TOPOCAL REVIEW

Roadmap on solar water splitting: current status and future prospects

To cite this article: Sheng Chu et al 2017 Nano Futures 1 022001

View the article online for updates and enhancements.

Related content
- Recent developments in complex metal oxide photoelectrodes
 Fatwa F Abdi and Sean P Berglund
- Silicon nanowire heterostructures for advanced energy and environmental applications: a review
 Ramesh Ghoosh and P K Giri
- Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications
 Mohamed Ebaid, Jin-Ho Kang and Sang-Wan Ryu

Recent citations
- A review on photocatalytic CO$_2$ reduction using perovskite oxide nanomaterials
 Sheng Zeng et al
- Co$_2$P Nanorods as an Efficient Cocatalyst Decorated Porous g-C$_3$N$_4$ Nanosheets for Photocatalytic Hydrogen Production under Visible Light Irradiation
 Deqian Zeng et al
Roadmap on solar water splitting: current status and future prospects

Sheng Chu1,6, Wei Li2, Yanfa Yan3,6, Thomas Hamann4,6, Ishiang Shih1, Dunwei Wang2,6 and Zetian Mi1,5,6

1 Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
2 Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, United States of America
3 Department of Physics and Astronomy & Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, United States of America
4 Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824-1322, United States of America
5 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI 48109, United States of America
6 Authors to whom any correspondence should be addressed.
E-mail: sheng.chu@mcgill.ca, yanfa.yan@utoledo.edu, hamann@chemistry.msu.edu, dwang@bc.edu and ztmi@umich.edu

Keywords: solar fuels, water splitting, semiconductor, photoelectrochemistry, tandem system

Abstract
Artificial photosynthesis via solar water splitting provides a promising approach to storing solar energy in the form of hydrogen on a global scale. However, an efficient and cost-effective solar hydrogen production system that can compete with traditional methods using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell consisting of a p-type photocathode and an n-type photoanode, with the photovoltage provided by the two photoelectrodes, is an attractive route to achieve highly efficient unassisted water splitting at a low cost. In this article, we provide an overview of recent developments of semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III–V compounds and organics, either as photocathodes or photoanodes for water reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC tandem system for unassisted water splitting are outlined. The importance of developing a single-photon photocathode and photoanode that can deliver high photocurrent in the low bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future development of photoelectrode materials, and viable solutions to realize highly efficient PEC water splitting device for practical applications.

1. Introduction

Sunlight is the most abundant renewable energy resource and considered to be the ultimate solution to address the global energy problem: 'The Terawatt Challenge.' However, the vision of solar energy providing a substantial fraction of global energy infrastructure is still far from being realized. The major challenge is to develop an efficient and cost-effective approach for storing solar energy that can be used on demand on a global scale. Solar water splitting provides a scalable route to store solar energy in the form of energy–dense hydrogen fuel [1], which can be directly used in a fuel cell with water as the only emission or as a reactant for well-established industrial processes, such as ammonia synthesis (Haber – Bosch reaction) or methanol production (CO2/CO hydrogenation reaction). For solar water splitting systems, there are three major categories: photochemical (PC) system, photoelectrochemical (PEC) cell, and photovoltaic-electrolysis (PV-E), as shown in figure 1. PV-E is a straightforward strategy of connecting two existing developed technologies: photovoltaic (PV) cell and water electrolyzer. Although PV-E have been demonstrated with high solar-to-hydrogen (STH) conversion efficiencies over 10% [2–9], this route is still too costly to compete with traditional methods using fossil fuels (e.g. steam reforming of natural gas) [10]. Considering the technological maturity of PV-E, further improvement in the efficiency has been limited. Therefore, the development of alternative and cost-effective routes to produce solar hydrogen is of particular interest. PC approach is a simple and low-cost process for
potential solar hydrogen production, but this route is inefficient with a STH efficiency typically at least one order of magnitude lower (<1%), and produces a potentially explosive mixture of H₂ and O₂, which requires an external high-cost process to separate them to avoid back reactions [11]. In this context, PEC system, which lies intermediate between PV-E and PC, offers a high STH efficiency at an affordable cost [12–14]. The PEC approach integrates the light absorption and electrochemical process of PV-E process into a single and monolithic unit via a direct semiconductor–electrolyte interface to reduce the cost, while having a distinct advantage over PC system in that the H₂ and O₂ evolution half-reactions occur on two different electrodes and are separated physically. Recent technoeconomic analyses have shown that PEC water splitting can achieve substantially lower overall system cost compared to PV-E approach, and can become economically competitive with existing fossil-fuel derived hydrogen if the efficiency and lifetime are substantially improved to >10% and >5 years, respectively [14–16].

A simple PEC configuration includes one semiconductor photoelectrode (as either photocathode or photoanode) and one standard metallic (dark) electrode (e.g. Pt). Ideally, the semiconductor should have an appropriate bandgap and band structure to encompass a large portion of solar spectrum while providing sufficient potentials to accomplish the overall water splitting reaction, as well as excellent charge transport properties and long-term stability during the operation. Despite the fact that many materials have been explored over nearly half a century, there is currently no single material that can fulfill all of the key criterion. Since overall water splitting consists of two half-reactions, i.e., water oxidation and proton reduction, it is natural to use a 2-photon dual-electrode system, which is analogous to the Z-scheme in natural photosynthesis. Compared to the PV-biased PEC tandem device, a simple tandem system consisting of spatially separated p-type photocathode and n-type photoanode is preferred in terms of cost, complexity and stability [17–19]. The energy band diagram for this type of device in a ‘wireless’ configuration is shown in figure 2. There are two designs of the device, depending on whether the wider bandgap material is a photoanode or a photocathode. In both designs, the longer wavelength photons that are not absorbed by the top large bandgap absorber are transmitted and harvested by the bottom low bandgap absorber. Owing to the band bending, the photogenerated electrons in p-type photocathodes and holes in n-type photoanodes migrate toward the semiconductor–liquid interface to

Figure 1. Schematic of three types of solar water splitting system: PC system, PEC cell, and PV-E. PC and PV-E have the respective limitations of low efficiency and high cost, while PEC lies intermediate for achieving high efficiency at an affordable cost.

Figure 2. Schematic of tandem PEC water splitting device with (a) a large bandgap photoanode and a small bandgap photocathode and (b) a large bandgap photocathode and a small bandgap photoanode.
reduce and oxidize water, respectively, while holes in the photocathode and electrons in the photoanode recombine at the ohmic contact that connects both photoelectrodes. As each material is responsible for the relevant half reaction of water splitting, the tandem system allows the use of smaller bandgap material and relaxes the stringent requirement of band edge positions to straddle the water redox potentials. Therefore, the PEC tandem device can achieve potentially higher efficiency than the single absorber system, with large solar spectral coverage and a wide window of suitable materials to choose from (figure 3)\(^\text{[20-23]}\). Recently, various theoretical modeling studies have evaluated the achievable STH efficiency of this tandem system by considering different bandgap combinations\(^\text{[24-31]}\). Despite the varying results of the different models which include accounting for variable losses (e.g. kinetic overpotentials, solution ohmic resistance and parasitic light loss), it is generally accepted that such a tandem device can yield an STH efficiency over 25%. To achieve STH efficiency $>20\%$, the optimal top and bottom semiconductor absorbers in a tandem device are with bandgaps of approximately 1.6–1.8 eV and 0.9–1.2 eV, respectively. The maximum STH efficiency of $\sim27\%$ was predicted using the 1.7/1.1 eV bandgap combination\(^\text{[31]}\), which can cover the major portion of solar spectrum with a current matching condition between the two photoelectrodes, as shown in figure 4.

In this review article, we focus on the recent progress in the development of promising semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III–V compounds and organics, either as photocathodes or photoanodes to construct potentially efficient p–n PEC tandem system for unassisted water splitting. First, the fundamental principles of solar water splitting at a semiconductor/liquid junction (SCLJ), including different cell configurations and merits of parameters are introduced. Then great emphasis is focused on the design and development of efficient p- and n-type semiconductor materials as photocathode and photoanode for water reduction and oxidation, respectively. In addition, efforts to form a PEC tandem device by combining p-type photocathode and n-type photoanode for unassisted water splitting are summarized in terms
of their STH efficiency and stability. Finally, conclusions and future prospects of solar water splitting for achieving a practical artificial photosynthesis device are presented.

2. Basic principles of solar water splitting

2.1. Semiconductor photoelectrochemistry

Semiconductor photoelectrochemistry deserves special attention because the system features a highly unique interface—the SCLJ. For a typical system where the Fermi level of the semiconductor is not at the same level as the electrochemical potential of the electrolyte prior to contact (figure 5(a)), the formation of the junction suggests that one or both of the energy levels should move to reach equilibrium. As the charge density of the electrolyte is typically several orders of magnitude higher than that of the semiconductor, the semiconductor Fermi level is moved to align with the electrochemical potential of the electrolyte. While the same description would be true for a metal/liquid junction, the semiconductor is unique because it can form a relatively wide depletion region (up to μm’s, depending on the dielectric constant, the carrier density, and the energy difference) [32, 33]. As is seen in figure 5(b), a SCLJ with a bent band is effectively a Schottky-type diode that can separate photogenerated charges. This junction is the fundamental reason why semiconductor photoelectrochemistry is interesting.

On a practical level, semiconductor photoelectrochemistry also represents a useful tool to understand the detailed processes that govern the operation of a photocatalytic system. Consider solar water splitting as an example. In order to achieve high efficiencies, we desire to have a system that is efficient in all three major processes: absorbing light, separating charges, and driving hydrogen and oxygen evolution reactions. Careful studies of the SCLJ can help us understand which parts of the system are responsible if a system fails to deliver the expected performance. For instance, the performance of a photoanode as shown in figure 6 may be limited by any of the following processes. First, the recombination of electrons and holes in the bulk is too severe. Second, the direct recombination of electrons and holes in the conduction and valence bands, respectively, near the surface is too fast. More explicitly, charge distribution near the surface differs from the bulk. When majority
charge carriers deplete from semiconductor to liquid, the minority charge concentration increases in this near-surface region forming an inversion layer, opening up additional recombination channels [34]. Third, surface mediated electron and hole recombination contributes significantly to the annihilation of photogenerated charge carriers. Fourth, charge carrier transfer from the semiconductor to the electrolyte is too sluggish to compete with charge recombination processes as outlined above. Being able to accurately describe the various processes is critical to the understanding and, ultimately, solving the various issues for high-efficiency solar water splitting. Below, we will briefly present the equations that are useful to describe the SCLJ in a semiconductor PEC system.

For the ease of discussions, we choose to use a photoanode system as shown in figure 5 as a prototypical platform to lay out the details. Upon contact, the SCLJ results in the formation of a space charge region (depletion region of electrons), whose width \(W_{sc} \) depends on the difference between the Fermi level of the semiconductor in vacuum and the electrochemical potential of the electrolyte \((\Delta \phi_{ac}) \), the relative permittivity \((\varepsilon) \) and the doping density \((N_d) \):

\[
W_{sc} = \left(\frac{\Delta \phi_{ac} \varepsilon q}{qN_d} \right)^{1/2}.
\]

(1)

The capacitance of the space charge region can be derived from the variation of the space charge \((Q_{sc}) \) with the potential drop \((\Delta \phi_{ac}) \), \(C_{sc} = dQ_{sc}/d\Delta \phi_{ac} \), as described by the Mott–Schottky equation:

\[
\frac{1}{C_{sc}^2} = \frac{2}{qN_d \varepsilon} \left(\Delta \phi_{ac} - \frac{kT}{q} \right).
\]

(2)

Because the electrical field generated within the space charge region varies linearly from distance \(x = W_{sc} \) to the surface \(x = 0 \), the variation of electrical potential will be proportional to \(x^2 \) and can be represented as band bending (figure 5(b)). The degree of band bending is governed by the Fermi level difference between the semiconductor and the redox pair. This is analogous to a Schottky junction formed between a semiconductor and a high work function metal [35]. Under reverse bias conditions (positive potentials), the Schottky barrier is increased, which makes it more difficult for electrons to transfer from the semiconductor to the electrolyte. For an anode system, such charge transfer would be considered back electron transfer and should be minimized. Meanwhile, the enhanced band bending under reverse bias makes it easy for holes to transport to the surface for driving oxidation reactions. Conversely, under forward bias (more negative potential applied on semiconductor), the band bending will be reduced and it becomes easier for electron transport from conduction band for oxidizing redox species (a reduction reaction). Similar to a Schottky diode of an n-type semiconductor, however, holes are minority carriers, meaning that the current under reverse bias is limited. As such, we expect a photoanode to exhibit low reverse bias current. That is, negligible oxidation reactions would take place on a photoanode without illumination.

Upon illumination \((h\nu > E_g) \), electron–hole pairs are generated within the semiconductor as a result of electrons excitation from the valence band to the conduction band (process i in figure 5(c)). At thermal equilibrium, the generation of electron–hole pairs from photon excitation is balanced by the recombination on a timescale \(> 10^{-9} \) s. Because these photogenerated charge carriers can equilibrate with the lattice vibration (phonons) on a timescale \(< 10^{-12} \) s, the populations can be described by Fermi–Dirac statistics [36]. A quasi-Fermi level can then be derived by simply interpreting the steady-state carrier concentration of holes as representing a quasi-equilibrium situation \((E_{F,n} \text{ in figure 5(c)}) \). Similarly, a quasi-Fermi level of electrons is also obtained \((E_{F,p} \text{ in figure 5(c)}) \). But since the electron concentration is expected to be similar to the equilibrium value, \(E_{F,n} \) is typically close to that under equilibrium. From a thermodynamics perspective, the driving force for water oxidation on a photoanode originates from the free energy difference between electron and hole quasi-Fermi levels. The physical model of band bending near surface is still valid under such a circumstance. The magnitude of the quasi Fermi levels splitting determines the maximum photovoltage \((V_{ph}) \) one photoanode can provide. Under the likely assumption that one can probe the \(E_{F,n} \) through back contact under equilibrium conditions (e.g., through the measurement of the open circuit voltage, \(V_{oc} \)), the difference between the \(E_F \) (under dark, figure 5(b)) and the \(E_{F,n} \) (under illumination, figure 5(c)) represents the \(V_{ph} \) [37–40].

The recombination of photogenerated electron–hole pairs can take place either in bulk (process i in figure 5(c)) or near surface (processes ii and iii in figure 5(c)), which may involve processes such as Shockley–Read–Hall recombination (through levels associated with defects or impurities), radiation (band to band) recombination or Auger recombination [41]. The recombination in bulk follows a pseudo first order rate law due to the excess of majority carriers (electrons in n-type semiconductor), and is characterized by the minority carrier lifetime \(\tau_{min} \). This value ranges from nanoseconds in many compound semiconductors to milliseconds in ultrapure silicon [42]. Since the electrical field in bulk is limited, the minority carriers (holes in n-type semiconductor) generated in this region can only diffuse a certain distance before they are recombined, trapped or transferred to the electrolyte to drive oxidation reaction. This is one important bulk property of a semiconductor and characterized as minority carrier diffusion length \(L_{min} \), which is determined by the diffusion...
coefficient D_{min}, the mobility of minority carriers μ_{min} and τ_{min}:

$$I_{\text{min}} = \sqrt{D_{\text{min}} \tau_{\text{min}}} = \sqrt{\frac{kT_e}{q} \mu_{\text{min}} \tau_{\text{min}}}.$$ \hspace{1cm} (3)

Ideally, a photoanode should have long I_{min} comparable or greater than the characteristic thickness of the material, so that most photogenerated holes could diffuse to the surface to drive the desired oxidation reactions. By assuming hole–electron recombination in the space charge region is negligible, and that the recombination on the surface is minimum due to rapid interfacial holes transfer, we can calculate the hole flux J_h to the surface, and the incident photon to current conversion efficiency (IPCE) or external quantum efficiency (EQE), as follows,

$$J_h = I_0 \left(1 - \frac{\exp(-\alpha W_{\text{SC}})}{1 + \alpha I_{\text{min}}}\right),$$ \hspace{1cm} (4)

$$\text{IPCE} = \frac{J_h}{I_0} = 1 - \frac{\exp(-\alpha W_{\text{SC}})}{1 + \alpha I_{\text{min}}},$$ \hspace{1cm} (5)

where α is the absorption coefficient at a given wavelength. Of course, as an oversimplified description for an idealized situation, the Gartner equation would be inadequate to describe actual systems. It nonetheless defines the upper limit of the achievable quantum efficiencies based on the measurable photophysical constants of a material. The current voltage characteristics as predicted by the Gartner equation is shown in figure 6. The current–voltage relationship for a realistic system is different primarily due to the loss of photogenerated holes. Specifically, the onset-potential (where the photocurrent starts) will be shifted toward the more positive direction (as depicted in figure 6). In addition, recombination in the space charge region (process ii in figure 5(c)) can proceed through defects close to mid-band gap. The analytical expressions with these considerations were previously discussed by Reichman and El Guibaly et al [43–46]. Surface recombination (process iii in figure 5(c)) is yet another important factor to be considered. The situation is particularly important when surface hole concentrations are high due to reasons such as slow interfacial hole transfer. Surface states can also arise from crystal defects, surface dangling bonds and/or chemisorbed species. Further, the photogenerated holes trapped by surface states can be annihilated through recombination with electrons. It is important to note that the definition of surface states used here is rather broad. They may refer to electronic states within the band gap caused by a number of reasons, including surface chemisorbed species as a result of chemical reactions.

In a way, the Gartner equation and the Reichman correction consider the photophysical properties of the semiconductor, both in the bulk and near/on the surface, and predict the rate at which photogenerated charges that can potentially drive the chemical reactions in the electrolyte. The charges that are actually transferred to the electrolyte may be calculated by the charge transfer efficiency. Assuming the likely scenario that surface processes are first order relative to charge concentrations, we have,

$$\text{TE} = \frac{k_{\text{tran}}}{k_{\text{tran}} + k_{\text{rec}}},$$ \hspace{1cm} (6)

where TE is the transfer efficiency, k_{tran} is the forward charge transfer rate constant, and k_{rec} is the charge recombination rate constant. The measured photocurrent densities can then be calculated as:

$$I_{\text{meas}} = J_h \times \text{TE}.$$ \hspace{1cm} (7)

2.2. PEC cell configurations

In the introduction, we discussed three types of solar water splitting systems: PC, PEC, and PV-E. Here, we will focus on different PEC cell configurations, which can be constructed either from a single p-type semiconductor as photocathode (or n-type semiconductor as photoanode), or two semiconductors connected separately (or in series).

For a single semiconductor PEC cell where only a half-reaction occurs on the working electrode, a counter electrode is required for the other half-reaction to complete the electrical circuit. Often, a reference electrode is connected to the working electrode to characterize external applied voltage. If necessary, to avoid product crossover, two compartments or ion exchange membrane will be present to separate the working and counter electrode. This three-electrode configuration is depicted in figure 7(a). To overcome the thermodynamic barrier of water splitting and the potential loss caused by recombination processes, the working electrode should have a band gap of at least 1.6 eV [22]. However, if the band gap is too wide, the visible light absorption efficiency will be low. Other potential loss mechanisms include back contact and overpotential induced by poor catalytic activity. To address this issue, the semiconductor material should be deposited on highly conductive substrate to form a good Ohmic contact, which allows rapid injection of majority carriers from working electrode to counter electrode. Additionally, HER or OER catalyst is required to facilitate surface kinetics accordingly.

As seen here, it is challenging for a single photoelectrode to achieve sufficient photovoltage for solar water splitting. The combination of dual semiconductors will be more advantageous. A second photoelectrode can replace the counter electrode where the other half-reaction occurs, and compensate the insufficient
2.3. Calculation of efficiencies

To evaluate performance of solar water splitting, it is well acknowledged to compare onset potentials, and photocurrent density (normalized to projected surface area of photoelectrode) at 1.23 V versus RHE for photoanode and 0 V versus RHE for photocathode. Normalized metrics based on energy input, product conversion, etc. are of equal significance. Since the value-added product of water splitting is hydrogen, STH efficiency is the most critical figure of merit for measuring the performance and efficiency of solar water splitting on practical device level. It is defined as the ratio of output chemical/electric energy to input solar energy via the following equation:

\[
\eta_{\text{STH}} = \frac{\phi_{\text{H}_2} (\text{mol s}^{-1} \text{m}^{-2}) \times G_{\text{light}}^0 (\text{kJ mol}^{-1})}{P_{\text{light}} (\text{W m}^{-2})} \text{AM 1.5G},
\]

where \(\phi_{\text{H}_2}\) is the hydrogen gas production rate, \(G_{\text{light}}^0\) is the Gibbs free energy of hydrogen gas (237 kJ mol\(^{-1}\) at 25 °C) and \(P_{\text{light}}\) is the total solar irradiation input. The light source should match solar spectrum of air mass 1.5 global (AM 1.5 G). As mentioned, a STH efficiency over 20% is desired for large-scale application in the future, and a maximum 27% STH efficiency has been predicted for a 1.7 eV/1.1 eV tandem cell configuration with optimal light absorption (figure 4) [31]. Alternatively, output chemical energy can be substituted by electric energy that multiplies short-circuit current density \(j_{\text{sc}}\) and the redox potential of interest (1.23 V for water oxidation). Since 100% of the current may not contribute to the redox reaction, Faradaic efficiency must be considered in the equation. Faradaic efficiency (\(\eta_F\)) describes the efficiency of passing charges contributing to desired electrochemical reaction, which is defined as the ratio of the measured product quantity and the theoretical value derived by passing charges.

\[
\eta_{\text{STH}} = \frac{j_{\text{sc}} (\text{mA cm}^{-2}) \times 1.23 \text{ V} \times \eta_F}{P_{\text{light}} (\text{W m}^{-2})} \text{AM 1.5G}
\]

In general, the value of \(j_{\text{sc}}\) can be replaced by the externally measured current density at zero applied potential under steady-state conditions, which is analogous to short circuit conditions.

The STH efficiency is of particular interest to evaluate the performance of unassisted overall solar water splitting system. Extensively, to evaluate the performance of a single photoelectrode independently, where extra applied potential is often required from a second photoelectrode or external power supply, another concept of conversion efficiency can be introduced. At a certain \(j_{\text{sc}}\) and \(\eta_F\), applied bias photon to current conversion efficiency (ABPE) can be written as follows:

\[
\text{ABPE} = \frac{j_{\text{sc}} (\text{mA cm}^{-2}) \times (1.23\text{ V} - V_{\text{app}}) \times \eta_F}{P_{\text{light}} (\text{W m}^{-2})} \text{AM 1.5G}
\]

where \(V_{\text{app}}\) is the applied potential between photoelectrode and counter electrode.

In addition to the conversion efficiencies characterized by the entire solar spectrum on a device level, it is important to understand the efficiency of electrons/holes converted from photons at individual wavelengths of light on a single photoelectrode material level. To serve this purpose, IPCE or EQE mentioned above can be...
written in an alternative format as follows:

\[
\text{IPCE}(\lambda) = \text{EQE}(\lambda) = \frac{\text{electron flux (mol s}^{-1})}{\text{photon flux (mol s}^{-1})} = \frac{i_p \lambda (\text{mA cm}^{-2}) \times h c (V \text{ m})}{P_{\lambda} (\text{mW cm}^{-2}) \times \lambda (\text{nm})}
\]

(11)

in which \(\lambda\) is the single wavelength light source, \(P_{\lambda}\) is the power of irradiation, \(h\) is Plank’s constant, \(c\) is the speed of light, and \(i_p\) is the photocurrent density. To acquire IPCE, a monochromator (single wavelength light source) and a three-electrode configuration are essential, that \(i_p\) at the identical applied potential with individual wavelengths of light can be obtained accurately. Generally, the onset wavelength is closely related to the bandgap of semiconductor. In addition, by integrating the IPCE values with the standard AM 1.5 G solar spectrum, the total photocurrent density under solar illumination can be estimated as,

\[
J_{\text{AM 1.5}} = \int (\text{IPCE}_\lambda \times \phi_\lambda \times \epsilon) d\lambda
\]

(12)

where \(\epsilon\) is the elementary electron (C) and \(\phi_\lambda\) is photon flux of irradiation (m²s).

3. Advances in the development of PEC water splitting

3.1. Photocathode materials

3.1.1. Metal oxide

Because of its earth abundance, nontoxicity, high mobility, good and natural p-type electric conductivities and close to optimum direct bandgap of 2.1 eV, cuprous oxide, Cu₂O, is considered a promising candidate for photocathodes for PEC water splitting, with a theoretical maximum photocurrent of 14.5 mA cm⁻² and a STH efficiency of about 18% [48-50]. Though Cu₂O has favorable band energy positions for water splitting, its application as an efficient and durable photocathode for water splitting has been inhibited by its poor photostability in aqueous electrolytes and low photocatalytic efficiency caused by fast recombination of minority carriers (electrons). Extensive research efforts have been made to improve the photoactivity by employing protective layers, such as ZnO, TiO₂, and SnO₂ [50-53], to reduce recombination of carriers by coupling with other semiconductors such as CuO, Ga₂O₃, WO₃, and Al-doped ZnO (AZO) [50, 53-56], to form p–n heterojunctions and enhance charge transfer by applying co-catalysts, such as Pt, RuO₂, and MoS₂ [50, 57-59]. In 2011, Grätzel and co-workers showed that a Cu₂O photocathode could be significantly stabilized with protective coatings of AZO and TiO₂ deposited by atomic layer deposition (ALD) [50]. Recently, using a Cu₂O nanowire photocathode with AZO/TiO₂ protection layers and RuO₂ catalyst, Grätzel and co-workers reported photocurrent density as high as 10 mA cm⁻² at −0.3 V versus RHE [60]. The photocurrent density was maintained for over 55 h. The results demonstrate the promise of Cu₂O as a photocathode for PEC water splitting.

In terms of photovoltage, Cu₂O was reported with a relatively negative onset potential (typically 0.4–0.6 V versus RHE), which need to be combined with photoanodes that can provide large photovoltage to form PEC tandem device for unassisted water splitting. Recently, by introducing a Ga₂O₃ buffer layer between the Cu₂O absorber in the PEC tandem device. CuBi₂O₄ was demonstrated with stable operation for 40 h in the presence of O₂ sacrificial electron scavenger [64]. CuBi₂O₄ is another promising photocathode material, which features a suitable bandgap of 1.6–1.8 eV as the ideal top light absorber in the PEC tandem device. CuBi₂O₄ was first identified as a potential photocathode material by Arai et al in 2007 through a combinatorial screening study [65], which was later experimentally confirmed by Hahn et al [66]. Recently, a photocurrent of 1.2 mA cm⁻² at 0.1 V versus RHE was reported by using Pt as the co-catalyst [67]. It is worth mentioning that CuBi₂O₄ can produce an extremely positive onset potential >1.0 V versus RHE due to its positive flat-band potential above 1.3 V [68, 69], which makes it a very promising photocathode material as the top cell in the PEC tandem device if the charge carrier properties and catalytic activity can be further improved.

3.1.2. III–V group materials

III–V materials hold record efficiencies for both single-junction and multiple-junction solar cells [70]. Owing to their tunable optoelectronic properties, high light absorption co-efficient, and exceptional charge-transport
properties, III–V semiconductors, including GaP, InP, and their alloy compounds such as GaInP, are reported with extremely high efficiency as photocathode materials [71]. However, III–V semiconductors suffer severely from rapid photocorrosion in the electrolyte, which requires additional protection layers to prevent the direct contact from the electrolyte. Lee et al demonstrated the stable operation of p-InP nanopillar photocathode coated with a thin layer of TiO2 (3–5 nm) grown by ALD, in conjunction with Ru co-catalyst [72]. It was reported that the photocathode had a high conversion efficiency of ~14% under simulated AM 1.5 G illumination. In addition to the role as the surface protection layer, Lin et al found the thin TiO2 layer could reduce the surface recombination and enhance the photovoltage of planar-based InP photocathodes [73]. After the deposition of TiO2, there was an anodic shift of 200 mV, which produced a high onset potential over 800 mV. Recently, Gao et al developed a periodic array of InP nanopillars photocathode with a buried p–n junction [74]. Owing to the rational control of interface energetics and minimization of light reflectance, the photocathode produced an unprecedented onset potential of 850 mV (figure 8(a)), which was close to the open-circuit potential of InP homojunction solar cells (0.939 V) [70]. Moreover, the device yielded a high photocurrent over 25 mA cm–2 at a positive potential as high as 0.6 V versus RHE and a benchmarking power conversion efficiency of 15.8% for single junction photocathodes, which promises high efficiency unassisted water splitting when paired with a high-performance photoanode. With the protection of a thin layer of TiO2 (4 nm), the photocathode exhibited stability for at least 6 h, in contrast with the fast decay of sample without TiO2 protection [74].

Recently, III-nitride semiconductors, e.g. GaN and InGaN, have emerged as a new generation of materials for solar hydrogen production [75–81]. In contrast to the poor PEC stability of conventional III–V compounds, wherein the chemical bonds are mostly covalent, III–nitrdes exhibit extreme stability in aqueous solution due to their ionic bonding character [82, 83]. In addition, they possess similar, or even better optical, electrical, and structural properties than conventional III–V compounds. For example, InGaN is the only known semiconductor material whose bandgap can be tuned while straddling the water redox potentials over a wide range of solar spectrum (UV, visible, and even near-infrared light) [84]. Also, spontaneous polarization can be obtained in III-nitrdes with N-terminated surfaces, which could enhance the charge transport and separation for efficient overall solar water splitting and protect the surface against oxidation and photocorrosion [85]. Moreover, compared to the high cost of conventional III–V compounds, it is worth mentioning that III-nitride materials, widely used in the semiconductor industry including solid-state lighting and power electronics, are much more attractive for cost-effective and scalable production.

In 2005, Fuji et al demonstrated the great potential of p-GaN as photocathode for H2 evolution [86]. Afterwards, Aryal et al reported higher photocurrent density on p-InGaN compared to p-GaN, and its excellent stability for a prolonged period of 24 h in HBr solution without any protection layer [87]. Recently, Fan et al developed an integrated InGaN/Si photocathode for efficient and stable H2 evolution [88]. In conjunction with Pt co-catalyst, the monolithic device exhibited a high photon–to–current efficiency of 8.7% with unity faradic efficiency for H2 generation. Moreover, without any additional protection layer, it showed stable operation without degradation for at least 3 h, promising high potential to construct a PEC tandem water splitting system.
3.1.3. Cu-based chalcogenides

Cu-based chalcogenides such as chalcopyrites and kesterites have demonstrated their potential for fabricating efficient thin-film PV solar cells [70], owing to their excellent properties such as high optical absorption, suitable bandgap, and defect tolerance [89–94]. Since PV and PEC water splitting share the same fundamental working principle on photon absorption and charge carrier generation and separation, Cu-based chalcopyrites and kesterites are naturally considered promising candidates for efficient PEC water splitting. Owing to their suitable conduction band edge for hydrogen evolution, Cu chalcopyrites and kesterites have been extensively studied in the last decade as photocathodes for PEC water reduction.

The Cu chalcopyrites have a general compositional formula of I-III-VI$_2$ (I $=$ Cu, II $=$ In, Ga; VI $=$ S, Se), for example CuInSe (CIS), CuIn$_2$ (CIS), CuGaSe$_2$ (CGSe), and CuGaS$_2$ (CGS) [95]. The chalcopyrites can be considered derivatives of the II–VI compounds such as ZnS by replacing the two group II atoms by one group I atom and one group III atom. The chalcopyrite structure resembles the zinc-blend structure, in which the cations are tetrahedrally coordinated by four group VI anions. The kesterites can be further considered derivatives from the chalcopyrites by replacing two group III atoms by one group II and one group IV atoms, giving a general compositional formula of I$_2$-II-IV-VI$_4$ (II $=$ Zn; IV $=$ Sn), i.e., Cu$_2$ZnSnS$_4$ (CZTS) and Cu$_2$ZnSnSe$_4$ (CZTSSe) [96]. The kesterite structure resembles the chalcopyrite. The atomic structures of CIS chalcopyrite and CZTS kesterite are shown in figures 9(a) and (b), respectively. Cu$_2$BaSnS$_4$ (CBTS) exhibits a trigonal crystal structure with space group P3$_1$ (see figure 9(c)) [97], in which each Cu and Sn is tetrahedrally surrounded by sulfur ions. Two Cu-derived and one Sn-derived tetrahedrons share a corner and thus each sulfur atom is three-fold coordinated with two Cu and one Sn. Ba atoms are located at the interstitial sites in the tetrahedral framework, forming rows along the [100] and [010] directions. The orthorhombic Cu$_2$BaSnSe$_4$ (CBTSe) has very similar structure as the trigonal CBTS, but it crystallizes in space group Amma$_2$ [97], shown in figure 9(d).

Cu chalcopyrites and kesterites have direct bandgaps, while trigonal CBTS and orthorhombic CBTSe have nearly direct bandgaps, i.e., the difference between the direct and indirect bandgap values is very small [98, 99]. The bandgaps of the four quaternary Cu chalcopyrites are 1.00 eV (CIS), 1.54 eV (CIS), 1.68 (CGSe), and 2.43 eV (CGSe). The alloyed chalcopyrites of Cu(In, Ga)(S, Se)$_2$ can cover the bandgap range from 1.0–2.4 eV, by tuning the In/(In + Ga) and S/(S + Se) atomic ratios, as shown in figure 10 [93]. The bandgaps of the two quaternary Cu kesterites are 1.0 eV (CZTSe) and 1.5 eV (CZTS). The alloyed kesterites of CZT(S, Se) can cover the bandgap range from 1.0–1.5 eV, by tuning the S/(S + Se) ratio. The bandgap value is about 1.95 eV for trigonal CBTS and 1.64 for orthorhombic CBTSe. The alloyed system of CBT(S, Se) shows a bowing effect with a phase transition at the composition of around Cu$_2$BaSnSe$_3$.5. The smallest bandgap was found to be 1.52–1.55 eV [100].

For PEC water splitting applications, non-radiative recombination is highly undesirable since the recombination will reduce the photovoltage of PEC device, resulting in a reduced conversion efficiency. The non-radiative recombination is mostly caused by defects with energy levels deep in the bandgap of the absorber. It has been shown that the high efficiencies of CISSe thin-film solar cells are primarily attributed to the defect tolerance properties of CISSe absorbers [92]. Theoretical studies have shown that the antibonding coupling between fully occupied Cu 3d and Se 4p orbitals raises the valence band maximum of CISSe, which consequently makes Cu vacancies (V$_{Cu}$) very shallow acceptors [94]. Furthermore, the antibonding nature energetically favors the formation of Cu vacancies, making them the dominant defects in CISSe [91]. However, for chalcopyrites with larger bandgaps such as CGSe, the defect tolerance is decreased due to the formation of Cu and Ga anti-site defects [92]. CZTSe and CZTS also exhibits antibonding coupling between fully occupied Cu 3d

Figure 9. Crystal structures of (a) chalcopyrite CIS; (b) kesterite CZTS, (c) trigonal CBTS, and (d) orthorhombic CBTSe.
and Se 4p/S 3p orbitals and the Cu vacancies are also shallow acceptors [90]. However, recently, density functional theory calculations have shown that trigonal CBTS and orthorhombic CBTSe have larger bandgaps suitable for PEC water splitting and exhibit defect tolerance properties better than wide-bandgap Cu chalcopyrites such as CGSe and CGS and kesterites CZTS and CZTSe. Due to the very different electronic properties between the cations, the CBTS and CBTSe do not easily form the cation–cation defects [98, 99]. Therefore, CBTS and CBTSe and their alloys are promising candidates for the applications of efficient PEC water splitting.

Recently, Cu chalcopyrite and kesterite photocathodes have been extensively investigated [101–112]. Some noticeable results reported in literature are summarized in Table 1. The highest photocurrent reported for CGSe photocathode without n-type partners and catalysts is 10.6 mA cm$^{-2}$ at 0 V versus RHE [111]. The CZTS photocathodes produced much lower photocurrents without n-type partners and catalysts. The highest photocurrent was reported only 1.3 mA cm$^{-2}$ at 0 V versus RHE [110]. Using CdS as a n-type partner and Pt as catalyst, CIS, CIGS, and CZTS photocathodes showed much improved photocurrents. For example, the photocathode of Pt/Mo/Ti/CIGSe has shown a photocurrent of 30 mA cm$^{-2}$ at 0 V versus RHE and a power conversion efficiency of 8.5% [106]. A Pt/In$_2$O$_3$/CdS/CZTS photocathode showed a photocurrent of 9.3 mA cm$^{-2}$ at 0 V versus RHE and a power conversion efficiency of 1.63% [112]. Very recently, the PEC performance of CBTS and CBTSSe photocathodes have also been reported [113–117]. So far the TiO$_2$/ZnO/CdS/CBTS photocathode showed the highest photocurrent, about 7.2 mA cm$^{-2}$ at 0 V versus RHE under Xe lamp irradiation (100 mW cm$^{-2}$), reported by Ge et al [114].

3.1.4. Si

Si, the most widely used semiconductor in PV industry, is suited for the bottom light absorber in the PEC tandem system, given its narrow bandgap of ~1.1 eV. Its appropriate conduction band edge for hydrogen evolution, which in principle can produce a relatively large photovoltage, renders it an attractive candidate for a photocathode [118]. Despite the high-performance for solar hydrogen evolution, bare Si photocathode undergoes rapid etching or oxidation when in direct contact with electrolyte. To overcome the issue of instability, a conformal-coated protective layer, including metallic layer and metal oxide layer, have been employed to passivate the surface states of Si to improve their stability. Despite the parasitic light absorption/reflection issue, metals can be employed as protection layers without compromising charge carrier transport owing to their excellent conductive properties. Maier et al demonstrated a 60 d long-term stable operation in 1 M HCl (aq) using Pt-coated p–Si photocathode [119]. Transparent metal oxides (e.g. TiO$_2$) have recently been widely investigated as protective layers due to their high intrinsic chemical stability and optical transmittance in the visible light region. Owing to the alignment of TiO$_2$ conduction band with respect to the Si conduction band and hydrogen evolution potential, TiO$_2$ facilitate the electron transfer from Si to electrocatalyst surface with negligible resistance [120]. It was found that the TiO$_2$ protected p–n$^+$ Si photocathode could keep working for
Table 1. Representative results of Cu-based chalcogenide photocathodes under AM 1.5 G simulated one sun illumination.

<table>
<thead>
<tr>
<th>Photocathode</th>
<th>Electrolyte</th>
<th>Photocurrent at 0 V versus RHE</th>
<th>Power conversion efficiency</th>
<th>Year [reference]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGSe</td>
<td>0.5 M H₂SO₄</td>
<td>10.6 mA cm⁻²</td>
<td>—</td>
<td>2008 [101]</td>
</tr>
<tr>
<td>Pt/CdS/CGSe</td>
<td>0.1 M Na₂SO₄ pH 9</td>
<td>7.5 mA cm⁻²</td>
<td>0.83% (0.2 V versus RHE)</td>
<td>2013 [102]</td>
</tr>
<tr>
<td>Pt/In₂S₃/CIS</td>
<td>0.1 M Na₂SO₄ pH 9</td>
<td>15 mA cm⁻²</td>
<td>1.97% (0.28 V versus RHE)</td>
<td>2014 [103]</td>
</tr>
<tr>
<td>Pt/TiO₂/CdS/CIS</td>
<td>0.1 M NaH₂PO₄ pH 10</td>
<td>13 mA cm⁻²</td>
<td>1.82% (0.25 V versus RHE)</td>
<td>2014 [104]</td>
</tr>
<tr>
<td>Pt/ZnO/CdS/CIGS</td>
<td>0.5 M Na₂SO₄ pH 9</td>
<td>32.5 mA cm⁻²</td>
<td>—</td>
<td>2015 [105]</td>
</tr>
<tr>
<td>Pt/Mo/Ti/CIGSe</td>
<td>0.5 M H₂SO₄ + 0.25 M NaHPO₄ + 0.25 M NaH₂PO₄ pH 6.8</td>
<td>30 mA cm⁻²</td>
<td>8.5% (0.38 V versus RHE)</td>
<td>2015 [106]</td>
</tr>
<tr>
<td>Pt/CdS/CIGS</td>
<td>0.2 M NaH₂PO₄ pH 10</td>
<td>6.0 mA cm⁻²</td>
<td>0.66% (0.21 V versus RHE)</td>
<td>2015 [107]</td>
</tr>
<tr>
<td>Pt/TiO₂/CdS/CIS(Bi)</td>
<td>0.5 M Na₂SO₄/0.25 M NaH₂PO₄/0.25 M NaH₂PO₄ pH 6.1</td>
<td>8.0 mA cm⁻²</td>
<td>—</td>
<td>2016 [108]</td>
</tr>
<tr>
<td>Pt/TiO₂/CdS/CZTS</td>
<td>0.1 M Na₂SO₄ pH 9.5</td>
<td>9.0 mA cm⁻²</td>
<td>1.2% (0.22 V versus RHE)</td>
<td>2010 [109]</td>
</tr>
<tr>
<td>CZTS</td>
<td>0.3 M Na₂SO₄ pH 9.5</td>
<td>1.3 mA cm⁻²</td>
<td>—</td>
<td>2015 [110]</td>
</tr>
<tr>
<td>Pt/CdS/CZTS</td>
<td>0.2 M NaH₂PO₄ pH 10</td>
<td>1.2 mA cm⁻²</td>
<td>—</td>
<td>2016 [111]</td>
</tr>
<tr>
<td>Pt/In₂S₃/CdS/CZTS</td>
<td>0.2 M NaH₂PO₄/NaH₂PO₄ pH 6.5</td>
<td>9.3 mA cm⁻²</td>
<td>1.63% (0.31 V versus RHE)</td>
<td>2015 [112]</td>
</tr>
</tbody>
</table>
over 30 d of operation under red-light (38.6 mW cm⁻²; λ > 635 nm) filtered, simulated sunlight (as the bottom cell in the PEC tandem device) [121].

Onset potential is an important parameter to evaluate the potential of a photoelectrode to construct a PEC tandem system. Crystalline p-Si yielded a low onset potential of at most 400 mV, even in conjunction with Pt co-catalyst [122]. By introducing a buried metallurgical n⁺–p junction, the onset potential was increased up to 560 mV due to the larger band bending at the n⁺/p interface relative to the p-Si/electrolyte interface [123]. Recently, by using ultrathin amorphous Si (a-Si) as the passivation layer, a high positive onset potential of 640 mV was observed on buried junction crystalline Si (c-Si) photocathode [124]. In addition, the a-Si/c-Si heterojunction produced a STH conversion efficiency of 13.26%, which is the highest among the reported Si-based photocathodes. In terms of onset potential, the highest value of 930 mV was reported on a-Si based photocathode, which largely attributed to the enlarged bandgap of a-Si (~1.7 eV) and an optimized solid junction for charge carrier separation [125]. In conjunction with a TiO₂ protection layer and Pt co-catalyst, the a-Si photocathodes exhibited an impressive photocurrent of over 10 mA cm⁻² at a positive potential as high as 0.6 V versus RHE under simulated one sun illumination (figure 11). In addition, the photocathode showed a high stability for at least 12 h of operation.

3.1.5. Other emerging materials

Recently, semiconducting transition metal dichalcogenides (TMDs) such as WS₂, WSe₂, MoS₂, and MoSe₂ have emerged as very promising materials for solar hydrogen evolution owing to their distinct properties including suitable bandgap energy (1–2 eV), high light absorption coefficients (10⁵–10⁶ cm⁻¹) and chemical robustness without additional protection layer [126–128]. The layered crystal structure of TMDs can be exfoliated into mono- or few-layer two-dimensional (2D) sheets, with the bandgap to be finely tuned as the top/bottom light absorber according to the number of atomic layers. In 1983, Baglio et al reported Pt-coated p-WS₂ (1.3 eV) photocathode with a hydrogen evolution efficiency of 6%–7% and an open-circuit potential of ~800 mV in 6 M H₂SO₄ [129]. Recently, McKone et al reported p-WSe₂ (1.2 eV) as photocathode with a solar energy conversion efficiency over 7% and excellent stability with a Pt–Ru co-catalyst [130]. With controlled doping, surface engineering, and increased understanding of the role of edge states and defects, it is envisaged that the performance of these 2D TMDs can be further improved in the foreseeable future.

In addition to the TMDs, semiconducting organic materials (e.g. conjugated polymers) have recently received increasing attention for solar hydrogen production due to their chemical versatility and facile low-cost solution processability [131–134]. Their electronic and optical structure can be rationally controlled at the molecular level towards suitable bandgap and energy levels to match well with the water redox potentials [135–138]. Although PV cells with power conversion efficiencies over 10% have been demonstrated [70, 139], solar energy conversion efficiencies over 1% for PEC water splitting have only been realized very recently [140, 141]. For example, Rojas et al reported a relatively high photocurrent of 8 mA cm⁻² at 0 V versus RHE with an onset potential of ~0.7 V versus RHE on a poly(3-hexylthiophene):phenyl-C₆₁-butryic acid methyl ester (P3HT:PCBM) bulk heterojunction-based photocathode enclosed between a cuprous iodide hole-selective layer and a Pt-decorated nanostructured TiO₂ layer [141]. The photodegradation of the device was partially suppressed by the addition of a polyethyleneimine protective coating layer. It is noteworthy that the performance of organic photocathode is far from being optimized and further development can be expected by rational choice of the building block, hole/electron selective layer, protection layer and co-catalyst.

![Figure 11](image.png)

Figure 11. (a) Scanning electron microscope image shows the cross-section of an a-Si photocathode with Pt as catalyst. Scale bar is 400 nm. (b) J–V plots of a representative a-Si photocathode under different simulated solar illumination intensities in 0.5 M aqueous potassium hydrogen phthalate solution. Reprinted with permission from [125]. Copyright 2013 American Chemical Society.
3.2. Photoanode materials

3.2.1. Metal oxides

Metal oxides are extensively studied as photoanode materials due to their high photo-stability and low-cost preparation. Early studies were mainly focused on wide bandgap materials, such as TiO₂ ($E_g = 3.0–3.2$ eV) and SrTiO₃ ($E_g = 3.2$ eV), which features excellent stability and favorable band edge positions straddling the water redox potentials [142–145]. However, the large bandgaps limit the light absorption mainly in the ultraviolet region, which accounts for only ~4% of the solar spectrum. Although doping can extend the light absorption into the visible region, limited success has been achieved due to the accelerated charge recombination and reduced stability associated with doping. Recently, great attention has been paid to the intrinsically visible-light-responsive materials, such as Fe₂O₃ ($E_g = 2.0–2.2$ eV) and BiVO₄ ($E_g = 2.4$ eV) [146–149].

α-Fe₂O₃ (hematite) has been considered as a promising photoanode material owing to its near-ideal bandgap for visible light harvesting, excellent chemical stability against photocorrosion, low cost and abundance [150–153]. However, there are several drawbacks, including: (1) short hole collection length (2–4 nm); (2) short carrier lifetime (<10 ps); (3) low absorption coefficient (on the order of 10³ cm⁻¹); and (4) poor surface water oxidation kinetics and (5) relatively low conduction band position (~0.4 V versus RHE at pH = 0) with respect to the water reduction potential. Several strategies including doping, nanostructuring and co-catalyst modification were applied to address the above-mentioned limitations. As most of the studies focused on a single specific aspect of these modifications, the overall performance remains relatively low. Recently, by considering the synergistic effects of Pt-doping to improve the electrical conducting property, single-crystalline ‘wormlike’ nanostructure to shorten hole diffusion distance towards electrolyte, and Co–Pi modification to enhance the oxygen evolution reaction, a high photocurrent of 4.32 mA cm⁻² was reported at 1.23 V versus RHE [154]. Very recently, by using a unique nanosheet morphology with a Co–Pi co-catalyst, together with plasmonic Ag nanoparticles to enhance the light absorption and charge transfer, a record photocurrent of 4.68 mA cm⁻² was achieved at 1.23 V versus RHE [155]. This photocurrent corresponds to ~37% of the maximum theoretical limit expected for 2.1 eV bandgap hematite, indicating there are still much room for further improvement. To construct a PEC tandem device with a photocathode, the highly positive turn-on potential of 0.45 V versus RHE was achieved [165]. With the application of two water oxidation catalysts, FeOOH and NiOOH, the resulting photoanode featured an onset potential as low as 0.2 V versus RHE and a photocurrent of 2.73 mA cm⁻² at 0.6 V versus RHE [167]. With additional Mo doping, Qiu et al prepared nanoporous BiVO₄/Fe(Ni)OOH on a cone-shaped nanostructured substrate, which showed a photocurrent of 5.82 mA cm⁻² at 1.23 V versus RHE [168]. In addition, recently, Kuang et al demonstrated a nanoworm BiVO₄ with a photocurrent of 3.2 mA cm⁻² at 0.6 V versus RHE and long-term stability up to 10 h [169]. For better charge separation, constructing heterojunction has been proven as an effective strategy for various photoelectrodes [170, 171]. A core–shell heterojunction of BiVO₄/WO₃ was reported by Pihosh et al with Co–Pi as a water oxidation co-catalyst. This configuration allowed for a photocurrent of 6.72 mA cm⁻² at 1.23 V versus RHE [172]. A recent study by Kim et al combined BiVO₄ and Fe₂O₃ as hetero-type dual photoanode, which reported a record photocurrent density of 7 mA cm⁻² at 1.23 V versus RHE (figure 12) [173].

Using BiVO₄ as a model case, some other ternary metal oxides with a smaller bandgap ($E_g < 2.4$ eV) have been investigated recently as promising photoanode materials to achieve higher theoretical STH efficiency, such as spinel ferrites (MFe₂O₄, M = Cu, Mg, Zn, etc) ($E_g = 1.4–2.0$ eV) [47, 174–178], CuWO₄ ($E_g = ~2.3$ eV) [179–184] and FeVO₄ ($E_g = ~2.0$ eV) [185–188]. Despite promising high theoretical photocurrent densities, however, the reported performance of these complex metal oxide photoanodes is still very low (typically sub-mA cm⁻² at 1.23 V versus RHE under simulated one sun illumination), which is largely limited by strong bulk recombination, unfavorable surface states that mediate water oxidation, and poor surface reaction kinetics. It is
highly desirable to improve the performance by developing novel methods to synthesize/grow high quality complex metal oxides free from impurities/defects, and applying various strategies including nanostructuring, doping and co-catalyst modification to overcome the limitations.

3.2.2. Metal nitrides
Because of the lower electronegativity of N than O, the valance band consisting of N 2p orbitals is expected to be more negative than that of O 2p orbitals. Indeed, a number of non-oxide semiconductors have been shown to be more suitable for complete water splitting from a band edge position perspective [80, 189]. Among them, Ta₃N₅ is a prototypical material that deserves special attention. With a direct band gap of 2.1 eV, Ta₃N₅ promises highly desirable to improve the performance by developing novel methods to synthesize/ grow high quality complex metal oxides free from impurities/defects, and applying various strategies including nanostructuring, doping and co-catalyst modification to overcome the limitations.

![Image](129x609 to 542x770)

Figure 12. (a) Wavelength-selective solar light absorption by hetero-type dual photoanode consisted of BiVO₄ and Fe₂O₃. (b) J–V curves in 1.0 M KCl at pH = 9.2 under 1 sun illumination. Reproduced from [173]. CC BY 4.0.

In addition to Ta₃N₅, complex metal (oxy)-nitrides such as LaTiO₂N (E₉ = 2.1 eV) [200–204], BaTaO₂N (E₉ = 1.9 eV) [205, 206] and SrNbO₂N (E₉ = 1.8 eV) [207], are promising photoanode materials as the top cell in a tandem device. For example, BaTaO₂N, modified with a Co co-catalyst, was reported to produce a photocurrent of 4.2 mA cm⁻² at 1.2 V versus RHE with a stability for 6 h [206]. More importantly, the onset potential was observed below 0.2 V versus RHE, which is an advantage to integrate with a photocathode for realizing unassisted water splitting. To construct such a tandem device, it is important to use a transparent conductive substrate to transmit long wavelength light to the bottom cell. However, the high-performance nitride photoanode materials are generally synthesized under harsh conditions (>900 °C with NH₃) that are not compatible with typical transparent-conducting-oxide substrates, such as FTO (F-doped SnO₂), ITO (Sn-doped In₂O₃), and AZO (Al-doped ZnO). Recently, Hamann and co-workers reported the first example of Ta₃N₅ electrode directly synthesized on a transparent conductive substrate, Ta-doped TiO₂ (TTO) [208]. This work represents a significant step towards constructing efficient tandem devices based on nitride photoanodes.

Recently, InGaN photoanodes have also been studied [209–217]. For example, Luo et al first demonstrated the high photostability of visible-light-responsive InGaN in aqueous HBr solution [210]. The IPCE was reported
about 9% at 400–430 nm. In a subsequent study, by removing In-rich InGaN region using a simple electrochemical surface treatment, the IPCE was improved to 42% at 400 nm [212]. It was found that the In-rich InGaN phases played a major role as surface recombination centers of photogenerated charge carriers. As discussed previously, the energy bandgap of InGaN can be tuned across nearly the entire solar spectrum by varying the alloy compositions. However, due to the large lattice mismatch between InN and GaN (∼11%), the synthesis of high-quality In-rich InGaN has remained difficult. Recently, Fan et al. have shown that In0.5Ga0.5N nanowires with nearly homogeneous indium distribution could be achieved by plasma-assisted molecular beam epitaxy [215]. Under AM 1.5 G one sun illumination, the InGaN nanowire photoanode exhibited a photocurrent density of 7.3 mA cm$^{-2}$ at 1.2 V (versus NHE) in 1 M HBr. The IPCE is above 10% at 650 nm, which is not possible for most metal oxide photoanodes due to their wide bandgap. With the formation of InGaN/GaN core–shell structures, the photoanodes also exhibited a high level of stability, due to the surface passivation and protection by a thin GaN shell layer [216]. Recently, the atomic origin of the long-term stability and high efficiency of [0001] oriented III-nitride nanowire arrays for overall water splitting was investigated both experimentally and theoretically [85]. It was revealed that the GaN nanowires exhibited N-termination, not only for their [0001] top faces but also for their (1010) side faces. Such N-terminated surfaces passivate the GaN nanowires against corrosion by air/aqueous electrolytes. More recently, Fan et al. demonstrated an InGaN/Si double-band photoanode, with the nearly ideal bandgap configuration of 1.75 eV/1.13 eV for maximum STH conversion [217]. Under AM 1.5 G one sun illumination, the saturated photocurrent density reached 16.3 mA cm$^{-2}$, which is among the highest values reported for monolithically integrated tandem cells of such a nearly ideal energy bandgap configuration. The maximum power conversion efficiency of the InGaN nanowire/Si tandem photoanode was 8.3% at 0.5 V versus NHE in 1 M HBr solution.

3.2.3. Si and III–V group materials

Benefiting from the narrow bandgap and excellent charge carrier properties, Si and III–V group materials are also widely studied as photoanode materials. These materials, however, are less favorable to serve as photoanodes for water oxidation, compared to photocathodes for proton reduction. This is because the valence band edge positions of Si and most III–V semiconductors are too negative for water oxidation, which requires a high bias to proceed the reaction. For example, Si photoanode was reported with a typical onset potential of 0.9–1.1 V versus RHE [218–221], which is a challenge to pair with any high-performance photocathodes. In addition, Si and most III–V semiconductors can undergo photocorrosion under water oxidation conditions in aqueous electrolyte. Transparent conductive oxides have been shown to be very effective in passivating Si surface
[222–227]. For example, the application of a highly uniform, 2 nm thick layer ALD TiO$_2$ coupled with Ir water oxidation catalysts, the stability of Si photoanode was extended to over 8 h under conditions with various pH [228]. The ultrathin TiO$_2$ layer allows the facile hole transport via tunneling mechanism. A novel study was presented by Kenney et al. in which 2 nm Ni film on n-Si with native oxides was shown to serve as both a protection layer and a catalyst (figures 14(a) and (b)) [229]. In 1 M KOH, the resulting photoanode exhibited high PEC activity with an onset potential of 1.07 V versus RHE. The stability was examined in both 1 M KOH (up to 24 h) and LiBi–KBi electrolyte at intermediate pH (over 80 h). In a separate study, Hu et al. demonstrated the utility of a novel ‘leaky’ amorphous TiO$_2$ layer (4–143 nm thick) deposited by ALD [230]. With the addition of Ni catalyst (which should be transformed to NiO$_x$ upon oxidation and then to NiOOH upon PEC reactions), the Si photoanode enabled high photocurrent density (over 30 mA cm$^{-2}$ with 100% Faradaic efficiency for O$_2$ production) over 100 h in 1 M KOH (figures 14(c) and (d)). Further study indicated that holes transported the defective TiO$_2$ layer though the mid-gap states and an ohmic contact was formed at the interface between TiO$_2$ and Si [231].

Similarly, transparent conductive oxides are commonly used as the protective layers for III–V photoanodes [230, 232, 233]. For example, ‘leaky’ TiO$_2$ layer are used to stabilize GaAs and GaP photoanodes for more than 100 h [230]. It is noteworthy that over 40 h stable operation with over 10% STH efficiency has been recently demonstrated on a TiO$_2$-protected buried GaAs/InGaP photoanode, in conjunction with Ni-based electrocatalysts [234].

Figure 14. The stability of Si photoanode can be improved by thin Ni film (also as catalyst) or thick TiO$_2$ film (with Ni catalyst). (a) Cyclic voltmograms of various thickness Ni-coated n-Si anodes in 1 M KOH under illumination. From [229]. Reprinted with permission from AAAS. (b) Stability test fixed at constant current density of 10 mA cm$^{-2}$, of 2 nm Ni/n-Si anodes in 1 M KOH and 1 M K-borate under constant illumination. From [229]. Reprinted with permission from AAAS. (c) Cyclic voltmograms of various thickness TiO$_2$-coated n-Si anodes in 1 M KOH under illumination. From [230]. Reprinted with permission from AAAS. (b) Stability test fixed at 0.93 V versus SCE of 44 nm TiO$_2$/n-Si anodes in 1 M KOH under constant illumination. From [230]. Reprinted with permission from AAAS.
3.2.4. Other emerging materials

Conjugated polymers emerged as a new type of photoanode material, although it is not favorable at the beginning because of the stability concerns. Recently, considerable efforts have been devoted to graphitic carbon nitride (g-C₃N₄)-based materials owing to its robust framework that established in photochemical water splitting since the pioneer work of Wang et al [235]. Initial studies by directly depositing the g-C₃N₄ powder on substrate resulted in a very small photocurrent (on the order of \(\mu \)A cm\(^{-2} \)), which was ascribed to the deleterious grain boundary effect and poor contact between g-C₃N₄ and substrates [236–238]. Very recently, using a vapor deposition approach to directly grow g-C₃N₄ film on substrates, an enhanced photocurrent of \(\sim 0.1 \) mA cm\(^{-2} \) at 1.23 V versus RHE was reported [239, 240]. In addition to g-C₃N₄, a ladder polymer, poly(benzimidazobenzophenanthroline), known as BBL, was also investigated as a photoanode [241]. A photocurrent up to 0.23 mA cm\(^{-2} \) was produced at 1.23 V versus RHE in the presence of sacrificial hole acceptor (SO\(_3^-\)), while H\(_2\)O₂ or ·OH production instead of O\(_2\) was observed for solar water oxidation.

Although still at its early stage, further developments of polymer-based photoanodes are expected if the quality of film, poor conductivity and surface reaction kinetics are improved.

Recently, considerable efforts have also been devoted to investigating TMDs material such as MoS\(_2\) as photoanode for water oxidation [242–244]. For example, MoS\(_2\) nanosheet arrays photoanode was shown a high photocurrent up to 10 mA cm\(^{-2} \) at 1.23 V versus RHE and power conversion efficiency of 1.27% [244].

3.3. PEC tandem system

In the PEC tandem system, a p-type photocathode and an n-type photoanode with complementary bandgap absorption are integrated for the reduction and oxidation of water, respectively. Such a simple configuration offers potential advantages over PV-biased PEC tandem devices in terms of cost, complexity and stability. The intersection of the overlapped \(J-V \) curves of photocathode and photoanode is the maximum operating current density \(J_{OP} \) for the overall water splitting system (no bias). As such, the overall water splitting activity largely depends upon the performance of individual photoelectrodes for each half reaction, particularly in the low bias region. Figure 15 shows a comparison of two hypothetical photoelectrodes and photocathodes to construct a PEC tandem device. Although photoanode B and photocathode D give higher photocurrent densities at the high bias region, photoanode A and photocathode C are preferred electrodes to construct a more efficient tandem device as demonstrated by a higher \(J_{OP} \). This clearly highlights the importance of achieving high photocurrent density at the low bias region for each photoelectrode in constructing efficient tandem device. Note that \(J_{OP} \) is the theoretical value estimated without considering Ohmic loss between the two photoelectrodes and parasitic optical loss caused by the top light absorber.

In the tandem device, there are two illumination modes: parallel illumination (Mode P) and tandem illumination (Mode T), as shown in figure 16. In Mode P, each photoelectrode is exposed to one beam of light, which allows the use of non-transparent substrate. While in Mode T, the solar energy is utilized more efficiently as the longer wavelength photons that are transmitted by the top absorber are absorbed by the bottom absorber. In this review, we focus on Mode T configuration, because of its potential advantages for high efficiency and low cost solar H\(_2\) production in the long term. A detailed comparison and analysis of the two different illumination modes were studied by a recent article [245].

![Figure 15. A comparison of \(J-V \) curves of four hypothetical photoelectrodes, including two photoanodes and two photocathodes, to construct a PEC tandem device. The combination of photoanode A and photocathode C gives the most efficient tandem device in terms of maximum operating current density \(J_{OP} \).](image-url)
Despite promising a high theoretical efficiency up to 30% of the PEC tandem water splitting device, the reported experimental STH efficiency of PEC tandem cells were generally very low (<1%), as listed in table 2. The poor performance of tandem system was largely due to the low photoactivity of the individual photoanode or photocathode. Compared to the water reduction on photocathode, the water oxidation on photoanode is more kinetically challenging due to the complicated four-electron transfer process. A number of studies used TiO$_2$ or SrTiO$_3$ as the photoanode, due to their excellent stability and large produced photovoltage, to couple with p-GaP [246–248], CuTiO$_x$ [249] or Si-based [250–252] photocathode. However, the efficiencies are very low (<1%), which are largely due to the wide bandgap of photoanode material (>3.0 eV) to match with the solar spectrum. Consequently, various visible-light-responsive photoanode, including WO$_3$ [55, 253–255], BiVO$_4$ [256–261] and Fe$_2$O$_3$ [157, 253], were studied to enhance the light harvesting and current matching with photocathode. Limited success has been achieved with WO$_3$-based PEC tandem cell, due to the relatively large bandgap of WO$_3$ (2.8 eV) and the unfavorable conduction band position with respect to the hydrogen evolution potential [55, 253–255]. In contrast, BiVO$_4$ has emerged as the high-performance photoanode material to construct the PEC tandem device, largely due to its relatively negative onset potential (0.2–0.3 V versus RHE) compared to other visible-light responsive oxide-based photoanodes. Bornoz et al coupled BiVO$_4$ photoanode with Cu$_2$O photocathode as a tandem cell for unassisted solar water splitting [256]. Despite promising a maximum theoretical STH efficiency of 8% based on the current matching approach, a STH efficiency of 0.5%
was demonstrated on this all-oxide tandem system, which is largely due to the low performance of the individual electrodes and transmission loss from the front BiVO₄ layer. BiVO₄ was also combined with high-performance InP [257], Cu-based chalcogenides photocathode, such as (CuGa)₉₃ZnS₂ [258] and (Ag, Cu)GaSe₂ [259], or Si-based photocathode [260, 261]. However, the system exhibited a low efficiency of <1%, which is largely limited by the low performance of photoanode, particularly in the low bias region.

Although BiVO₄ has been set as the case example for photoanode material, it is noteworthy that it suffers from an intrinsic limitation of relatively large bandgap (indirect ~2.4–2.5 eV and direct ~2.7 eV) [262, 263], corresponding to a maximum of ~9% STH efficiency that can be theoretically achieved [264]. In addition, BiVO₄ is only chemically stable at near neutral condition and dissolves in strong basic and acidic solutions, which makes the operating conditions of BiVO₄ incompatible with some high-performance catalyst or photocathode conduct optimally only under basic or acidic conditions. Moreover, the buildup of significant pH gradient near the electrode surfaces in neutral solution even with the assistance of additional supporting electrolytes or buffers would fundamentally limit the efficiency [265, 266]. Alternatively, Fe₂O₃ has attracted much interest due to its favorable properties such as relatively narrow bandgap (2.0–2.2 eV), adequate stability in strong alkaline solution, and earth abundance composition. Wang et al paired Fe₂O₃ photoanode with InGaP photocathode as a tandem cell for unassisted water splitting, however, the device performance is extremely low (~0.0002%), which is largely due to the high requisite overpotential of ~0.8 V and low performance of Fe₂O₃ photoanode [253]. Recently, Jang et al reported a benchmark Fe₂O₃ onset potential around 0.45 V versus RHE using a facile regrowth strategy to reduce surface disorders, which enabling unassisted solar water splitting when pairing with an amorphous Si photocathode (figure 17) [157]. A meaningful efficiency of 0.91% and long-term stability of 10 h was achieved by the tandem system based on hematite and Si, which are both earth-abundant.

Compared to metal oxide materials, there are also some examples of PEC tandem device using chalcogenide [267, 268] and nitride-based [269] photoanodes. For example, Yang et al developed a tandem cell composed of CdS quantum dot (QD) modified TiO₂ nanorod photoanode and a CdSe QD modified NiO nanosheet photocathode, obtaining a STH efficiency of 0.17% [267]. With the assistance of a ZnS passivation layer and an IrO₂ OER co-catalyst, the device efficiency and stability were greatly enhanced. In another study, AlOtaibi et al designed a PEC tandem cell consisting of GaN/InGaN nanowire photoanodes and a Si/InGaN nanowire photocathode, which achieved a high STH efficiency of 1.5% in 1 M HBr [269]. The distinct advantage of nanowire photoelectrodes, together with the parallel illumination strategy by splitting the solar spectrum spatially and spectrally, enhanced the solar energy conversion efficiency for unassisted water splitting.

4. Conclusions and outlook

Artificial photosynthesis via solar water splitting, which mimics the natural photosynthesis, is a promising approach to directly convert sunlight into energy-rich chemical fuel (i.e. H₂) on a global scale. The light-harvesting semiconductor material, as an artificial leaf, plays an essential role in determining the performance of artificial photosynthesis devices. Recently, three parallel approaches have been pursued to achieve a material system with both high efficiency and robust stability: (i) making stable materials more efficient, (ii) enabling
efficient materials are more stable, and (iii) discovering new materials that are intrinsically stable and highly efficient.

Metal oxides are generally reported to be very stable and exhibit a high-level resistance to photocorrosion. But they usually suffer from relatively large bandgap and low absorption coefficient, poor electrical conductivity, short charge carrier lifetime and diffusion length, which significantly limit the performance. For example, the optical absorption depths of metal oxides (usually hundreds of nanometers) are often larger than the hole diffusion lengths (e.g. less than 5 and 20 nm for Fe₂O₃ and TiO₂, respectively) \[270\]. Nanostructuring techniques such as the fabrication of nanowires, nanotubes or nanopores can alleviate this issue by shortening the carrier diffusion distance toward the electrolyte solution. Recently, this strategy has been demonstrated with remarkable success in the case of BiVO₄ photoanode, together with other strategies such as doping and co-catalyst modification \[271\]. Using BiVO₄ as a model case, it is highly desirable to apply similar strategies on other metal oxides with a lower bandgap (<2.4 eV), both as photoanodes and photocathodes, to achieve the goal of STH efficiency >10%.

Si, III–V and chalcopyrite semiconductors, which usually have a narrow bandgap and can be obtained with high-quality (relatively low defects, low impurity incorporation, and high controllability of doping), have been reported with high efficiency for water splitting. However, they are chemically unstable and suffer from photocorrosion when directly in contact with an aqueous electrolyte solution. Recent developments on surface protection technology greatly improve the stability of these classic PV materials by decoupling the light absorption sites with electrochemical reaction sites \[272, 273\]. Metal oxides such as TiO₂ are extensively used as the protection layers owing to the high stability over a wide range of pH and excellent optical transmittance \((E_g > 3.0 \text{ eV})\). ALD technique, which allows for conformal coating with precisely controlled thickness, has been demonstrated with great success for achieving high stability solar water splitting system \[274\], e.g. over 2200 h stable operation has been proved on Si-based photoanode with an ALD-TiO₂ protection layer \[275\]. A similar concept can also be pursued using simple, cost-effective and scalable protection approaches (e.g. solution-based sol-gel and chemical bath) \[276\]. It is worth noting that the parasitic light absorption from the protection layer needs not to be considered in the case of the bottom absorber, which allows the wide choice of protection materials such as metals.

Recently, nitrides, TMDs and organic materials have emerged as promising photoelectrodes for water splitting due to their unique optoelectronic properties. For example, InGaN is the only known semiconductor material whose bandgap can straddle the redox potentials of water splitting under deep visible and near-infrared light irradiation \[84\]. Nearly two orders of magnitude enhancement in the quantum efficiency for photocatalytic overall water splitting on (In)GaN nanowires has been demonstrated \[77, 78\]. Unique to such III-nitride nanowire structures synthesized by molecular beam epitaxy is the presence of a N-termination, not only for their (0001) top faces but also for their (1010) side faces \[85\]. The N-termination of all exposed surfaces (top-polar and side-nonpolar) protects the nanowires against attack by the electrolyte (oxidation and photocorrosion). Although the studies of these emerged materials are still in the early stage, they have already shown great promise. Further developments will enable their great success. In parallel, it is important to discover other new materials that are intrinsically stable and with favorable optoelectronic properties for PEC water splitting (e.g. suitable bandgap and high charge carrier mobility). For example, 8000 and 700 000 compound materials are available for ternary and quaternary metal oxides respectively, with most of them are yet to be investigated for PEC water splitting \[277\]. The large number of untested elemental combinations gives hope that ideal materials are still ahead of us. Applying advanced combinational methods, as well as the state-of-the-art theoretical calculations to potential complex materials will be crucial for speeding up the discovery of high-performance photoelectrodes for water splitting.

To achieve efficient and cost-effective unassisted solar water splitting, a PEC tandem device consisting of a photoanode and photocathode is a promising configuration. The theoretical modeling of using a combination of 1.6–1.8 eV top absorber and 0.9–1.2 eV bottom absorber to achieve high efficiency has been validated using high-quality III–V materials. By tuning the bandgap combination, benchmarking STH efficiencies of 16% and 19% were reported in a monolithic 1.8/1.2 eV GaInP/GaInAs tandem device from Deutsch’s group \[29\] and Atwater’s group \[278\], respectively. Further improvement of STH efficiency towards >20% is possible using a 1.7/1.1 eV optimal bandgap combination. Si is nearly ideal as the bottom light absorber in the tandem device owing to its energy bandgap of 1.1 eV, earth abundance, and prevalence in PV industry. By controlled doping with P and B, Si can be fabricated with n-type and p-type as photoanode and photocathode, respectively. The PEC performance of state-of-the-art Si-based photoanode and photocathode with a single junction are shown in figure 18. To pair with the Si photovoltaic, BiVO₄ is currently the best photoanode in terms of operating current density. Developing a low-bandgap photoanode close to 1.7 eV that gives higher photocurrent at the low bias region (e.g. below 0.6 V versus RHE) would be highly desired. To couple with the Si photoanode, there is still no prominent photocathode that can give a meaningful operating point. High-performance photocathodes including InP, due to the low produced photovoltage, are not able to intersect with the Si photoanode. Recently,
a positive onset potential of >1 V versus RHE was obtained on Cu_{2}O [61] and CuBi_{2}O_{4}-based photocathodes [68, 69]. However, the photocurrent performance of the photocathodes is relatively low. Efforts therefore are needed to develop a photocathode that can deliver high photocurrent at a positive potential (e.g. above 0.9 V versus RHE) for constructing efficient tandem device with Si photoanode. Owing to their bandgap tenability, suitable band edge positions, high material quality and well-controlled doping to achieve n-type or p-type, III–V semiconductors can potentially overcome the efficiency bottleneck that are commonly seen by other materials. The integration of III–V materials, particularly III-nitride nanostructures with Si, largely leverages the well-established semiconductor manufacturing processes (e.g. solid-state lighting and power electronics) with low cost and large area Si solar cell platform, which promises a viable approach for large-scale solar hydrogen production from water splitting.

ORCID iDs

Thomas Hamann
https://orcid.org/0000-0001-6917-7494

References

Figure 18. *J–V* curves of state-of-the-art p–n^+^ Si-based photocathode [124], n–p^+^ Si-based photoanode [221], InP-based photocathode [74] and BiVO_{4}-based photoanode [162] to construct a PEC tandem device based on Si bottom cell. The *J–V* curves of the ideal photocathode and photoanode are also projected. Note that the parasitic light absorption from the top light absorber and current match condition between the top and bottom light absorber should be taken into account in the real tandem device.

[34] Paracchino A, Laporte V, Sivula K, Graetzel M and Thimsen E 2011 Highly active oxide photocathode for photoelectrochemical water reduction Nat. Mater. 10 456

[38] El Guibaly F and Colbow K 1981 Voltage dependence of the dark and photocurrents in semiconductor—electrolyte junctions J. Appl. Phys. 52 3430

[40] Sivula K and van de Krol R 2016 Semiconductor materials for photoelectrochemical energy conversion Nat. Rev. Mater. 1 15010

[79] Chowdhury F A, Mi Z, Kibria M G and Trudeau M L 2015 Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation APL Mater. 3 104408

[114] Ge J, Yu Y and Yan Y F 2016 Earth-abundant trigonal BaCu₂Sn(S, Se)₄ (x = 0–0.55) thin films with tunable band gaps for solar water splitting, J. Mater. Chem. A 4 18885

[119] You B J et al 2013 A polymer tandem system with 10.6% power conversion efficiency Nat. Commun. 4 1446

[121] Rojas H C et al 2016 Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating Energy Environ. Sci. 9 3710

[127] Gan J, Lu X and Tong Y 2014 Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation Nanoscale 6 7142

[131] Zandi O and Hamann T W 2016 Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy Nat. Chem. 8 778

[139] McDonald K J and Choi K-S 2012 A new electrochemical synthesis route for a BiO1 electrode and its conversion to a highly efficient porous Bi11O17V2 photoanode for solar water oxidation Energy Environ. Sci. 5 8533

Nano Futures 1 (2017) 022001
S Chu et al

[211] Li J, Lin Y and liang H X 2008 Direct hydrogen gas generation by using InGaN eplayers as working electrodes Appl. Phys. Lett. 93 162107

[214] Fan S, Shi H and Mi Z 2017 A monolithically integrated InGaN nanowire/Si tandem photoanode approaching the ideal bandgap configuration of 1.75/1.13 eV Adv. Energy Mater. 7 1600952

[217] Yang I et al 2017 A multifunctional bioplastic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes Nat. Mater. 16 1245

[221] Sun K et al 2012 Nickel oxide functionalized silicon for efficient photo-oxidation of water Energy Environ. Sci. 5 7872

[229] Chen I et al 2015 p-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation J. Am. Chem. Soc. 137 9893

[261] Xu P, Peng J Y, Fang T, Zhao K, Li J S and Zou Z G 2016 Photoelectrochemical cell for unassisted overall solar water splitting using an InP0.53Ga0.47As0.53As0.47 tandem photoanode and Si nanoarray photocathode RSC Adv. 6 9905