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Abstract

Confined beryllium atom ground and first excited states electronic structures are calculated by the
direct variational method, taking into account the system asymmetric nature of the trial wave
function, adding a cutoft function to ensure confinement boundary conditions. The trial wave
function is built up from hydrogenic functions, which constitute an adequate basis for energies
calculation. Physicochemical properties such as kinetic energy, pressure, and polarizability are also
calculated from energy results previously obtained to different confined radii. Using different
variational parameters in each hydrogenic function, the energy approximation obtained is improved.
Electronic configuration changes as we move toward the strong confinement region (small cavity
radii) in function of its atomic number using impenetrable walls, this region was obtained for Z = 4.
This is a conclusion of this work. Another important result is that this method is computationally
simpler and gives values inside the experimental precision. Aforementioned results are compared with
other theoretical publications.

1. Introduction

Nowadays, it is of great interest to control and manipulate different systems properties, one way to achieve this is
reducing space. When atom’s electrons move is influenced by a potential barrier presence in at least one
direction, it is said that the atom is confined. Confined quantum systems study began gaining importance
around the 1930s, through a model proposal to study confined Hydrogen atom, located at a spherical box center
with impenetrable walls; in order to determine its polarizability [ 1] variation as a pressure function.

Itis well known that some system properties change when they are under spatial constraints effects, which
may be either due to their size or to their particular environment; it is also possible that the system experiences
restricted motion due to an external magnetic field presence. In many cases, system properties under such
conditions may differ drastically with respect to those found in idealized or isolated systems. The reason why
these changes occur can be found considering how most of the physical properties are implicitly related to the
wave function and the energy, and this, in turn, is modified when the available space is restricted. So, to study this
system type, it is generally necessary to find a solution for Schrédinger’s equation using a Hamiltonian that
includes space restrictions features.

The confinement model for atoms has also been used to study the electronic structure subjected to high
pressures, as it has been for Helium atom [2—7] case; in effects of atoms and molecules trapped in nanostructures
as fullerenes [8]; in multielectron systems such as atoms or molecules [9—15], as well as in quantum dots and
quantum wires [16, 17] study. There are other applications of this model in physics areas such as acoustics, solid
state physics, nuclear physics, and biological studies in nanotechnology [18, 19]. These systems physical
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properties characterization allows design and constructs devices such as ultra-small lasers, quantum light
generators, specific wavelengths optical and electrical filters, among others; which are useful in modern
electronics and optoelectronics. Energy studies, beryllium atom [20-28] lower excited states fine, and hyperfine
structure play an important role in multielectron atoms excited states theory development, and better
correlation effects understanding between electrons.

In this work, we present a theoretical characterization of a confined beryllium atom in a spherical box with
impenetrable walls. The intent is to determine the effects due to confinement such physicochemical properties
and electronic configuration. It was confirmed that electronic configuration of the ground state of confined
beryllium atom, is different from that of the free beryllium atom depending on the confinement region. We
proposed the direct variational method to do this calculation, which is computationally much simpler in
comparison with FDT or Hartree—Fock, due to it requires fewer operations and it does not need a specialized
software, pointing that we use a four-element basis; giving energy values inside the experimental precision.
Using different effective atomic numbers for each hydrogen function, it is improved considerably the energy
values precision due to electron screening effect consideration.

2. Variational study of the ground state and the first excited states of the beryllium atom
into a spherical potential

This section is dedicated to studying confined beryllium atom inside a box with spherical symmetry and
impenetrable walls. Energies values will be obtained solving the time-independent Schrodinger equation using
the direct variational method, based on the model proposed by Gorecki and Byers-Brown [29]. Hydrogenic
functions will be used instead free-system functions, as well as introducing a cutoff function to ensure that the
trial function is zero at the boundaries [5-13, 16—18, 30-32]. Considering a four-electron atomic system, the
time-independent Schrodinger equation is given by the following eigenvalues equation

HV = EV, (1)

where E, is the atom electron energy, W is the wave function, and H is the Hamiltonian operator that depends on
electrons coordinates.

Hamiltonian operator for a four-electron atom in atomic units, using Born—-Oppenheimer approximation
and dismissing spin-orbit interaction, is given by:

. 14 L1 A&l
i=1 fi

i=1 1 i=1j>i T
where V, is the ansatz potential, limited by spherically symmetrical cavity and is defined by:

0’ n, 1, 13, 11 < 10>
00, 1, 12, 13, T4 = T,

‘/C(rlr 15 135 Ta, 7’0) = { (3)
where 1, is confinement radius, and r; are electrons position vectors in the system, withi = 1, ... 4.

A trial wave function will be used, in Slater’s determinant form, using spin—orbital hydrogen functions for 1s
and 2s orbitals

e (&M e, mx () (&M @ (n)x(n)

U(n, 1, 1 r)—L Pr(1)E(M) ()X () p3()E(n) @y X (1) (4)
SN ;Y QI)EM) o x () o3(1)EM) ey x(r) |

O (r)&(1s) Py () x (1) p3(r) (1) oy (ra) x (1)

where functions £(r;) and x(r;), represent spin functions, ¢;(r) and ,(r) are hydrogenic functions for orbital s,
while ;(r) and @4(r) are orbital 2s hydrogen functions.

From previously performed variational approaches [14], we know that a better energy values approximation
is obtained using different effective atomic numbers for different each orbital so that electron screening effect is
taken into account. Therefore, we will use different variational parameters for each hydrogenic function

o (r) = me *f, (5)
©,(r) = me Ir¥f, (6)
P3(r) = m3(2 — yrye L %)
@(r) = ny(2 — br)e 2, (8)




10P Publishing

J. Phys. Commun. 2(2018) 015001 A D Sanu-Ginarte et al

where .= ( 1 — L) isthe cutoff function; o, 3, 7, § are variational parameters and #; are normalization
0]

constants, which are determined by the following condition:
1 = (W0 = f°|\11|2du. )
0

Making direct variational method use

(UHH]| v)

E(a, ﬂ) 7> o) = <\IJ*|‘1/>

2 Eo, (10)
where E, is the lowest energy eigenvalue of H

Using W(#;, 1, 13, 14) spatial part and spin functions orthonormality conditions, it is possible to obtain the
energy functional:

1
E(a, 6) > 0) = [ ]
511533(822544 - 8242) + 5132(5242 - 522544)

X [(S22844 — S242)(Ss3Hiy + Si11Hss — 2S13His)

+ (811833 — S139(SaaHay + SanHas — 25:4Hos) + S33S4alia

+ (822844 — S2aD i3 + $22S33)14 + S11Saalos + ($11833813D s + S1182234

+ (S247 — $22840)Kiz + (S132 — $11533) Koy + 4813524 Min34 — 2833524 Minua

— 285118524 Ma3g3 — 2813844 Mipsa — 2522813 Mia34], (11)

where:

Sij = (¢i(1)|;(r)) are overlapped integrals.

ri ‘ w:(n) o (r) > are electronic repulsion integrals.
12

Ji = {0

K = <<pl.(r1) @;(r2) % ‘ @i () g (n) > are exchange integrals.

Hj = — <‘F’i(’) ‘ %VZ ‘ (1) > — <<pi(r) ‘ % ‘ @ (r) >kinetic and potential energy contains terms and

integrals of the form:

Mis = (00e) | | ex0am) Mo = (a@e | - | aoam),

M = (20em) | £ | @mem). Mo = (0o | L | etoem),

Miss = (@) | L | exmam).
After integrals calculation and plugged them into equation (11), it follows a numerical minimization process
for each variational parameter (provided nuclear charge Z value and confinement radius ry), namely:

OE (wi) rO) —

0, 12
% (12)

where wj are variational parameters.

In order to improve confined atom energy approximate calculation, a slight modification was considered for
the 2s functions, adding a different variational parameter to each of them, to give them more flexibility, being as
follows:

@3(r) = n3(2 — Ar)e L, (13)
o (r) = ny (2 — ur)e*%‘sr*fc. (14)

Once hydrogenic functions have been modified, 2s functions nodes are properly adjusted to reduce energy
value. This change only affects integrals values, the energy functional form remains unchanged.

It is worth to remember that the variational method can be used to estimate excited states energy value, as
long as it is ensured that the trial wave function is normalized and orthogonal to lowest states [33] wave function.
Since 2p orbital has three projections 2p, 2py, 2px; in this work, the projections in z-direction and x-direction
will be the one considered, the hydrogenic functions for that state are:

p5(r) = nyre 27" cos 0*f., (15)

3
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@y (r) = ngre 2% sin 0 cos ¢*f,. (16)

In our case the trial wave function is orthogonal to the ground state function; this is due to hydrogenic
functions angular part being orthogonal. The energy functional form remains unchanged, due to the change
residing solely in the 2p orbital function, only modifying the integrals values. There is no angular dependence in
the wave function ground state because orbitals only depend on the radial coordinate. Because of this, the
Laplacian operator, which acts on the function, depends exclusively on the radial coordinate. Once 2p orbital
with radial and angular dependence has been obtained, it is important to be very careful when calculating terms
for kinetic energy so as not to make mistakes.

The so-obtained variational energy and the trial wave function, make it possible to calculate some confined
beryllium atom properties. Average pressure exerted by system boundaries is given by the expression [16, 18]

dE 1 dE
P(r) =——=— —
(o) dv 47,2 dn

17)

where V = gm‘o 3, is the sphere volume and E is the atom ground state total energy.
To calculate kinetic energy, Ludena [3] proposes the following equation, which relates kinetic energy K and
pressure P with ry, as given by the virial theorem:

K (r) = 471 °P (1) — E(ny). (18)
An important physical quantity to calculate is polarizability, Kirkwood’s [ 18] approximation was used:
4 2
o = — (1'1' )2, (19)
9610 21:

where ay, is Bohr radius, and « is polarizability.

3. Results and discussion

This section presents results associated with the variational method, as well as few confined beryllium atom
physical properties, to describe pressure effect in the system electronic structure. Wolfram’s mathematica
software was used to optimize energy value for beryllium atom, using different confinement radii r,, provided
the value for nuclear charge Z = 4.

3.1. 15*2s” energy

Using four and six variational parameters, energy values and their respective variational parameters for
beryllium atom’s electronic configuration 15*2s> are shown in tables 1 and 2, using the direct variational method
and an antisymmetric wave function, where confinement radius r, is measured in Bohr and energy Ej;in
Hartrees.

The 1s orbital electrons experience higher nuclear charge than those in the 2s orbital. This is reflected in
variational parameters values. As confinement radius decreases, system energy increases as expected, and the
difference between values in variational parameters becomes smaller. A significant correction is observed in the
energy using six variational parameters with respect to those obtained with four parameters. This is due to new
parameters included in 2s hydrogenic functions, which allow for greater flexibility when energy value
minimization is looked for.

Energy values comparison is shown in figure 1 using four parameters Efy_ 4, six parameters Ef_q, and those
obtained by Ludefia [3] Escr_up using a self-consistent field calculation.

Four and six variational parameters were used in this work. Compared to Ludefia’s work [3], which used SCF
approximation to the Hartree—Fock method, there was a 0.729% and 0.097% difference when r, — oc. For
remaining r, difference fluctuates between 1.122% and 2.854% using four parameters. Using six variational
parameters, they fluctuate between 0.114% and 2.672%, reaching the largest difference in r, = 1.25. Bohr for
both cases. This difference has to do with the use of SCF approximation to the Hartree—Fock method, where the
use of a sufficient number of basis functions is needed in order to calculate the analytical wave function precisely
and, at the same time, to optimize orbital exponents, making calculations more complex and increasing
computing time and effort. In contrast, in this work, we obtained sufficient energies to study a confined atom
behavior with only six parameters. The use of such small base, composed of only four hydrogen-like functions,
dramatically reduces calculation difficulty and execution time when minimizing energy values.

Compared to Rodriguez-Bautista’s work [41], which used Roothaan’s approach to solve the Hartree—Fock
equations, there was a 0.097% difference when r, = 10. They used a new basis set for Hartree—Fock calculations
related to many-electron atoms confined by soft walls, and reported that orbital energies present one behavior
totally different to that observed for confinements imposed by hard walls. Inner orbital energies do not
necessarily go up when the confinement is applied, contrary to the increments observed when the atom is

4
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Table 1. Direct variational calculation for confined beryllium atom’s electronic
configuration 15*2s” using four variational parameters.

« 5] ol [ To Ey

3.664 20 3.664 20 2.704 78 2.704 78 00 —14.466 64
3.554 60 3.554 60 2.617 60 2.617 60 10 —14.426 85
3.540 59 3.540 59 2.608 07 2.608 07 9 —14.418 67
3.522 77 3.522 77 2.596 96 2.596 96 8 —14.406 79
3.499 43 3.499 43 2.584 44 2.584 44 7 —14.388 25
3.467 69 3.467 69 2.57191 2.57191 6 —14.356 22
3.422 64 3.422 64 2.564 15 2.564 15 5 —14.292 32
3.355 48 3.355 48 2.573 07 2.573 07 4 —14.136 92
3.249 82 3.249 82 2.619 05 2.619 05 3 —13.645 84
3.174 52 3.174 52 2.663 15 2.663 15 2.5 —12.974 74
3.082 83 3.082 83 2.725 60 2.725 60 2 —11.387 90
3.03553 3.03553 2.766 49 2.766 49 1.75 —9.766 18
2.996 99 2.996 98 2.819 08 2.819 08 1.5 —6.906 96
2.987 79 2.987 77 2.84571 2.845 70 1.4 —5.163 46
2.984 92 2.984 94 2.877 42 2.877 44 1.3 —2.883 48
2.985 47 2.985 46 2.886 38 2.886 37 1.275 —2.206 57
2.986 66 2.986 66 2.895 81 2.895 81 1.250 —1.479 14
2.988 50 2.988 48 2.90579 2.905 77 1.225 —0.696 43
2.991 12 2.991 15 2.916 34 2.916 36 1.2 0.146 62
3.010 24 3.010 24 2.965 58 2.965 58 1.1 4.249 65
3.047 74 3.047 74 3.029 80 3.029 80 1 9.929 39

A D Safiu-Ginarte et al

Table 2. Direct variational calculation for confined beryllium atom’s electronic configuration 15°2s> using six

parameters.

« Jo] 5 6 A I To Ey
3.684 72 3.684 72 2.008 10 2.008 10 9.391 09 9.391 09 0 —14.558 84
3.586 80 3.586 80 1.721 90 1.721 90 12.472 61 12.472 61 10 —14.556 71
3.574 54 3.574 54 1.671 70 1.671 70 13.884 31 13.884 31 9 —14.555 67
3.55907 3.55907 1.605 26 1.605 26 16.466 04 16.466 04 8 —14.553 55
3.539 03 3.539 03 1.519 21 1.519 21 21.297 10 21.297 10 7 —14.548 50
3.512 31 3.512 31 1.418 07 1.418 07 27.000 43 27.000 43 6 —14.534 55
3.475 20 3.475 20 1.324 28 1.324 28 21.410 33 21.410 33 5 —14.491 81
3.420 05 3.420 05 1.277 39 1.277 39 11.396 40 11.396 40 4 —14.352 12
3.32972 3.32972 1.337 63 1.337 63 6.694 86 6.694 86 3 —13.846 80
3.261 07 3.261 07 1.456 75 1.456 75 5.462 36 5.462 36 2.5 —13.141 34
3.244 70 3.244 70 1.494 43 1.494 43 5.257 51 5.257 51 24 —12.917 75
3.227 31 3.227 31 1.538 79 1.538 79 5.060 73 5.060 73 2.3 —12.651 98
3.208 85 3.208 85 1.59119 1.591 19 4.869 50 4.869 50 2.2 —12.334 29
3.168 49 3.168 49 1.727 20 1.727 20 4.492 97 4.492 97 2 —11.489 50
3.110 94 3.110 94 1.982 79 1.98279 4.001 63 4.001 63 1.75 —9.824 01
3.043 81 3.043 81 2.395 41 2.395 40 3.425 38 3.425 38 1.5 —6.922 37
3.013 38 3.013 38 2.628 25 2.628 24 3.147 60 3.147 61 1.4 —5.167 37
2.979 95 2.97997 2.916 95 2.917 01 2.823 86 2.823 81 1.3 —2.883 61
2.971 22 2.971 20 2.997 66 2.997 60 2.736 27 2.736 31 1.275 —2.207 55
2.961 97 2.961 97 3.085 16 3.085 16 2.641 52 2.641 52 1.250 —1.481 92
2.952 95 2.952 88 3.174 16 3.173 95 2.546 64 2.546 78 1.225 —0.702 00
2.941 81 2.941 95 3.279 52 3.279 95 2.432 10 2.431 85 1.2 0.136 81
2.896 08 2.896 41 3.737 52 3.738 49 1.941 94 1.945 24 1.1 4.207 79
2.993 48 2.993 48 3.876 95 3.876 95 2.000 00 2.000 00 1 9.835 15

confined by walls of infinite potential. This is because for atoms with large polarizability, like beryllium and
Potassium, external orbitals are delocalized when confinement is imposed. Consequently, internal oribatls
behave as if they were in ionized atom.

Considering four ionization energies for beryllium atom, ground state energy is —14.669 3324 Hartrees,
where a 1.318% difference was obtained for four variational parameters, and 0.690% for six when r, — oc.
Nevertheless, before being able to compare a non-relativistic theoretically obtained value with experimental
result, some additional effects have to be taken into account, such as nucleus movement with its finite mass
(mass polarization), relativistic and radiative corrections and possibly nuclear charge distribution effect
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Figure 1. Energy values comparison: (a) four variational parameters (b) six variational parameters (c) those reported by Ludena [3].

Table 3. Pressure and kinetic energy using (a) four variational parameters and (b) six

variational parameters.

() ®)
ro P(r)[H/ay’] K(ro)(a.u.) P(r)[H/ay’] K(r0)(a.u.)
00 3.87824 x 107! 14.468 28 2.079 42 x 10712 14.558 85
10 5.48230 x 10°° 14.495 74 6.01417 x 1077 14.564 27
9 9.53052 x 10~° 14.505 98 1.39510 x 10~° 14.568 45
8 0.000 01 14.522 91 3.840 96 x 107° 14.578 26
7 0.000 03 14.553 48 0.000 01 14.603 62
6 0.000 09 14.615 17 0.000 05 14.671 97
5 0.000 29 14.757 29 0.000 23 14.842 82
4 0.001 24 15.135 23 0.001 24 15.323 14
3 0.007 89 16.324 50 0.008 29 16.658 99
25 0.024 73 17.831 50 0.026 13 18.271 67
2 0.098 11 21.251 70 0.101 37 21.680 10
1.75 0.218 69 24.494 50 0.223 26 24.860 38
1.5 0.540 35 29.824 20 0.545 36 30.052 07
1.4 0.804 93 32.919 50 0.808 46 33.044 92
1.3 1.229 82 36.836 80 1.229 14 36.818 01
1.275 1.373 28 37.9750 1.370 90 37.913 92
1.250 1.536 36 39.187 10 1.531 85 39.079 24
1.225 1.722 37 40.483 60 1.71517 40.323 09
1.2 1.934 73 41.865 40 1.924 03 41.642 99
1.1 3.148 42 48.410 40 3.116 69 47.921 39
1 5.335 31 57.116 15 5.286 27 56.5941

described by Lindroth, Persson [34], where the total energy for a beryllium atom, with all of these considerations,
was —14.669 53 Hartree.

As expected, as confinement radius r, decreases, kinetic energy system increases due to the system pressure
effect. This can be seen in table 3.

3.2.15*2p2sand 15°2p” energies

First excited state experimental value for beryllium atom is unknown, therefore data obtained in this work will
be compared to approximate results. The energy results obtained for different radius of confinement for the
confined beryllium atom’s electronic configuration 1s*2p,2s, as well as values obtained in different papers, are
shown in table 4. It is evident from variational parameters that for the electron in 2, orbital, the core is more
shielded compared to other electrons. Its energy also rises when confinement radius decreases, same as ground
state case. Itis the largest, as well.
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Table 4. Comparison between energy values for confined beryllium atom’s electronic configuration 15*2p,2s and values obtained by Hibbert
[20], Weiss [21], Chao Chen [35].

« I3 0% ) A To Ey Hibbert Weiss Chao Chen
3.666 21 3.695 75 1.540 89 2.140 54 7.443 62 00 —14.423 85 —14.5184 —14.51844 —14.56637
3.568 73 3.597 72 1.288 44 1.848 06 9.054 42 10 —14.419 12
3.556 51 3.585 31 1.262 44 1.789 62 9.859 74 9 —14.416 84
3.540 97 3.569 55 1.239 04 1.706 99 11.451 26 8 —14.412 55
3.520 45 3.549 01 1.221 97 1.592 90 14.924 92 7 —14.403 69
3.491 98 3.522 00 1.212 60 1.454 18 21.438 89 6 —14.383 25
3.449 72 3.485 38 1.213 72 1.327 09 20.888 32 5 —14.330 50
3.380 62 3.43278 1.242 11 1.261 74 11.486 36 4 —14.180 25
3.249 23 3.350 57 1.337 65 1.315 25 6.726 54 3 —13.695 99
3.128 93 3.291 59 1.434 79 1.433 17 5.519 01 2.5 —13.067 71
3.096 80 3.278 00 1.460 35 1.470 63 5.321 68 2.4 —12.874 39
3.061 01 3.263 79 1.488 44 1.514 75 5.133 16 2.3 —12.647 14
3.021 00 3.248 94 1.519 33 1.566 85 4.950 91 2.2 —12.378 49
2.925 60 3.217 29 1.590 69 1.701 95 4.594 58 2 —11.676 07
2.769 35 3.17379 1.701 85 1.955 28 4.132 66 1.75 —10.324 20
2.560 73 3.124 04 1.845 26 2.363 47 3.590 70 1.5 —8.022 63
2.46171 3.101 11 1.914 50 2.593 83 3.328 00 1.4 —6.647 02
2.355 14 3.07527 1.992 50 2.878 32 3.022 07 1.3 —4.865 98
2.243 26 3.045 20 2.081 31 3.23223 2.654 57 1.2 —2.518 13
2.129 14 3.009 00 2.183 99 3.676 40 2.198 11 1.1 0.641 72
2.016 14 2.963 94 2.305 02 4.239 82 1.611 00 1 4.998 01

Lower energy values obtained in this work have a 0.65% difference compared to those obtained by Hibbert
[20], 0.64% compared to Weiss [21], and 0.92% compared to Chao Chen [35]. Hibbert and Weiss reported a set
of large-scale configuration interaction (CI) calculations for the 1s22snp(n = 2, 3) °P states, which can give an
accurate approximation for each state, but it may tend to obscure the global picture of the spectrum which is so
transparent in the other approach. On the other hand, energies and wave functions for the beryllium atom are
calculated with the full-core plus correlation wave functions by Chao Chen [35], obtaining a better
approximation because of the use of many relevant angular and spin couplings which greatly contribute to the
final energy values. Besides, Hibbert and Weiss did not include any intra-shell correlation in the 1s shell, because
their calculations were those of transitions in outer subshells. The purposes of these works were to obtain the
energy values in a precise way though in our case we tried to find acceptable energy values to calculate atomic
properties which were energy-dependent, plus, we consider the case of the non-free confined atom as Chao
Chen [35], Hibbert [20] Weiss [21] did. All of which adds an additional potential due to confinement, which in
turn influences on the difference among the values with respect to those ones already mentioned.

These methods are more expensive in terms of computation compared to the direct variational method
because the Cl basis sets expansion grows factorially and hundreds (sometimes thousands) of terms are needed
in order to obtain the precision desired.

Montgomery [39], Dolmatov [44] and Saul Goldman [40] report that for a strong confinement regime the
behavior of the orbitals is different from that in which the confinement is weak. For small confinement radii in
the hydrogen atom, the energies of 2p orbitals are lower than those of 2s orbitals; energies different to the ones in
the free atom. The crossing (intersection) of orbital energy for confined atoms was also reported by Garza et al
[42], in particular for the Kr atom. It is well known that confinement overestimates the energies of the systems.
Aquino et al [43] reported that a more physical way to simulate spherical compression would be accomplished
by using soft, penetrable walls. Table 5 shows the energy results obtained for different radius of confinement for
the beryllium atom with configuration 1s*2p?. In figure 2, we show that the change in the beryllium atom’s
configuration confined to the ground state 15225 takes place in the region 0 < r, < 2.3 Bohr radius, now being
1s22p? the configuration for the ground state. Consequently, for , < 2.3 Bohr radius the energy values in
tables 1 and 2 refer to the second excited state. The change in the electronic configuration of the beryllium atom,
when 7y decreases below 2.3, is one of the principal effects of spatial confinement [42], and can produce
important changes in the physical properties such as electronegativity, softness, and hardness.

When an atom is confined, the energy of its ground state rises, as was showed above in figure 2. The same is
true for the first and the second excited state, but the rise is much smaller. As a result, there is always a crossing
point for cavities smaller than a critical size: the ground state of the atom lies higher in energy than the first
confined states of the atom. Evidently, the ground state of the atom is no longer stable when it lies higher in
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Table 5. Direct variational calculation for confined beryllium atom’s electronic
configuration 15*2p”.

et B Y 4y ro Ey

3.199 10 4.000 00 1.054 57 2.817 76 o0 —14.35598
3.101 20 3.913 32 0.698 07 2.585 15 10 —14.354 46
3.087 40 3.901 96 0.648 08 2.562 95 9 —14.352 23
3.068 87 3.888 03 0.594 86 2.541 39 8 —14.346 11
3.043 15 3.870 45 0.541 39 2.52197 7 —14.331 45
3.006 04 3.847 33 0.491 67 2.506 09 6 —14.298 14
2.949 47 3.814 85 0.452 61 2.495 40 5 —14.222 60
2.855 40 3.764 76 0.440 45 2.495 32 4 —14.042 65
2.674 68 3.673 99 0.498 76 2.530 38 3 —13.558 94
2.510 33 3.592 32 0.585 79 2.584 74 2.5 —13.002 27
2.467 00 3.570 53 0.610 70 2.600 97 2.4 —12.838 98
241911 3.546 26 0.638 72 2.619 50 2.3 —12.640 32
2.366 12 3.519 10 0.670 15 2.640 55 2.2 —12.431 10
2.242 56 3.454 30 0.744 61 2.691 27 2 —11.872 48
2.050 45 3.348 00 0.863 52 2.773 26 1.75 —10.834 30
1.816 34 3.205 23 1.019 10 2.879 64 1.5 —9.119 70
1.713 51 3.136 62 1.094 65 2.930 60 1.4 —8.108 97
1.607 49 3.061 43 1.180 02 2.987 94 1.3 —6.807 14
1.580 66 3.041 68 1.203 14 3.003 49 1.275 —6.423 52
1.553 75 3.021 58 1.227 06 3.019 60 1.250 —6.012 29
1.526 78 3.001 15 1.251 82 3.036 32 1.225 —5.570 87
1.499 76 2.980 41 1.277 47 3.053 70 1.2 —5.096 36
1.391 60 2.894 95 1.390 21 3.131 06 1.1 —2.796 75
1.283 95 2.807 15 1.52273 3.224 80 1 0.374 81

T b T ¥ T ’ T v T , T
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Figure 2. Change in the orbitals configuration.

energy than the other states. When this occurs, the ground states transform into autoionizing states in the
confined atom.

4. Beryllium atom polarizability

To calculate polarizability, Kirkwood’s approximation [ 18] is used (equations (13) and (14)). Values obtained for
free beryllium atom using different confinement radii 1 and other reported results given by Komasa [36], Sahoo
and Das [37] and Porsev and Derevianko [38], are shown in table 6. Polarizability is measured in units of ay %, and
as polarizability exact value is not reported for beryllium atom, we had to compare it to approximate data. For
free atom case, we obtained a difference of 7.665%. Polarizability depends only on the box radius and varies
monotonously with its radius as well. For a precise polarizability description, electronic correlation to a very
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Table 6. Polarizability results obtained in this
work and the ones reported by Komasa et al
[36], Sahoo—Das [37] and Porsev and
Derevianko [38].

To QK 6p State Reference

00 34.861 's 37.755[36]
'Sy 37.80[37]
1S, 37.71[38]

Ju—
(=}

33.218
32.523
31.324
29.159
25.328
19.462
12.512

6.400
5 4.122
2.410
0.095

high level must be taken into account. Plus, a good outer region description is essential, thus electron density
distribution becomes less important. Komasa et al [36], Sahoo—Das [37] and Porsev and Derevianko [38]
calculated polarizability values with these aspects in mind. These requisites are met by very flexible wave
functions that are explicitly correlated. In our case, we used a test function that is not the system’s wave function.

5. Conclusions

The direct variational method, regardless of its complexity, turned out to be a simple and suitable approach from
physicochemical and computational points of view. It is a method that allows saving computing time. Using six
variational parameters we obtained better results than using four parameters, where the difference in energy
values compared with Ludena [3] results is 0.097% in case that the atom is not under any confinement potential
(ro — 00), and between 0.114% and 2.672% in remaining cases. This difference is due to the Hartree—Fock, to
accomplish major precision, needs enough basis functions, making more complex the calculation and
increasing computing time. Whereas in our work, with only one basis formed by four elements we obtained a
difference below 3.0%, which reduce computing time considerably.

In comparison with the beryllium atom experimental energy value, we obtained a 0.69% difference. And for
this method simplicity used, this calculation can be implemented in personal computers, no requiring special
conditions and computing time is less than an hour, which is a more efficient process than having a cluster.

There are only reported, by other authors, excited beryllium atom energy values in the ground state. We
report here energy values to different confinement radii. The difference between reported energy values by cited
author and ours for free atom, or non-confined, is 0.64% and 0.92%. No polarizability values have been
reported for confined beryllium atom. In this work are reported values for this property with different
confinement radii, where the difference between reported values for free atom and ours is 7.665%. In this work,
we confirmed, as it was expected, that decreasing the confinement radii, energy, kinetic energy, pressure, and
polarizability increased.

The energy functional expression presented in this work needed to calculate the energy values can be applied
in further calculations regarding both free and confined beryllium and beryllium-like atoms with a base different
from the hydrogenic one used in this paper.

Below ry = 2.3 Bohr radius, there is a change in the behavior of beryllium atom, where 1s22p?, 1s22p2s, and
152252 are configurations for the beryllium atom ground state, first excited state and second excited state
respectively. The energy values shown in tables 1 and 2 for the region 1y > 2.3 Bohr radius refers to the ground
state, while 7y < 2.3 Bohr radius refer to the second excited state. The energy values shown in table 5 for the
region 7, >> 2.3 Bohr radius refers to the second excited state, while y < 2.3 Bohr radius refer to the ground
state. Thus, it is possible to conclude that given a confinement Bohr radius of 2.3 for the beryllium atom, a
change take place in the order the orbital energies in function of its atomic number.
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