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Abstract
We study the presence of nontrivial bound states of twomultilevel quantum emitters and the photons
propagating in a linear waveguide, when the emitters can bemodeled as harmonic oscillators.We
characterize the conditions for the existence of such states and determine their general properties,
focusing in particular on the entanglement between the two emitters, that increases with the number
of excitations.We discuss the relevance of our results for entanglement preservation and generation
by spontaneous relaxation processes.Wefinally introduce a perturbativemethod for determining the
existence of long-lived states, for general level spacings and couplings.

1. Introduction

The physics of quantum systems confined in one-dimensional (1D) geometries has recently attracted a lot of
attention [1, 2], and ismotivating interesting theoretical and experimental research. The behavior of an excited
atom coupled to afield is among the peculiarities of such systems: although decay by spontaneous emission
occurs in free (three-dimensional) space, boundary conditions and artificial dimensional reduction alter the
picture, enhancing or inhibiting (and sometimes hindering) decay. These effects have been extensively studied
and observed in cavity-QED settings [3–14], where the spectrumof the electromagnetic field is discrete. It is
much less trivial that similar phenomena occur in effectively 1Dunbound systems, inwhich the field spectrum is
continuous and photons are free to propagate in 1D space. Dimensional reduction can be implemented in a
range of experimental platforms, that include cold atoms in tightly focused fields [15–17], photonic crystals
[18–21], optical fibers [22, 23], quantumdots in photonic nanowires [24, 25], and superconducting qubits in
integrated circuit waveguides [26–29]. Theoretical studies focused on the interplay between the spectral features
of the field and the structure of the emitters [30–37].

The vacuumof quasi-1Dfields and their couplingwith quantum emitters (real or artificial atoms) can be
engineered by properly adjusting the distance between the emitters and a perfectmirror at one end of the system
[28, 38, 39]. However, the interplay between absorption, stimulated and spontaneous emission provides a
quantum emitter withmirror-like properties [29, 40, 41]. Hence, a pair of emitters can confine thefield in the
region between them, yielding nontrivial bound states above the threshold for photon propagation, that can be
exploited for their robust entanglement features [42–47].

The objective of this article is to study the possible stable configurations of twomultilevel atoms placed in a
1D cavity. See figure 1. In analogywith the 2-level case, each atombehaves both as an emitter and amirror,
confining the photonfield and giving rise to a bound state endowedwith highly nontrivial entanglement
between the two atoms and between the atoms and the field. The discussed effects are non-perturbative and
enable entanglement generation by relaxation.Wewillfirst adopt amethod of resolution that applies to the case
of two identical atoms that can bemodeled as truncated harmonic oscillators. The technique consists in solving
the problem for full-fledged harmonic oscillators, endowedwith infinite number of levels. Due to the rotating-
wave formof theHamiltonian and the ensuing conservation law, the evolution in a given sectorwill involve only
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afinite number of atomic excitations. Finally, wewill consider a perturbativemethod that enables to extend the
analysis to the case of general level spacings and couplings, yielding the conditions forwhich the decay rate
vanishes at second order in the atom-field coupling constant.

2.Harmonic-oscillatormodel

Weconsider a pair of emitters consisting of distinguishable harmonic oscillatorsA andB, with the same
characteristic frequencyω1, placed in a linearwaveguide at a distance d.We assume that the photons coupled to
the oscillators belong to a single nondegenerate transversemode of thewaveguide, with dispersion relationω(k).
Hence, at the zeroth order in the coupling constant, the oscillator frequencymust be larger than the low-energy
cutoff

w≔ ( ) ( )M kmin 0 1
k

to enable propagation along the guide, and smaller than the othermode cutoffs to justify the assumption of
coupling to a singlemode. These conditions can be typically realized in a linear rectangular waveguide, where the
dispersion relation of the lowest-energymode reads w = +( ) ( )k k M2 2 1 2, withM inversely proportional to the
longer side of the guide cross-section.However, wewill keep the discussion as general as possible. In the dipolar
and rotating-wave approximations, theHamiltonian reads

ò òw w= + + + + +( ) ( ) ( ) ( ) ( )[( ) ( ) ] ( )† † † † †H b b b b k k b k b k k g k b b b kd d e H.c. , 2A A B B A B
kd

1
i

where b(k) and b†(k) are the photonfield operators in longitudinalmomentum space, satisfying the canonical
commutation relation d¢ = - ¢[ ( ) ( )] ( )†b k b k k k, , while bJ and

†bJ (J=A,B) are the canonical harmonic

oscillator operators, satisfying d=[ ]†b b,J K JK . The real coupling function g(k)naturally decouples at high
frequencies, such that

ò w+
< +¥

( )
( )

( )g k

k
k

1
d 3

2

(see e.g. [47] for photonwaveguides).
The excited (number) states are created by acting on the vacuum ñ = ñ Ä ñ∣ ∣ ∣0 0 , 0 vacA B with the creation

operators †bA,
†bB , and ( )†b k . TheHamiltonian(2) commutes with the total number of excitations

   ò= + = + + ( ) ( ) ( )† † †b b b b k b k b kd 4A A B Bat field

and does notmix different sectors, belonging to different values of  . Due to this conservation law and the
robustness of our approximations [47], our analysis applies equally well to a pair of harmonic oscillators and to a
pair of (N+1)-level atoms (with equally spaced levels) in awaveguide. Seefigure 1.

3. Bound states

The  = 0 sector contains only the vacuum ñ∣0 . The existence of nontrivial atom-photon bound states in the
 = 1 sector, occurring for discrete values of the interatomic distance and having no counterpart inmore than
one dimension, was proven in the simpler case of two-level atoms [47].We shall prove that the presence of these
bound states is fundamental in determining the properties of highly-excited sectors.

Since theHamiltonian is quadratic in the field operators, it can be diagonalized by a proper linear
combination of the bosonicfield operators. In particular, consider the generic combination

Figure 1.Apair of distinguishable three-level atomswith equally spaced levels, placed at a distance d in a 1D cavity. The case of infinite
number of levels corresponds to a pair of harmonic oscillators.

2

J. Phys. Commun. 2 (2018) 035006 P Facchi et al



òf f f= + +f ( ) ( ) ( )b b b k k b kd , 5A A B B

with

òf f f+ + =∣ ∣ ∣ ∣ ∣ ( )∣ ( )k kd 1. 6A B
2 2 2

bf is a bosonic annihilation operator and satisfies the canonical commutation relation =f f[ ]†b b, 1. Suppose it
satisfies the equation

=f f[ ] ( )b H Eb, , 7

for some realE. Then it is immediate to see that f
†b creates bound eigenstates ofH from the vacuum.Moreover,

applying itN times to the vacuumwill create eigenstates ofH, belonging to the sector  = N , with
eigenvaluesNE.

By(5), equation (7) is equivalent to

òf w f f= + ( ) ( ) ( )E k g k kd , 8A A1

òf w f f= + ( ) ( ) ( )E k g k kd e , 9B B
kd

1
i

f
f f

w
=

+
-

-
( ) ( )

( )
( )k g k

E k

e
. 10A B

kdi

If the system admits a solutionwith  w< ( )E M k , then the amplitudef(k) is square integrable and the state is
also normalizable, provided condition(3)holds. These solutions correspond to bound states below the
threshold for photon propagation: therefore, they occur even in the case of a single excited emitter coupled to the
waveguide.

The solutions above threshold (E>M) aremore interesting and nontrivial, since in such conditions a single
excited emitter would spontaneously decay by photon emission. In fact, this happens inmost situations also for a
pair of emitters. The relevant properties of these solutions can be determined by a number of non-perturbative
and general arguments, that can be eventually specialized to specific dispersion relations and to the case of small
coupling.Normalizability off(k) requires that the poles ki in(10), solutions toE=ω(k), are compensated by
zeros in the numerator: thus, g(k) or f f+ -eA B

kdi must vanish at all poles. Let us exclude the former possibility,
that does not depend on the atomic state, and focus on the latter: since

f f+ =- ( )e 0, 11A B
k di i

for all i, in order to obtain a nontrivial solution, the polesmust be constrained by the conditions
(ki−kj)d=2πn, with n an integer [47, 48]. Plugging these results into equations (8)–(9)must yield a real
solutionE, which does not depend on the choice of the pole ki. This sets a strong limitation to the possibility of
bound states above threshold. A solution can in principle be foundwhen bothω(k) and g2(k) are symmetric in k,
andω is increasing in ∣ ∣k , inwhich case = - = ¯k k k1 2 and the energy w= ( ¯)E k of the bound statemust satisfy
the coupled equations

òw w
w w

= +
-

-

-
( ¯) ( )

( ¯) ( )
( )

( ¯ )
k k g k

k k
d

1 e
, 12

k k d

1
2

i

p= Î¯ ( )kd n n, with . 13

The conditions on the existence of a bound state in this case imply f f= - +( )1A
n

B
1 , so that the probability

f= ∣ ∣p 2 Aat
2 associated to the emitter component of bf reads

ò w w
= +

- -
-

-⎛
⎝⎜

⎞
⎠⎟( ) [( ¯ ) ]

[ ( ¯) ( )]
( )p k g k

k k d

k k
1 d

1 cos
. 14at

2
2

1

This quantity, which is an exact result as well as(12)–(13), differs fromunity by an order l º  g2 2 in the
perturbative regime, but can become small for w ( ¯)k close to the thresholdM [47].

In order to clarify the effect of afinite threshold for propagation, let us consider the case of dipolar coupling
to amassive photon (e.g. a guidedmode), with the form factor derived from electrodynamics:

w
e
w

= + =( ) ( )
( )

( )k k M g k
k

, , 152 2

with ε being a constantwith dimensions of energy. The relevant parameters areω1/M, ε/M and dM. Infigure 2,
the curves alongwhich stable states exist are represented in the (ω1/M, dM)plane for different values of the
coupling. In the case ε=0.1M, the curves are verywell approximated by the positive solutions of
ω(nπ/d)=ω1, and no resonant bound state corresponds toω1<M in the range Î ( )dM 0, 10 . Bound states
above threshold ( w= >( ¯)E k M ) can generally exist even in the caseω1<M, if the distance d is large enough
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tomake w ( ¯)k of the same order as the interaction integral in equation (12). Actually, in the plot in panel (b),
corresponding to the intermediate value ε=0.5M, resonant bound states withω1<M, corresponding to
n=1, 2, 3, can be observed for sufficiently large d. Finally, the case ε=M shows the possibility that the curves
extend to very small values ofω1, at which the rotating-wave approximation is no longer valid, also crossing the
lineω1=0.

Once the solution curves, that relate characteristic frequencies and distances for each n, have been
determined, it is possible to compute the atomic probability pat by equation (14). Infigure 3, this quantity has
been represented, as a function ofω1/M, in the case n=1 for three different coupling constants. It is worth
observing that the value of pat is close to one only in the perturbative regime, namely for a sufficiently small
coupling constant and a large enough characteristic frequency, which requires smaller interatomic distances to
form the bound state.

4. Entanglement

Wecannow study the entanglement properties of the bound states, that occur, atfixed characteristic frequency
ω1, whenever the distance d betweenA andB is such that the system(12)–(13) is satisfied for some n. The bound
state can be expanded as

å y fñ = ñ = - ñ Ä ñf

=

--( )∣
( )

!
∣ ( ) ∣ ∣ ( )

†
( ) ( )N

b

N
N
m p p0 1 , 16

N

m

N

AB
m N m

0
at at

m N m
1
2

2 2

10

8

6

4

2

0
0 1 2 3 4

10

8

6

4

2

00 1 2 3 4

10

8

6

4

2

00 1 2 3 4

dM dM dM

Figure 2. Solution curves of the resonant bound states for different values of the coupling constant ε in the case(15). In each plot, the
order n of the bound state increases frombelow, with the lower curve corresponding to n=1. Solid and dashed lines correspond to
odd n (symmetric single-excitation state) and even n (antisymmetric single-excitation state). The vertical line corresponds to the
threshold w = M1 .

Figure 3.Probability weight of the atomic excitations in the operator bf, related to the bound excited state, for resonant states with
n=1 in the case of equation (15). The (blue) solid curve corresponds to ε=0.1M, the (green) dot-dashed curve to ε=0.5 M and
the (red) dotted curve to ε=M.
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wherewe have introduced the normalized states of the emitters

åy ñ ñ = - - ñ-

=

+( )ℓ ℓ ℓ∣ ≔ ( )
!

∣ ( ) ∣ ( ) ( )
ℓ

ℓ( )
†

( )b

m

m
m0 , 0 2 1 , , 17AB

m
m

A B

m
n

A B
res

0

1m
2

1
2

with

=
+ - +( ) ( )b

b b1

2
, 18A

n
B

res

1

and of the photon field

òf
w p w

ñ
-

+ -
-

ñ
+⎡

⎣
⎢⎢

⎤
⎦
⎥⎥∣ ≔

! ( )
( ) ( )

( ) ( )
( ) ∣ ( )( ) †

m

p

p
k g k

n d k
b k

1

2 1
d

1 1 e
vac . 19m

n kd
m

at

at

1 i

It is also convenient to introduce the antiresonant combination

=
+ -( ) ( )b

b b1

2
, 20A

n
B

anti

associatedwith a state that is orthogonal to both the states associatedwith bres and bf. The state ñ∣N ,
characterized by afixed number of total excitations, has components in the emitter excitation sectors ranging
from  = 0at , correlatedwith the presence ofN photons, to  = Nat , with no photon in the guide. The state,
defined by the above expressions, can be exactly determined for any value of the parameters, after numerical
computation of the atomic probability as in(14) for a given resonance. An interesting and relevant case is
represented by the perturbative regime, inwhich p 1at and the bound state is dominated by the contribution
from  = Nat , namely

y lñ = ñ Ä ñ +∣ ∣ ∣ ( ) ( )( )N p O Nvac . 21AB
N

at
2N

2

In this regime, the bound state is thus characterized by a large projection on the state withmaximal entanglement
between atoms.Notice that the state y ñ-∣ ( )

AB
N 1 , that is dominant in - ñ∣N 1 , appears in theO(Nλ2) termof

equation (21).
Two comments are in order. First, the state belongs to the  = N sector and never leaves it, under the

action of theHamiltonian(2). Thus, although the preceding analysis has been done for two harmonic
oscillators, it is still valid for two (N+1)-level systems in thewaveguide. This point will be formalized in the
final part of the article. Second, the reduced densitymatrix of the two emitters

år y y= ñá = - ñá
=

-( )∣ ∣ ( ) ∣ ∣ ( )( ) ( ) ( )N N N
m p ptr 1 22AB

N

m

N
m N m

AB
m

AB
m

field
0

at at

is amixture of entangled states, dominated by the termm=N, whose entanglement increases with the number
of excitations. Before quantitatively clarifying the last point, let us comment on the consequences and possible
applications of entanglement in a bound state.

The interesting properties related to entanglement persistence stem from the decomposition of the
Hamiltonian(2) into a ‘stable’ and a ‘decaying’ part, as

= +f f ( )†H Eb b H , 23c

whereHc, that commutes with bf, accounts for the continuous spectrum and the spontaneous decay of excited
states orthogonal to ñ∣N . Herewe have assumed that there is only one resonant bound state in the spectrum,
which is valid in the small coupling regime. In the one-excitation sector (namely two 2-level atoms), it has been
demonstrated [47] that the presence of the bound state enhances the decay rate of the orthogonal states towards
the configuration inwhich the emitters are both in their ground states and a photon propagates in the
waveguide.

If the emitters are placed at infinite distance fromone another, an initial state close to y ñ Ä ñ∣ ∣( ) vacAB
N with

N>0would rapidly decay to an orthogonal statewith a smaller number of emitter excitations. By contrast, in a
waveguide, with d andω1 close to the resonance conditions, such a state will be left almost invariant by the
Hamiltonian evolution, with a dressing (slight, in the perturbative regime) due to the imperfect superposition of
the initial and the bound state (i.e. <p 1at ). Therefore, on timescales smaller than thewaveguide losses,
entanglement is preservedwithout imposing constraints or external control.

Another interesting application is related to the decay of the unstable component of an arbitrary initial state.
An initial state r r= Ä ñá∣ ∣vac vac0 in , with ρin in the  = Nat sector, will generally evolve into
r r= -( )t e eHt Hti

0
i . After a transient, theN-excitation states will relax towards the atomic ground state by

emission ofN photons if no bound state is present in the sector. If, instead, one of the resonance conditions is
fulfilled, the state y ñ Ä ñ∣ ∣( ) vacAB

N , which has a nonvanishing projection on ñ∣N , will relax towards an excited
atomic state. The probability of havingmaximally entangled atoms is given by

5
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r y r y= Ä ñá = á ñ
¥

[ ( )( ∣ ∣)] ∣ ∣ ( )( ) ( )p t plim Tr vac vac . 24
t

N
AB
N

AB
N

in at at
2

in

Therefore, the atoms, starting from a general densitymatrix, which can be e.g. factorized, eventually reach a
highly entangled state withN excitationwithfinite probability. The typical relaxation time of the reduced atomic
densitymatrix towards its asymptotic state is determined by the lifetime of the component y ñ-∣† ( )b AB

N
anti

1 , and
coincides with the lifetime of a single atomic excitation created in the antiresonant state [47]. The described
entanglement generation strategy is similar to theHamiltonian generation of entanglement, inwhich an initial
(factorized) state is let to coherently evolve until it reaches an entangled state. Such a procedure can be applied in
the case of the bound states well below the threshold for photon propagation.However, theHamiltonian nature
of the evolution in theABHilbert space yields oscillations, which implies that the evolutionmust be stopped at a
proper time to obtain the desired state. This drawback is absent in entanglement generation by relaxation, in
which thefinal state is approached asymptotically. This technique does not require energy pumping into the
system, since a constant entanglement is reached after an initial transient [47].

Let us go back to the discussion of the entanglement properties of y ñ∣ ( )
AB
N . The emitter state in the sector

 = 1at (two 2-level atoms) has been extensively studied, and is particularly interesting since it corresponds to
one of the twoBell states, according to the sign of -( )1 n (see equations (13)–(17)). It is thusmaximally entangled
in the  = 1at subspace. The bound state = ñ∣N 2 , relative to the pair of 3-level atoms infigure 1, reads

f

f

ñ = ñ - ñ + ñ Ä ñ

+ - ñ - ñ Ä ñ

+ - ñ Ä ñ

∣ (∣ ∣ ∣ ) ∣

( ) (∣ ∣ ) ∣

( )∣ ∣ ( )

( )

( )

p

p p

p

2
6

0 , 2 2 1 , 1 2 , 0 vac

2 1 0 , 1 1 , 0

1 0 , 0 . 25

A B A B A B

A B A B

A B

at

at at
1

at
2

By projecting onto a suitable photonic state, one can select the desired (long-lived) atomic entangled state y ñ∣ ( )
AB
N ,

forN=1 and 2. To extend the analysis of entanglement to large-N states, we can use the fact that the reduced
one-emitter densitymatrices obtained from y ñ∣ ( )

AB
m have a particularly simple binomial form, that leads to

år r= = ñá
=

ℓ ℓ( )∣ ∣ ( )
ℓ

ℓ
( ) ( ) ( )C ptr , 26A
N

B AB
N

N
N

A A
0

at

where the coefficients

å -
=

-( )( ) ℓ( ) ≔ ( ) ( )ℓ
( )C p N

m
m

p p
1

2
1 27N

m

N

m
m N m

at
0

at at

are dominated by the termsm=N at small coupling. These states appear in the analysis of coherently
illuminated beam splitters, when the input states are very imbalanced [49], and their interesting entanglement
features generalize those ofNOON states. Bipartite entanglement can be quantified through anymeasure based
on the eigenvalues of the reduced state r( )

A
N . Let us adopt purity ofA:

åp
p

l
p

l= =
G +

+ ~ + +
=

-
⎡
⎣⎢

⎤
⎦⎥

( )
( ( ))

!
( [( ) ]) ( ) ( [( ) ]) ( )

ℓ
ℓ

( ) ( )C p
N

N
O N

N
O N O N1

1
1 , 28A

N
N

N

0
at

2

1

2 2 2 3 2 2 2

as  ¥N , whereΓ is the Euler gamma function. Strictly speaking, this quantitymeasures entanglement
betweenA and its environment (B+ field). However, since the state of thefield is quasi factorized at small
coupling, it is also an approximatemeasure of entanglement between the two emittersA andB. On one hand,
purity(28) scalesmore slowly than theminimal value (N+1)−1 in the sector, corresponding tomaximally
mixed reduced densitymatrices. On the other hand, this result is consistent with theminimal purity for states
whose reduced densitymatrices are effectively approximated by the superposition ofO(N1/2) states.

It is also possible to determine the entanglement properties of coherent and incoherent superpositions of the
bound states ñ∣N . For example, one can consider the ‘pseudothermal’ state

r = - b b- - f f( ) ( )†
1 e e , 29AB

E Eb bth

whose reduced densitymatrix is the thermal average of(26), yielding the purity

å åp l= - = - +b b b

=

¥

=

¥
- - -

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )

ℓ ℓ
ℓ
( )C p O N1 e e 1 e , 30A

N

E EN N Eth

0
at

2

th
2

withNth the average excitation number. Another interesting case is the coherent state *añ = ña a-f f∣ ∣†
e 0b b . Since

it is a product of coherent states, * * * * * *añ = ñòaf a f af a f af a f- - -∣ ∣[ ( ) ( ) ( ) ( )† † †
e e e 0b b b b k k b k k b kdA A A A B B B B , there is no

entanglement between the two atoms. In particular, in the small-coupling limit, the atomdensitymatrix raAB is
dominated by the projection on
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which yields a factorized reduced densitymatrix.
Let usfinally comment on the truncation of the oscillatorHilbert spaces. The bound state ñ∣N contains up to

theNth power of the oscillator creation operators †bA B, . Therefore, truncating both oscillators at the (N+1)th
level, namely formally adding the constraint =+( )†b 0A B

N
,

1 , has no effect on the existence and properties of state
ñ∣N . On the other hand, the bosonic commutation relations satisfied by all operators, which is reflected in the

bosonic character of the bf operator, are fundamental in the derivation of the commutator equation (7), and in
the subsequent reduction of the problem to the determination offA,fB,f(k), andE. If the oscillators are
truncated at N̄ , then the existence of a bound state in the sector  = > ¯N N does not follow automatically
from the presence of a bound state in the lowest-excited  = 1 sector. Summarizing, in bound states, the
excited levels of each oscillatormust be in a sufficient number to absorb all the photons in the state. And, of
course, considerations on the pseudothermal and coherent states are valid, only approximately, if the average
occupation number is not close to N̄ .

5. Stable states in the general case

Wenow relax the assumptions of equally-spaced levels and oscillator-like interaction. Unlike in the previous
sections, where the analysis could be perfomed non-perturbatively, wewill work at second order in the atom-
field coupling.

Let us consider aHamiltonian describing two identical (N+1)-level atomsA andBwith the same spectra
w w w w= ¼
 ( ), , , N0 1 (withω0=0), placed at a distance d from each other and coupledwith the guided field.
We assume that the interactionwith the field can induce transitions between neighboring levels ñ∣ jI ( j=0, 1,K,
Nwith I=A,B), with an arbitrary couplings:

ò

ò

å

å

w w= + = ñá +

+ ñá - + ñá - +

=

=

∣ ∣ ( ) ( ) ( )

( )[(∣ ( ) ∣ ∣ ( ) ∣) ( ) ] ( )

†H H H j j k k b k b k

k g k j j j j b k

d

d 1 e 1 H.c. . 32

j

N

j A A

j

N

j A A
kd

B B

0 int
1

1

i

A state

åy ñ = - ñ
=

∣ ∣( ) ( )( ) c N j j; 33N
j

N

j A B
0

0

with  = Nat and bare energy

åy y w w= á ñ = +
=

-
( ) ∣ ∣ ∣ ∣ ( ) ( )( ) ( ) ( )E c H c , 34N N N

j

N

j N j j
0 0

0
0

0

2

where = ¼
 ( )c c c c, , , N0 1 , generally decays intoN photons.We have shown in the previous sections that, in the

harmonic-oscillator-like case (ωj=jω1 and =( ) ( )g k j g kj 1 ) an exact eigenstate with nonvanishing amplitude

in the  = N sector can exist. In all other cases, one can nonetheless identify themost stable combinations (33)
by analyzing the decay rate at second order in the atom-photon coupling [50]. This quantity can be immediately
computed from the action of the interactionHamiltonian on the general state, yielding

ò åp d w w wG = + + + -
=

-

- + +
-

- -
 ( ) ∣ ( ) ( ) ∣ ( ( ) ( )) ( )( ) ( )c k c g k c g k k E c2 d e . 35N

j

N

j N j j j
kd

N j j N
0

0

1

1 1
i 2

1
0

The integral can be computed by determining the set ofmomenta = ¼{ ¯ }ℓ ℓk M1, , at which the argument of the
delta function vanishes. Such a set depends on


c if the levels are not evenly spaced. The resulting G

( )( ) cN
0 can be

eventuallyminimizedwith respect to the coefficients, tofind themost stable state in theN-excitation sector.
Let us look explicitly to the caseN=2, where =

 ( )c c c c, ,0 1 2 . The on-shell condition reads

w w w w w= - - -( ¯) ( )∣ ∣ ( )k c2 . 362 1 2 1 1
2

Let us assume that dispersion relation and form factors are symmetric, and that the argument of the delta
function in equation (35) has only two symmetric solutions ¯ (∣ ∣ )k c1

2 . Then, the decay rate reads
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with w= =(∣ ∣ ) ∣ ¯v c kd d k k1
2 . The stationarity conditionswith respect to c0 and c2 require that theminimizing

sequence of coefficients *

c satisfy

* * *
*

*
*= = -

( ¯ (∣ ∣ ))
( ¯ (∣ ∣ ))

( ¯ (∣ ∣ ) ) ( )c c c
g k c

g k c
k c dcos . 380 2 1

1 1
2

2 1
2 1

2

Choosing real phases for *c0 and combining equation (38)with the normalization condition, we obtain an
equation for *c1 , that, in the case of equal spacings, inwhich k̄ does not depend on the state, leads to the solution

  = - + =*
-( ( ))( ( )) ( )

( )
( )

( ) ( )c k k k
g k

g k
kdsgn 1 2 , with cos . 391

2 1
2

1

2

Let us consider two resonance cases, with = ( ¯ )kdcos 1. If =g g 1 21 2 , one recovers the truncated harmonic
oscillators analyzed in sections 3–4, with * = c 1 21 . In the interesting case of equal couplings g1/g2=1,
stationarity and normalization lead to the solution * = c 1 31 , yielding a uniformminimizer. In both cases,
the decay rate is also vanishing at theminimum.

Wefinally comment on the robustness with respect to small variations of the level spacings. Theminimal
decay rate can bewritten as a function of the bare energy levels as *wG = G

 ¯ ( ) ( )( ) cN N
0 , with *


c theminimizing

sequence of coefficients. Generally, theminimal rate varies linearly with small displacements of the energy levels.
However, a relevant exception is represented by the cases, like thosementioned before forN=2, inwhich

wG =
¯ ( ) 0N . Since ḠN is nonnegative, if it is also a smooth function of w


, then its gradient with respect to w


must

vanish as well. In such cases, the decay rate increases quadratically in the variation of the bare energy levels.

6. Conclusion

Wehave investigated the existence and properties of the stable states of a pair ofN-level atoms in awaveguide,
discussing the possibility to generate and preserve robust entanglement between the two atoms. As a case study,
we have considered identical distinguishable emitters with uniform level spacing. The generalization to the
presence of (small or large) asymmetries in the excitation energy and in the coupling, or uneven levels, has been
considered in section 5. Among possible interesting applications, wemention the use of a single two-level
emitter as a dynamical probe of the state of the field, along the guidelines discussed in [28]. These ideas can be
generalized, by using (entangled) atomicmultilevel pairs, paving theway to unprecedented possibilities and
possibly super-resolution.
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