relaxation phenomena can intervenewith the shape of the dielectric spectrum in addition to the dc-
conductivity. Tomodel these processes, several works use the sumofDebye, Cole-Cole, orHavriliakNegami
(HN) relaxations. The lastmodel is themost general in the case of a single relaxation. The experimental dielectric
measurement results, both real part and imaginary part, are fitted using the sumof amaximum threeHN
relaxations. As it is known that the left slope of the non-relaxation peak can be described by the power law [21]
that corresponds to the conductivity effect.

Results arefitted using Levenberg-Marquardt algorithm inMatlab using the following equation:
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Where:

• f n0 : is theHN relaxation frequency (Hz) of the nth relaxation process

• e¢¥ : is the high frequency limit of dielectric permittivity

• eD n : is the dielectric strength of the nth relaxation process,

• σ: dc-conductivity

• 0�an, bn�1:HN stretching exponents

3.2.α-D-lactosemonohydrate
3.2.1. Thermo-coulometric analysis
In this paragraph, we present the study and the identification of the bonding states in theα-D-lactose. The
sensor current and the temperature profile for this analysis are presented infigure 4 below. From this result, we
can conclude that thismaterial doesn’t contain free water, because below 50 °C there is no release of water from
the sample. At higher temperatures the current starts to steadily increase and reaches itsmaximumvalue at
143 °C. This large peak corresponds to the loss of boundwater confined in the crystal structure. As shown in
figure 4, thewater content of theα-D-lactose sample comes only from the boundwater. The obtained average
water content was 4.9±0.22% at 95% confidence level. This is in good agreementwith the values obtained by
loss-on-drying (5.1%), reported by themanufacturer (4.9%,Karl Fischer analysis) and theoretical
calculation (5.0%).

3.2.2. Dielectric permittivity results
Based on the study carried out previously with the thermo-coulometer, we can conclude the presence of a single
type of water bounding form. The complex permittivitymeasurement results of theα-D-lactosemonohydrate
(figure 5) show a behavior change in low frequency range, especially around 7MHz that can be correlated to the

Figure 3. Schematic representation of the thermo-coulometric system.
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Figure 4.α-D-lactosemonohydrate: the evolution ofwater from a sample as a function of temperature.

Figure 5.α-D-lactosemonohydrate: The correlation between the complex dielectricmeasurement results and themodel (dashed
line).
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boundwater affect. On the other hand, comparingwith the publishedmeasurement results in [22], we canfind
that the real part of the permittivity ofα-D-lactose is between 2.6 and 2.7 in the same interval using an open-
reflection resonator sensor. Themeasurement results can bemodeledwith a singleHN relaxation process whose
parameters are grouped in the table 1 below.

3.3. Calciumoxalatemonohydrate
3.3.1. Thermo-coulometric analysis
In the case of calciumoxalate, we can conclude from the analysis results presented below (figure 6) that this
material has a small amount of freewater which can bemeasured separately. Themajority of water can only be
removed at temperatures above 100 °C,which corresponds to thewater of crystallization.

The totalmeasuredwater content of 13% is in good agreementwith the value given by themanufacturer
(13%). The theoretical value (12%)differs somewhat, but this doesn’t account for anywater coming from the
impurities.

3.3.2. Dielectric permittivity results
The results from thermo-coulometry indicate the presence of two types of water in this sample and that one of
them (boundwater) is significantlymore abundant than the other.

The dielectricmeasurement result in the band from10MHz to 1.5 GHzwith the coaxial cell, of a sample
initial weight equal to 25.7 g. and a thickness of 20 mm, are presented infigure 7. Themodeling of experimental

Table 1.HNparameters.

fHN(MHz) Δε a b e¢¥

6.72 2.286 0.134 0.431 1

Figure 6.Calciumoxalatemonohydrate: the evolution of water from a sample as a function of temperature.
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results carried outwith three relaxationswhose fitting parameters are grouped in table 2; themost important are
located at 10.59 MHz. Thismodelingmay introduce an additional uncertainty component. However, it allows
us to quantitatively relate this relaxation to the boundwater, whereas the relaxation situated in the GHz zone is
correlated to the freewater.

3.4. Kaolinite
3.4.1. The effect of density
In this part, we focus the study on clay kaolinite. Thefirst factor studied is the relative density of kaolinite. To
investigate the effect of this factor on the dielectric permittivity, we use the EpsiMu® tool, which is formed of a
coaxial cell with a diameter of 14 mm. The kaolinite used in these experiments is in the formof a fine powder.
Thismaterial has a lowmoisture content (0.53%,wet basis). For performing EpsiMu®measurements, the
sample holder isfilledwith the sample and compressed Applying different force for compressing allows to vary
the density. Themeasurement cell has twoTeflon sample closures that keep the sample in place if the density is
very low (see figure 8).

Figure 7.Calciumoxalatemonohydrate: experimental complex dielectric permittivitymeasurement result withmodel (dashed line).

Table 2.HNparameters.

N fHN(MHz) Δε a b e¢¥ log10(σdc) m

1 10 0.640 0.948 0.94

2 10.59 1.183 0.141 0.092 1.961 −34.58 2

3 4111.5 0.539 1 0.574

Figure 8.EpsiMu® sample holders andTeflon seals.
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The results ofmeasurements with different densities (see figure 9) clearly show a relationship between these
two parameters and allowus tomodel the permittivity of kaolinite according to an empiricalmodel y=ae bx

where y is the real part of permittivity and x is the relative density.

3.4.2. Thermo-coulometric analysis
In order to study how thewater is released from the sample as a function of temperature,multiple experiments
were carried out with various temperature programs.Wewere able to study its behavior in the temperature
range between 25 °Cand 400 °C, as this is theworking range of the used instrument.

The thermo-coulometric water detection results presented in ourwork are tacked aftermany intermediates
experimental steps using a temperature profile that systematically variedwithout heating steps to identify the
number of the binding state thatmay exist in thematerial.

Two intermediates experimental results are presented infigure 10 that we realized to discriminate between
the different bonding forms of thewater in the kaolinite clay. In the first step (figure 10(a)), we change the

Figure 9. (left)The real part of permittivitymeasured in [10MHz-1.5 GHz]with EpsiMu®with different relative densities, (right)Real
part of the kaolinitemeasurement at 100 MHz and at 1 GHz as function of the relative density in logarithmic scale, resultsfitted using
e¢ = aebd with d is the relative density.

Figure 10.Kaolinite clay water quantification (a) Intermediate step 1, (b) Intermediate step 2.
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temperaturewith a faster speed (in 3minutes from25 °C to 400 °C), two types of boundwater are detectedwitch
are evaporated at 105 °Cand 388 °C.In addition, the freewater that it is released at 25 °Cwith an airflow
(remark: themaximumvalue remains constant for 2 min because of the saturation of the P O2 5 sensor with high
water content). In another intermediate step (figure 10(b)), after removing the free water at 25 °C,we have
changed the heating rate (in 20 min from25 °C to 400 °C) and from this rate of drying in the thermo-
coulometer, we start to visualize the presence of three peaks which corresponds to three different states of water
bonds.

After the identification of the different types of water bondswith the dynamic temperature regime, wemove
to static temperature in order to determine quantitatively the fraction of eachwater bonding formsWithin this
temperature rangewe identified 4 different stages of water release from the kaolinite sample, as illustrated by
figure 11. Thefirst releases start at 25 °C, only by introducing the sample into a dry environment. It corresponds
to the free water (orwater of gravity) in the clay that can be removedwith veryweak forces. The other peaks
correspond to differently bound forms of water (capillarywater, hygroscopic water ) as they can only be
evaporated by increasing the temperature. The presence of four peaks is supported by calculationsmade by
Smirnov andBougeard [23] and a comprehensive study byCostanzo et al [24].

3.4.3. Dielectric permittivity results
To study the dielectric constant of kaolinite, we performed a series ofmeasurements of six different samples. As
we have previously studied the effect of the density of this clay, and considering that the process offilling the
sample carriers requires compaction, in this paragraphwe use the volumetric water content, θ(cm3 cm−3). The
results ofmeasurements of the dielectric permittivity are presented below, figure 12 presents the results for
θ=0.0474 cm3/cm3 aswell as themodeling result withHNmodel fitted to themeasurement results.

Figure 11.The evolution ofwater from a kaolinite sample as a function of temperature (1.6% total water content).
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Themodeling result shows the presence of two relaxations which arewell separated. Thefirst is situated
towards the 50 MHz and another towards the GHz region. Based on the kaolinite clay study carried out by Ishida
et al [10], which shows the same relaxation processes using the time-domain reflectometrymethod, we can
associate the relaxation in the low frequency to the boundwater and the otherwith free water.

Figure 13 shows the set ofmeasurementsmadewith kaolinite from the verymoist samplemeasurements to
the lowest possible proportion of water. The sample is weighed after eachmeasurement. At the same time a small
sample is taken for thermo-coulometric analysis.

Infigure 14, we have presented the variation of the first dielectric strength of the relaxation process located in
theMHzbandwhich is easily identified as a function of the fraction of the boundwater in the kaolinite clay
measuredwith the thermo-coulometer.

The dielectric strength as a function of the fraction of boundwater, shows a correlation in the part where the
boundwater is themost important (case of lowwater content)and a curve parallel to the abscissa axis which
shows a non-correlation in the highwater content (where the free water is themost important).

Figure 12.Dielectric permittivitymeasurements of kaolinite sample (θ=0.0474 cm3/cm3).

Figure 13.Experimental andmodeled results for different wet kaolinite samples.
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4. Conclusion

Combining dielectric and thermo-coulometricmethods, we have demonstrated the quantification of free and
boundwater in a number ofmaterials through iterative development. The dielectric behavior of samples with
one type of water (α-D-lactosemonohydrate) ormultiple types of water (kaolinite clay)were successfully
modeled and related to both the types of water present and the overall water content. This work is a continuation
of the study thatwe carried out on cardboard [11]with an attention on some powderedmaterials. These
preliminary results serves as an avenue for further research into the relationship between free and boundwater,
rapid and selectivewater determination in additionalmaterials of interest and the identification of different
types of water in solids.
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