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Abstract

We study the presence of nontrivial bound states of two multilevel quantum emitters and the photons
propagating in a linear waveguide, when the emitters can be modeled as harmonic oscillators. We
characterize the conditions for the existence of such states and determine their general properties,
focusing in particular on the entanglement between the two emitters, that increases with the number
of excitations. We discuss the relevance of our results for entanglement preservation and generation
by spontaneous relaxation processes. We finally introduce a perturbative method for determining the
existence of long-lived states, for general level spacings and couplings.

1. Introduction

The physics of quantum systems confined in one-dimensional (1D) geometries has recently attracted a lot of
attention [1, 2], and is motivating interesting theoretical and experimental research. The behavior of an excited
atom coupled to a field is among the peculiarities of such systems: although decay by spontaneous emission
occurs in free (three-dimensional) space, boundary conditions and artificial dimensional reduction alter the
picture, enhancing or inhibiting (and sometimes hindering) decay. These effects have been extensively studied
and observed in cavity-QED settings [3—14], where the spectrum of the electromagnetic field is discrete. It is
much less trivial that similar phenomena occur in effectively 1D unbound systems, in which the field spectrum is
continuous and photons are free to propagate in 1D space. Dimensional reduction can be implemented in a
range of experimental platforms, that include cold atoms in tightly focused fields [ 15—17], photonic crystals
[18-21], optical fibers [22, 23], quantum dots in photonic nanowires [24, 25], and superconducting qubits in
integrated circuit waveguides [26—29]. Theoretical studies focused on the interplay between the spectral features
of the field and the structure of the emitters [30—37].

The vacuum of quasi- 1D fields and their coupling with quantum emitters (real or artificial atoms) can be
engineered by properly adjusting the distance between the emitters and a perfect mirror at one end of the system
[28, 38, 39]. However, the interplay between absorption, stimulated and spontaneous emission provides a
quantum emitter with mirror-like properties [29, 40, 41]. Hence, a pair of emitters can confine the field in the
region between them, yielding nontrivial bound states above the threshold for photon propagation, that can be
exploited for their robust entanglement features [42—47].

The objective of this article is to study the possible stable configurations of two multilevel atoms placed in a
1D cavity. See figure 1. In analogy with the 2-level case, each atom behaves both as an emitter and a mirror,
confining the photon field and giving rise to abound state endowed with highly nontrivial entanglement
between the two atoms and between the atoms and the field. The discussed effects are non-perturbative and
enable entanglement generation by relaxation. We will first adopt a method of resolution that applies to the case
of two identical atoms that can be modeled as truncated harmonic oscillators. The technique consists in solving
the problem for full-fledged harmonic oscillators, endowed with infinite number of levels. Due to the rotating-
wave form of the Hamiltonian and the ensuing conservation law, the evolution in a given sector will involve only

© 2018 The Author(s). Published by IOP Publishing Ltd
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Figure 1. A pair of distinguishable three-level atoms with equally spaced levels, placed at a distance d in a 1D cavity. The case of infinite
number of levels corresponds to a pair of harmonic oscillators.

a finite number of atomic excitations. Finally, we will consider a perturbative method that enables to extend the
analysis to the case of general level spacings and couplings, yielding the conditions for which the decay rate
vanishes at second order in the atom-field coupling constant.

2. Harmonic-oscillator model

We consider a pair of emitters consisting of distinguishable harmonic oscillators A and B, with the same
characteristic frequency wy, placed in a linear waveguide at a distance d. We assume that the photons coupled to
the oscillators belong to a single nondegenerate transverse mode of the waveguide, with dispersion relation w(k).
Hence, at the zeroth order in the coupling constant, the oscillator frequency must be larger than the low-energy
cutoff

M := mkinw(k) >0 e))

to enable propagation along the guide, and smaller than the other mode cutoffs to justify the assumption of
coupling to a single mode. These conditions can be typically realized in a linear rectangular waveguide, where the
dispersion relation of the lowest-energy mode reads w (k) = (k2 + M?)!/2, with M inversely proportional to the
longer side of the guide cross-section. However, we will keep the discussion as general as possible. In the dipolar
and rotating-wave approximations, the Hamiltonian reads

H = w;(blbs + bibg) + f dk w(k)bT (Kb (k) + f dk g()[(b] + ble*)b(k) + H.c], @)

where b(k) and b'(k) are the photon field operators in longitudinal momentum space, satisfying the canonical
commutation relation [b(k), bf(k")] = §(k — k'), while byand b; (J = A, B) are the canonical harmonic
oscillator operators, satisfying [b;, by] = 6)x. The real coupling function g(k) naturally decouples at high
frequencies, such that

g% (k)

_&W g 3
1+ w(k) < e @)

(see e.g. [47] for photon waveguides).
The excited (number) states are created by acting on the vacuum |0) = |0,, 03) ® |vac) with the creation
operators b}, b}, and b (k). The Hamiltonian (2) commutes with the total number of excitations

N = Naw + Niaa = B ba + s + [dk b (R)b(0) @

and does not mix different sectors, belonging to different values of A'. Due to this conservation law and the
robustness of our approximations [47], our analysis applies equally well to a pair of harmonic oscillators and to a
pair of (N + 1)-level atoms (with equally spaced levels) in a waveguide. See figure 1.

3. Bound states

The A = 0 sector contains only the vacuum |0). The existence of nontrivial atom-photon bound states in the
N = 1sector, occurring for discrete values of the interatomic distance and having no counterpart in more than
one dimension, was proven in the simpler case of two-level atoms [47]. We shall prove that the presence of these
bound states is fundamental in determining the properties of highly-excited sectors.

Since the Hamiltonian is quadratic in the field operators, it can be diagonalized by a proper linear
combination of the bosonic field operators. In particular, consider the generic combination

2
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by = éuba + 050 + [dk 9GRIb(0), 3)
with
(047 + 185 + [dklooP = 1. ©
b, is abosonic annihilation operator and satisfies the canonical commutation relation [b, b(Z ] = 1. Supposeit
satisfies the equation
[bs, H] = Eb,, )

for some real E. Then it is immediate to see that b; creates bound eigenstates of H from the vacuum. Moreover,
applying it N times to the vacuum will create eigenstates of H, belonging to the sector N'= N, with
eigenvalues NE.

By (5), equation (7) is equivalent to

Edy = widy + [dk g b, ®

Eby = widy + [ dk go ke, ©
_ ¢A + ¢Befikd

60 = g AT (10)

If the system admits a solution with E < M < w(k), then the amplitude ¢(k) is square integrable and the state is
also normalizable, provided condition (3) holds. These solutions correspond to bound states below the
threshold for photon propagation: therefore, they occur even in the case of a single excited emitter coupled to the
waveguide.

The solutions above threshold (E > M) are more interesting and nontrivial, since in such conditions a single
excited emitter would spontaneously decay by photon emission. In fact, this happens in most situations also for a
pair of emitters. The relevant properties of these solutions can be determined by a number of non-perturbative
and general arguments, that can be eventually specialized to specific dispersion relations and to the case of small
coupling. Normalizability of ¢ (k) requires that the poles k;in (10), solutions to E = w(k), are compensated by
zeros in the numerator: thus, g(k) or ¢, + ¢ze~* must vanish at all poles. Let us exclude the former possibility,
that does not depend on the atomic state, and focus on the latter: since

by + pge kil =0, (11)

for all 4, in order to obtain a nontrivial solution, the poles must be constrained by the conditions

(ki — kj)d = 27rn, with n an integer [47, 48]. Plugging these results into equations (8)—(9) must yield a real
solution E, which does not depend on the choice of the pole k;. This sets a strong limitation to the possibility of
bound states above threshold. A solution can in principle be found when both w(k) and gz(k) are symmetricink,

and wis increasing in |k|, in which case k; = —k, = k and the energy E = w(k) of the bound state must satisfy
the coupled equations
_ 1 — ei(E—k)d
k) =w + | dk g*(k) ———, 12
Wy =+ [ kg — = (12)
kd = nw, withn e N, (13)
The conditions on the existence of a bound state in this case imply ¢, = (—1)" * !¢y, so that the probability
b, = 2|¢,l* associated to the emitter component of b, reads
1 — cosl(k — kyd])
=1+ [dkg*(k . . 14
b ( S T wr (o

This quantity, which is an exact result as well as (12)—(13), differs from unity by an order M = ||g||* in the
perturbative regime, but can become small for w (k) close to the threshold M [47].

In order to clarify the effect of a finite threshold for propagation, let us consider the case of dipolar coupling
to a massive photon (e.g. a guided mode), with the form factor derived from electrodynamics:

k) = Jk2 + M2, k) = ——, 15
w(k) g(k) m (15)

with e being a constant with dimensions of energy. The relevant parameters are w, /M, ¢/M and dM. In figure 2,
the curves along which stable states exist are represented in the (w, /M, dM) plane for different values of the
coupling. In the case e = 0.1 M, the curves are very well approximated by the positive solutions of

w(nm/d) = wy, and no resonant bound state corresponds to w; < M intherange dM € (0, 10). Bound states
above threshold (E = w(k) > M) can generally exist even in the case w; < M, if the distance dis large enough

3
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Figure 2. Solution curves of the resonant bound states for different values of the coupling constant ¢ in the case (15). In each plot, the
order 1 of the bound state increases from below, with the lower curve corresponding to n = 1. Solid and dashed lines correspond to
odd n (symmetric single-excitation state) and even » (antisymmetric single-excitation state). The vertical line corresponds to the
threshold w;, = M.

Figure 3. Probability weight of the atomic excitations in the operator b, related to the bound excited state, for resonant states with
n = linthe case of equation (15). The (blue) solid curve corresponds toe = 0.1 M, the (green) dot-dashed curve toe = 0.5 M and
the (red) dotted curvetoe = M.

to make w (k) of the same order as the interaction integral in equation (12). Actually, in the plot in panel (b),
corresponding to the intermediate value e = 0.5 M, resonant bound states with w; < M, corresponding to

n = 1,2, 3, canbe observed for sufficiently large d. Finally, the case ¢ = M shows the possibility that the curves
extend to very small values of w;, at which the rotating-wave approximation is no longer valid, also crossing the
linew;,; = 0.

Once the solution curves, that relate characteristic frequencies and distances for each #, have been
determined, it is possible to compute the atomic probability p,, by equation (14). In figure 3, this quantity has
been represented, as a function of w; /M, in the case n = 1 for three different coupling constants. It is worth
observing that the value of p, is close to one only in the perturbative regime, namely for a sufficiently small
coupling constant and a large enough characteristic frequency, which requires smaller interatomic distances to
form the bound state.

4. Entanglement

We can now study the entanglement properties of the bound states, that occur, at fixed characteristic frequency
wy, whenever the distance d between A and Bis such that the system (12)—(13) is satisfied for some #. The bound
state can be expanded as

(b(;)N N N 2. m N—m (m) (N—m)
IN) = JN! 10) = ;::O(m) it 1 —p) 2 IaE) ® o ) (16)
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where we have introduced the normalized states of the emitters

(b )m _m 2 (m IE
[y = el Ty oy — o ( ) (=)D (m — O)5), 17)
Jur 0 =27 22 :
with
by + (—1D)"bg
bres = ——————, 18
72 (18)
and of the photon field

(m) 1+( 1)n+1 ikd + "
o=y z<1 . Jaks w(n/d) — w(k)b | hac). )

Itis also convenient to introduce the antiresonant combination
by + (—1)"bg
banti = T >

associated with a state that is orthogonal to both the states associated with b,.; and b. The state [N),
characterized by a fixed number of total excitations, has components in the emitter excitation sectors ranging
from A, = 0, correlated with the presence of N photons, to A = N, with no photon in the guide. The state,
defined by the above expressions, can be exactly determined for any value of the parameters, after numerical
computation of the atomic probability asin (14) for a given resonance. An interesting and relevant case is
represented by the perturbative regime, in which p, ~ 1and the bound state is dominated by the contribution
from NV, = N, namely

(20)

IN) = p2[¥%9) ® Ivac) + O(NN). (21)

In this regime, the bound state is thus characterized by a large projection on the state with maximal entanglement
between atoms. Notice that the state [/}, that is dominant in [N — 1), appears in the O(NX?) term of
equation (21).

Two comments are in order. First, the state belongs to the N’ = N sector and never leaves it, under the
action of the Hamiltonian (2). Thus, although the preceding analysis has been done for two harmonic
oscillators, it is still valid for two (N + 1)-level systems in the waveguide. This point will be formalized in the
final part of the article. Second, the reduced density matrix of the two emitters

N

iy = trnaalN) (N = 32 (N )olrc1 = 0 1) (wi) 22)
m=0
is a mixture of entangled states, dominated by the term m = N, whose entanglement increases with the number
of excitations. Before quantitatively clarifying the last point, let us comment on the consequences and possible
applications of entanglement in a bound state.
The interesting properties related to entanglement persistence stem from the decomposition of the
Hamiltonian (2) into a ‘stable’ and a ‘decaying’ part, as

H = Ebjby + H,, (23)

where H,, that commutes with b, accounts for the continuous spectrum and the spontaneous decay of excited
states orthogonal to |N'). Here we have assumed that there is only one resonant bound state in the spectrum,
which is valid in the small coupling regime. In the one-excitation sector (namely two 2-level atoms), it has been
demonstrated [47] that the presence of the bound state enhances the decay rate of the orthogonal states towards
the configuration in which the emitters are both in their ground states and a photon propagates in the
waveguide.

If the emitters are placed at infinite distance from one another, an initial state close to [1)]})) ® |vac) with
N > 0would rapidly decay to an orthogonal state with a smaller number of emitter excitations. By contrast, in a
waveguide, with d and w; close to the resonance conditions, such a state will be left almost invariant by the
Hamiltonian evolution, with a dressing (slight, in the perturbative regime) due to the imperfect superposition of
the initial and the bound state (i.e. p,, < 1). Therefore, on timescales smaller than the waveguide losses,
entanglement is preserved without imposing constraints or external control.

Another interesting application is related to the decay of the unstable component of an arbitrary initial state.
Aninitial state p, = p,, ® |vac) (vac|, with p;, in the A = N sector, will generally evolve into
p(t) = e Hp elH After a transient, the N-excitation states will relax towards the atomic ground state by
emission of N photons if no bound state is present in the sector. If, instead, one of the resonance conditions is
fulfilled, the state [¢))) @ |vac), which has a nonvanishing projection on |N'), will relax towards an excited
atomic state. The probability of having maximally entangled atoms is given by
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P = lim Trlp()) (I © vac) (vach] = p* (V35 ol 3y)- (24)
Therefore, the atoms, starting from a general density matrix, which can be e.g. factorized, eventually reach a
highly entangled state with N excitation with finite probability. The typical relaxation time of the reduced atomic
density matrix towards its asymptotic state is determined by the lifetime of the component b} [/ ), and
coincides with the lifetime of a single atomic excitation created in the antiresonant state [47]. The described
entanglement generation strategy is similar to the Hamiltonian generation of entanglement, in which an initial
(factorized) state is let to coherently evolve until it reaches an entangled state. Such a procedure can be applied in
the case of the bound states well below the threshold for photon propagation. However, the Hamiltonian nature
of the evolution in the AB Hilbert space yields oscillations, which implies that the evolution must be stopped ata
proper time to obtain the desired state. This drawback is absent in entanglement generation by relaxation, in
which the final state is approached asymptotically. This technique does not require energy pumping into the
system, since a constant entanglement is reached after an initial transient [47].

Let us go back to the discussion of the entanglement properties of [¢)0}) ). The emitter state in the sector

Ny = 1(two 2-level atoms) has been extensively studied, and is particularly interesting since it corresponds to
one of the two Bell states, according to the sign of (—1)" (see equations (13)—(17)). It is thus maximally entangled
in the AV, = 1subspace. The bound state |N = 2), relative to the pair of 3-level atoms in figure 1, reads

DPa
7
+ 320, (1 = p,) (104, 18) — 14, 0p)) @ [¢)

+ (1 = pl0s, 05) @ [6@). (25)
By projecting onto a suitable photonic state, one can select the desired (long-lived) atomic entangled state |1/0})),

for N = 1and 2. To extend the analysis of entanglement to large- N states, we can use the fact that the reduced
one-emitter density matrices obtained from [/ ) have a particularly simple binomial form, that leads to

12) = (104, 28) — 2|14, 15) + |24, 05)) ® |vac)

P = tpplyy) = Z CV(p)1En) (Zal, (26)

where the coefficients
(N) ol 1 N My m 1 N—m 27
(0= 3 (W)(F)ra - po @)

are dominated by the terms m = Nat small coupling. These states appear in the analysis of coherently
illuminated beam splitters, when the input states are very imbalanced [49], and their interesting entanglement
features generalize those of NOON states. Bipartite entanglement can be quantified through any measure based
on the eigenvalues of the reduced state p(N ). Let us adopt purity of A:

A2 = 3 ()P = PO 3) 4 orenrn ~ [# + O<N3/2)](1 + oI, (28)
Y s “ JAN! JaN ’
as N — oo, where I is the Euler gamma function. Strictly speaking, this quantity measures entanglement
between A and its environment (B + field). However, since the state of the field is quasi factorized at small
coupling, it is also an approximate measure of entanglement between the two emitters A and B. On one hand,
purity (28) scales more slowly than the minimal value (N + 1) in the sector, corresponding to maximally
mixed reduced density matrices. On the other hand, this result is consistent with the minimal purity for states
whose reduced density matrices are effectively approximated by the superposition of O(N'/?) states.

Itis also possible to determine the entanglement properties of coherent and incoherent superpositions of the
bound states |N). For example, one can consider the ‘pseudothermal’ state

Py = (1 — e B)ye b, (29)

whose reduced density matrix is the thermal average of (26), yielding the purity

o0 o0 2
= Z(Z (1 — e e NCN(p )| =1 — e ) + ONw W), (30)
£=0\N=¢

with Nth the average excitation number. Another interesting case is the coherent state [or) = e ~"|0). Since
itisa product of coherent states, |a) = OOkl — b b — by by p [ dk [ad ()b (k) — "o ()b (k) |0), there is no
entanglement between the two atoms. In particular, in the small-coupling limit, the atom density matrix pf} ; is
dominated by the projection on
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@) = elaf 3 ()’ > O ) 31)
= P _sz' P —zmm' A> MB/>

which yields a factorized reduced density matrix.
Let us finally comment on the truncation of the oscillator Hilbert spaces. The bound state [N') contains up to
the Nth power of the oscillator creation operators by 5. Therefore, truncating both oscillators at the (N + 1)th

level, namely formally adding the constraint (b} ;)N*! = 0, has no effect on the existence and properties of state
|N). On the other hand, the bosonic commutation relations satisfied by all operators, which is reflected in the
bosonic character of the b, operator, are fundamental in the derivation of the commutator equation (7), and in
the subsequent reduction of the problem to the determination of ¢4, ¢, P(k), and E. If the oscillators are
truncated at N, then the existence of abound state in the sector A'= N > N does not follow automatically
from the presence of abound state in the lowest-excited A/ = 1sector. Summarizing, in bound states, the
excited levels of each oscillator must be in a sufficient number to absorb all the photons in the state. And, of
course, considerations on the pseudothermal and coherent states are valid, only approximately, if the average
occupation number is not close to N.

5. Stable states in the general case

We now relax the assumptions of equally-spaced levels and oscillator-like interaction. Unlike in the previous
sections, where the analysis could be perfomed non-perturbatively, we will work at second order in the atom-
field coupling.

Let us consider a Hamiltonian describing two identical (N + 1)-level atoms A and B with the same spectra
w = (W, Wy, ..., wy) (withwy = 0), placed at a distance d from each other and coupled with the guided field.
We assume that the interaction with the field can induce transitions between neighboringlevels | j;) (j = 0,1, ...,
NwithI = A, B), with an arbitrary couplings:

N
H = Ho+ Hi = 3 wilip) (il + [ dkw(ob! (b &)
j=1

N
+ 30 [[dkg A7) (G = Dal + e¥1ip) (G = DaDb®) + Hecl (32)
j=1
A state
N
@) =37 I (N — f)as fip) (33)
j=0

with ;i = N andbare energy

N
EQ@) = (R IHlpN) = D leilP(wn—j + wj, (34)
=0
where ¢ = (cg, @ ..., o), generally decays into N photons. We have shown in the previous sections that, in the

harmonic-oscillator-like case (w; = jw; and & k) = \/j & (k)) an exact eigenstate with nonvanishing amplitude
inthe A= N sector can exist. In all other cases, one can nonetheless identify the most stable combinations (33)
by analyzing the decay rate at second order in the atom-photon coupling [50]. This quantity can be immediately
computed from the action of the interaction Hamiltonian on the general state, yielding

N-1
'@ =2n f dk D7 lejgn (0 + gy (Re ™ P8 K) + wy-j1 + wj — B (@) (35)
j=0

The integral can be computed by determining the set of momenta {k,},_; ..y at which the argument of the

delta function vanishes. Such a set depends on ¢ if the levels are not evenly spaced. The resulting 'Y (¢) can be

eventually minimized with respect to the coefficients, to find the most stable state in the N-excitation sector.
Let uslook explicitly to the case N = 2, where ¢ = (co, ¢, 6). The on-shell condition reads

wk) = wy — wy — (wy — 2wy al* (36)

Let us assume that dispersion relation and form factors are symmetric, and that the argument of the delta
function in equation (35) has only two symmetric solutions £k (|¢|*). Then, the decay rate reads

7
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27 Z — _ o
V(|C|2) (|Cogz(k(|q|2)) + Clgl(k(|cl|2))eﬂs k(lal )d|2
1) s=+

+ lag, (k(laP) + ag(k(lal)elsklaMdp) (37)

with v(|g*) = dw/dk|;—;. The stationarity conditions with respect to ¢, and ¢, require that the minimizing
sequence of coefficients Cy satisfy

rP@ =

AGEER))
*_7
& (k(lcix*))

Choosing real phases for cox and combining equation (38) with the normalization condition, we obtain an
equation for ¢y, that, in the case of equal spacings, in which k does not depend on the state, leads to the solution
— L . &)
e = —sgn(G(k))(1 4+ 2G*(k)) 2, with G(k) = =— cos (kd). (39)
& (k)
Let us consider two resonance cases, with cos(kd) = £1.If g / g =1 / 2, one recovers the truncated harmonic
oscillators analyzed in sections 3—4, with ¢4 = F1/+/2. In the interesting case of equal couplings g, /g, = 1,
stationarity and normalization lead to the solution ayx = F1/ J3, yielding a uniform minimizer. In both cases,
the decay rate is also vanishing at the minimum.

We finally comment on the robustness with respect to small variations of the level spacings. The minimal
decay rate can be written as a function of the bare energy levels as Ty () = T'Q (¢,), with & the minimizing
sequence of coefficients. Generally, the minimal rate varies linearly with small displacements of the energy levels.
However, a relevant exception is represented by the cases, like those mentioned before for N = 2, in which
Iy(@) = 0. Since [y is nonnegative, if it is also a smooth function of &, then its gradient with respect to @ must
vanish as well. In such cases, the decay rate increases quadratically in the variation of the bare energy levels.

cos(k(Jcix/?) d). (38)

Cox = C2x = —C1

6. Conclusion

We have investigated the existence and properties of the stable states of a pair of N-level atoms in a waveguide,
discussing the possibility to generate and preserve robust entanglement between the two atoms. As a case study,
we have considered identical distinguishable emitters with uniform level spacing. The generalization to the
presence of (small or large) asymmetries in the excitation energy and in the coupling, or uneven levels, has been
considered in section 5. Among possible interesting applications, we mention the use of a single two-level
emitter as a dynamical probe of the state of the field, along the guidelines discussed in [28]. These ideas can be
generalized, by using (entangled) atomic multilevel pairs, paving the way to unprecedented possibilities and
possibly super-resolution.
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