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Abstract
Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap
arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps
they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane
to minimize the disturbance to the pseudopotential. However, this method introduces issues
related to RF lead routing that can increase power dissipation and the likelihood of voltage
breakdown. Here, we propose and simulate a novel two-layer junction design incorporating two
perpendicularly rotoreflected (rotated, then reflected) linear ion traps. The traps are vertically
separated, and create a trapping potential between their respective planes. The orthogonal
orientation of the RF electrodes of each trap relative to the other provides perpendicular axes of
confinement that can be used to realize transport in two dimensions. While this design introduces
manufacturing and operating challenges, as now two separate structures have to be precisely
positioned relative to each other in the vertical direction and optical access from the top is
obscured, it obviates the need to route RF leads below the top surface of the trap and eliminates the
pseudopotential bumps that occur in typical junctions. In this paper the stability of idealized ion
transfer in the new configuration is demonstrated, both by solving the Mathieu equation
analytically to identify the stable regions and by numerically modeling ion dynamics. Our novel
junction layout has the potential to enhance the flexibility of microfabricated ion trap control to
enable large-scale trapped-ion quantum computing.

1. Introduction

High-fidelity quantum operations and engineering advances over the last decade have established trapped
ions as strong candidates for constructing a practical quantum computer. The fundamental component of a
trapped-ion quantum computer is the radio frequency (RF) Paul trap, which uses oscillating and static
voltages applied to electrodes to constrain ions whose internal states provide the physical basis for the logical
qubits. Lasers and/or microwaves are used to initialize, read out, and perform quantum gates on the ionic
qubits [1]. While microfabricated linear traps have been developed for over fifteen years [2–5], and have been
used for sophisticated multi-ion experiments [6, 7], microfabricated junction traps [8] have only recently
shown sub-quantum excitation during transport [9]. Even with that demonstration, key challenges remain
to the scaling up of trapped-ion arrays to achieve the connectivity required for enlarged quantum volume,
faster computational cycles, and increased qubit capacity [10].

An RF Paul trap confines ions at distances of tens [11] to hundreds [12] of microns from the closest
surfaces, effectively isolating them from the environment. While Earnshaw’s theorem prohibits the creation of
an electrostatic potential well, an RF voltage can be applied to particular electrodes to form a time-averaged
pseudo-potential with a minimum determined by the RF electrode geometry [13]. Quasi-static voltages
applied to separate control electrodes can be used to store and move ions along the RF null, a line along
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which the RF electric field is zero and there is a resulting minimum in the radially confining pseudopotential.
The original Paul traps typically had hyperbolic electrodes [14], but modern microfabrication techniques use
layered planes of materials to create two-dimensional trap geometries [15]. Linear RF nulls are common, but
can be modified to produce curves and junctions for the transfer of ions between multiple ion traps [16].

There are two main categories of trapped-ion quantum computing architectures: the quantum
charge-coupled device [17], and those that rely on stationary chains of ions with all-to-all intra-chain gate
operations and remote entanglement via photons to connect separate chains [10]. In the former case, ion
transport is the primary conduit for entangling distant ions. In the latter case, while photonic interconnects
are used to connect distant chains, some level of ion transport between distinct but nearby chains may still be
advantageous.

A 2D ion layout reduces the scaling of transport times over arbitrary distances from O(n) for a 1D layout
to O(n1/2), where n is the number of ions [18]. A 2D layout also better matches the connectivity
requirements of surface codes used for quantum error correction [19, 20]. Both 3-way [21] and 4-way [9]
junctions enable grid-based ion transport to support arbitrary 2D movement. However, scaling the array size
using these junctions presents the challenge of islanded RF electrodes [22, 23] that require electrical vias and
leads routed underneath the top metal surface, raising the capacitance and resistance of the device, and
thereby increasing the RF power dissipation. These buried leads also increase the likelihood of voltage
breakdown between RF and ground, as they introduce more locations where the RF electrode or lead
approaches a grounded electrode or lead, often within only a few microns.

Our design achieves 2D connectivity with simple rectangular RF electrodes, avoids islanded RF
electrodes, and does not require RF vias. It utilizes low-excitation transport protocols already developed for
use with current linear micro-fabricated ion trap designs. The primary challenge is that two separate trap
layers have to be assembled, imposing design constraints on the conventional microfabrication techniques
and limiting optical access. While these are important considerations, we consider here whether the trap, if
fabricated and assembled, would form a viable junction.

The paper begins with the initial layouts and conventions for the junction design (section 2), and then
presents the formal treatment of ion transfer stability (sections 3 and 4). It concludes with a discussion of the
unique challenges and opportunities that arise at an architectural level for the ion trap configuration
(sections 5 and 6).

2. Basic junction design

Ions in a surface trap are confined at points above the top plane of the trap at the RF null. Right-handed
orthogonal coordinates are used throughout this document, whereby the ion travels along the x-axis, and the
z-axis is perpendicular to the trap surface [24]. The Peregrine trap serves as an example to illustrate the
proposed junction [25]. Figure 1 displays the entire device, where the relevant trapping portion is in the
central isthmus.

In our proposed junction design, the ion trap is duplicated, translated vertically, inverted, and then
rotated 90◦ about the z axis, as illustrated in figure 2. In any such combined configuration, the fields
generated by each individual trap are modified by the second trap acting as a ground plane. If the RF rails on
the top and and bottom traps were aligned and voltages were applied to both at the same time, then the RF
null would be half-way between the trap planes (like a 4 rod trap but with additional grounded regions).
However, with only one set of RF electrodes fully on at a time, the RF null ends up at a distance of less than
half the trap separation (closer to the trap that is on), and so the two RF nulls do not directly overlap.
Nevertheless, the slight separation of the RF nulls is not an obstacle to ion transfer. For two Peregrine traps
offset by 50µm, the RF nulls are 23.7µm from each surface. The simulations described later show that ions
can still be transferred from one trap to the other, across the 2.6µm vertical separation of the RF nulls.

If RF voltages were applied simultaneously to both traps, there would be a pseudopotential barrier
preventing an ion from being shuttled from one trap to the other. Therefore, a scheme is employed that starts
with the RF voltage applied to trap b (bottom trap in figure 2(b)) but not trap t (top trap in figure 2(b)).
Once an ion is transported to the intersection of the traps, the static and RF voltages are gradually switched
until the ion is confined by trap t. In the case where the RF electrodes on one trap are all connected, all ions
have to transfer from one trap to the other at the same time, or be lost. An alternative would be to segment
the RF electrodes and apply independent voltages to different segments, but this would require the vias that
we wanted to avoid in the first place.

While this design involves passing ions from one trap to another vertically and in the process turning one
trap on and another off, a demonstration of passing ions from one trap to another in the same plane by
abutting (but not contacting) the separate RF electrodes has been successfully achieved [26]. In this case the
RF pseudo-potential provides nominally undisturbed confinement across chips. There has also been a
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Figure 1. SEM micrograph of a Peregrine trap. This microfabricated trap confines ions to a linear region 72µm above the
surface. The trap consists of alternating aluminum electrode and oxide insulation layers, with an evaporated gold region on top.

Figure 2. A conceptual rendering of the two-layer junction design, here integrated into a potential configuration of parallel arrays.
Two traps in a pair are vertically separated and rotoreflected relative to each other. Part (a) shows a zoomed-out view that
highlights the linear nature of the traps, and their orientation relative to each other. The RF electrodes are green, and the control
electrodes are yellow. Part (b) shows the position of the ions in the plane between two traps, with a junction that lies at the point
of symmetry. The ions and arrows are for illustration; as explained later in the paper the concept of operation supports one of the
traps providing confinement at any given time.

demonstration of vertical transport of charged macroscopic particles in a 3D trap [27] that uses suspended
wires. While this 3D geometry would face similar optical access challenges and likely greater manufacturing
challenges compared to the bilayer trap described in this paper, it shows that 3D traps with motion in all
three dimensions is possible.

For modelling purposes, the x-, y- and z-orientations are determined by trap b. The origin of the
coordinate system occurs at the nexus of the junction and is the symmetric point between the two traps.

A mathematical model describes the transfer of the ion from its trapping location in the bottom trap at
x= 0, y= 0, z=−s to the top trap at x= 0, y= 0, z= s. Here, s is half the vertical separation between the
traps. The potential in the bottom trap is ϕb(x,y,z, t) = ϕC,b(x,y,z, t)+ϕRF,b(x,y,z, t) = ϕC(x,y,z+ s)+
ϕRF(x,y,z+ s, t), where ϕb is the sum of the potentials due to the control electrodes (ϕC) and RF electrodes
(ϕRF). The potential arising from the top trap when the same voltages are applied to the corresponding
electrodes is ϕt(x,y,z, t) = ϕC,t(x,y,z, t)+ϕRF,t(x,y,z, t) = ϕC(y,−x, s− z)+ϕRF(y,−x, s− z, t).

The model specifies a protocol for transferring the ion from the bottom trap to the top trap using a
time-dependent scalar function, f (t), that specifies how the voltages applied to the trap electrodes are scaled
in time. The total potential is therefore

3



Quantum Sci. Technol. 9 (2024) 035015 G N Nop et al

Φ(x,y,z, t) = (1− f(t))ϕb + f(t)ϕt . (1)

Simple forms of the transfer function f (t) could be instantaneous Heaviside functions or linear transitions
from 0 to 1, but in practice smooth transitions to limit induced motional excitations are preferable.

The subsequent section determines the stability of the trap throughout the transition from f(t) = 0 to
f(t) = 1 over a definite time interval.

3. Analytic ion stability

The analytic expression describing an ion in a Paul trap is the Mathieu equation. We begin with a treatment
of the relevant aspects of the Mathieu equation in one dimension [28], and then extend and apply it to the
question of trapped-ion stability in three dimensions. Stability diagrams locate where confined particle
motions can be maintained. Numerical flight simulations then show how the ion is stably controlled at all
points during the transfer from one trap to the other.

3.1. Mathieu stability
The Mathieu equation can be written (in the ‘canonical form’ of [28]) as

q ′ ′ +(U+ 2Vcos(2t))q= 0, (2)

with t a unitless parameterization for time defined by the RF drive voltage, and q the ion position in one
dimension. For the current application, U corresponds to the static confining voltage along one dimension.
The sign of U determines if the static potential is trapping or anti-trapping. The parameter V corresponds to
the root mean square magnitude of the oscillating voltage. Solutions are stable if they are locally confined as
t→∞; otherwise, they are unstable. Although here we use the unitless t for mathematical simplicity, often
the Mathieu equation is instead written with Ωt/2, where Ω is the drive frequency in radians/s and t is the
real time in seconds.

Taking even integers r, solutions of the form

q=
∑
r∈2Z

cre
(w+ri)t (3)

are considered, noting that their boundedness depends on the real part of w ∈ C, an arbitrary parameter. For
equation (3) to be a solution (with non-zero constants cr), the algebraic equations

ζrcr−2 + cr + ζrcr+2 = 0

with ζr = V/[(r−wi)2 −U]must be completely satisfied. Thus, the vanishing of the meromorphic function
(The ratio of two analytic functions over the complex plane.)

∆(iw) =

∣∣∣∣∣∣∣∣∣∣
· · · · · · · · · · · · · · · · · · · · ·
· · · ζ−2 1 ζ−2 0 0 · · ·
· · · 0 ζ0 1 ζ0 0 · · ·
· · · 0 0 ζ2 1 ζ2 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
over C locates the non-trivial solutions.

The function∆(iw) of w is periodic, with period 2i. Further, it is even:∆(iw) = ∆(−iw). Its behavior is
determined by the strip 0⩽ ℑ(w)⩽ 1. The only singularities of the function∆(iw) are simple poles
occurring where U− (r− iw)2 = 0. In particular, there is only one pole on the strip 0⩽ ℑ(w)⩽ 1.

Next, consider the even meromorphic function

χ(iw) =
[
cosπ iw− cosπ

√
U
]−1

with period 2i, and also with simple poles at the same locations as those of∆(iw). It follows that there is a
constant C, determined by the ratio of the residues of the functions∆ and χ at their common pole on the
strip, such that the function∆(iw)−Cξ(iw) has no singularities, and is therefore constant by Liouville’s
theorem. Setting w= 0 determines C, and further algebra yields the existence of bounded solutions when

w=
1

π
cos−1

[
1−∆(0)

(
1− coshπ

√
U
)]

(4)
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Figure 3. Stability diagram for parameter pairs (U,V) in the one-dimensional Mathieu equation, equation (2). The coloring
corresponds to w values in section 3 with intermediate values being more stable, and the extremes near 0.0,1.0 being more
eccentric. However all colored points correspond to stable orbits, and internal colorings simply give an idea of the qualitative
character such orbits have. The plot displays 0 for unstable points and positive values for stable solutions. Relevant analytically
smooth bounding functions a0(V),a1(V),b1(V) are colored black and labeled.

for real w. These w-values may be located by iterative approximation, readily identifying the set S of stable
pairs (U,V) as displayed in figure 3(compare reference [28, figure 8(a)]). The relevant curves separating the
stable and unstable regions are labelled with standard function names a0,a1,b1, with approximate forms
available in the literature [28].

3.2. Junction stability
The analysis of an ion trap involves three distinct Mathieu equations, one for each dimension. The interplay
of these equations imposes additional stability constraints. In the process of transferring an ion from trap b
to trap t, the static and RF potentials are expressed as quadratic functions at the RF null, assuming symmetric
control voltages and neglecting the minute higher-order contributions:

ϕ = αx2 +βy2 + γZ2.

Here Z= z− s ′ (where s ′ =−s (+s) for the lower (upper) trap) is the vertical distance from the RF null of
the applicable controlling trap. Additionally, given the long, straight RF electrodes, the RF potentials are
assumed to be ideally linear along the x-axis for the bottom trap (y-axis for the top), such that αRF = 0
(βRF = 0). The absence of free charges implies α+β+ γ = 0 for each field, resulting in a simplified
bottom-trap control potential of:

ϕC,b = αx2 +βy2 + γZ2

with γ =−α−β, and a bottom-trap RF potential of:

ϕRF,b = cos(2t)
(
−2µy2 + 2µZ2

)
with the parameter µ tracking the RF voltage. Similar equations can be generated for the top trap by
interchanging the x and y terms. The RF voltages applied to the bottom and top traps are set to be in-phase.

Accounting for the relative rotoreflection of the top and bottom traps, the total control and RF potentials
as the ion is transferred from the bottom trap to the top trap (described by equation (1)) are calculated to be

ΦC = [(1− f(t))α+ f(t)β]x2 + [(1− f(t))β+ f(t)α]y2 +(1− f(t))γ (z+ s)2 + f(t)γ (s− z)2

and

ΦRF = cos(2t)
[
−f(t)2µx2 − (1− f(t))2µy2 +(1− f(t))2µ(z+ s)2 + f(t)2µ(s− z)2

]
.

Without loss of generality we set f(t) = t/T= τ , where T is the unitless time over which ions are transferred
at a linear rate from one trap to the other. For evaluating the stability of this trap it therefore suffices to
determine if the pairs

(τβ+(1− τ)α,τµ) and (−α−β,µ) (5)

5
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Figure 4. The three-dimensional region of stability for a single linear Paul trap. The region is symmetric in the RF voltage
parameter µ. Since the parameter α controls the ion along the trap axis, it must be positive. The parameter β tracks the static
electrode transverse containment. The height of the solid is emphasized by the coloring to make the α-extent of the solid more
visible.

lie in the stable set S for 0⩽ τ ⩽ 1. By assumption, the motional excitation of the ion and the spatial
separation of the traps is small enough such that, if the ion is trapped by one pseudopotential at the junction,
it is also trapped by the other (although the nulls are not the same). The validity of this assumption is borne
out by the flight simulations described in section 4

When an ion is held at a single point in a simple linear trap, stability merely requires that the three points
(α,0),(β,µ), and (−α−β,µ) all lie in the stable set S . This situation, illustrated in figure 4, applies at the
start of a junction transfer, when τ = 0. When α= 0 in the figure, the two stability conditions imposed are
(β,µ),(−β,µ) ∈ S . This corresponds to requiring the point (β,µ) to lie both in the region displayed in
figure 3, and in the corresponding region obtained by reflection about the line U = 0. The bounding surfaces
of this stability region are determined by the inequalities

a0 (µ)< β , (−α−β)<min{a1 (µ) ,b1 (µ)}

using the functions defined in figure 3, and α> 0.
A complete junction transfer (µ,β,α) is considered to be stable if each of the three individual

one-dimensional Mathieu equations remain stable throughout the transfer operation. Thus, as described by
equation (5), the stability condition is the conjunction of the simple stability condition that (−α−β,µ) lies
in S , and the dynamic stability condition that (α(1− τ)+βτ,µτ) lies in S for all 0⩽ τ ⩽ 1. A map of
parameter points (µ,β,α) which are stable for a linear trap, but unstable for a junction transfer, is shown in
figure 5. Note the four portions, all lying in the region depicted in figure 4. The bottom portions are banned
for small values of α. These regions correspond to when the ion escapes along the x axis when the line
formed by

(
τβ+(1− τ)α,τµ

)
crosses below a0. The boundary of this region is then computed, considering

the line (α,0)− (β,µ), to obtain the inequalities

m=
β−α

a ′
0µ

and a0 (m)<
β−α

µ
m+α.

The top portions correspond to α> 1.0, the point of separation between the regions of stability in figure 3.
Physically, this region appears because α> 0 confines the ion along the x-axis, but repels it along the z-axis,
no longer confining the ion when the repelling force due to large α rivals the confining pseudoforce due to µ.
The different regions of stability are connected by a single point. When (α,0) is in the second region of
stability, (α(1− τ)+βτ,µτ) intersects an unstable region, and the junction fails. A protocol holding the
parameters in this region would create an unstable ion trap junction. On the other hand, protocols within
the difference set between the respective regions of figures 4 and 5 keep the junction stable. Qualitative
analysis of ion motional frequencies indicates that low values of α and µ are expected for trap operation.
Thus, the α> 1.0 region of instability does not impede ion junction operation in practice.

We have thus demonstrated analytically that transfer protocols, stable under adiabatic operation, exist for
the proposed geometry represented by the set difference between figures 4 and 5. In those cases for which the

6
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Figure 5. The components of the solid for a single Paul trap in figure 4 that are unstable for a junction transfer. The set difference
between these components is the stable region in which a junction can operate. The bounds of the regions are calculated by
testing the inclusions specified in equation (5). A map contained within the region depicted in figure 4, illustrating the parameter
space where a junction between two linear Paul traps would become unstable. The set difference between the regions depicted in
figure 4 and here determines the stability region for the junctions. The relevant unstable regions for single ion traps are the twin
dark blue volumes at the bottom. These unstable regions may be avoided by tuning the control electrodes.

point (µ,β,α) lies in the region specified by figure 5, the control electrodes corresponding to α and β can be
tuned to ensure junction stability.

4. Numerical ion stability

As a complement to the analysis in the preceding section, numerical simulations were also performed to
demonstrate the successful transfer of an ion from one trap to the other, under standard stability conditions
for intermediate junction states. An electrostatic model was generated, and control solutions to trap the ion
in all three directions at each of the final null points (corresponding to f (t)= 0 and 1) were obtained. The
resulting potentials were used to calculate the electric fields and ion dynamics using the Runge–Kutta (RK4)
method [29]. The following subsections provide more details about these steps.

4.1. Field and flight simulation
Each electrode generates an electric field based on the supplied voltage and trap geometry. The geometry
analyzed here uses the same lateral layout of electrodes as in the Peregrine trap, which by itself has an ion
height of 72µm. When two of these planes of electrodes are combined in the orientation shown in figure 2
with a 50µm separation, the RF null moves to 23.7µm above the lower trap. For an applied RF voltage with
a 31MHz drive frequency and 56V amplitude, this trap produces a 2.75MHz radial trapping frequency for
ytterbium ions, corresponding to µ= 0.25. The general methodology for correlating practical trap designs
with the analytic treatment in this paper is explained in the caption for figure 6, which includes the unusually
high value of µ= 0.75 to demonstrate trap dynamics. As µ is decreased, ion entrapment becomes sinusoidal,
avoiding the sharp peaks observable in figure 6.

Using this geometry, a boundary element model was generated with charged particle optics software [30]
to determine the electric potential on a grid of points in the region of interest around where the two traps
cross. These potentials were numerically calculated for voltages applied to each trap separately (while the
other trap was grounded). The output was a grid of electric fields for each trap, which could be added
together after being scaled by the applied voltages and f (t) to calculate the field dynamics before, during, and
after the transition. To calculate ion trajectories accurately, Catmull-Rom interpolation [31] was used to
interpolate between mesh values.

For the flight simulation the state of the ion is taken to be (c,p,v), where c,p, and v are the charge,
position, and velocity, respectively. The ordinary differential equation governing the ion dynamics is

∂t (c,p,v) =

(
0,v,

∑
r∈rect

∇Φ(p, t)

)
,

7



Quantum Sci. Technol. 9 (2024) 035015 G N Nop et al

Figure 6. An illustration of stable ion flights for the two-layer junction trap with µ= 0.75 and varied
(α,β) = (0,0),(0.2,0),(0.29,0),(0.29,−0.15) for subfigures A–D, respectively. The total transition time was T= 2.9µs, and
f (t) was 0 until T/3, increased linearly to 1 at 2T/3, and then held there until T. For each trajectory, an ion at the RF null was
initialized with the exaggerated initial velocity of (5,5,5)ms−1. Red (solid), green (dashed), and blue (dash and dotted) lines
correspond to x, y, and z respectively. Trajectory (a) was not predicted to be stable. The instability is confirmed by close
examination of the behavior along the y-axis: After junction operation, the ion has a small velocity in the positive y-direction due
to a lack of a containing α-field. In (b)–(d) with α> 0, the ion is completely stable. However, in the increase of α from (b) to (c),
the erosion of the z-axis confinement due to the α-field generating a repulsive potential becomes increasingly evident, as the ion
center is shifted off the RF null by α-field asymmetries. In (d), restrengthening the z-axis field by making β negative illustrates
one approach to ensuring ion stability, the other being to work with small µ and α. Values of α larger than 0.3 failed to confine
the ion, due to ion momentum during junction operation which was not included in our time-independent analysis.

where
∑

r∈rect∇Φ(p, t) is the sum of the electric fields over all electrodes given predetermined voltages. The
RK4 method was used to simulate the motion of the ion, due to its accuracy and efficiency at calculating
trajectories for potentials defined by low-order polynomials.

4.2. Dynamic junction stability
While the first test of junction stability using the numerical method outlined above verified ion stability at
fixed voltage levels, a second test confirmed the stability of the complete transfer protocol. The trap from
figure 1 served as a basis for one of the layers, duplicated to produce the full local configuration, as shown
within the global configuration of figure 2. Initially, a spread of stable junction parameter configurations was
considered, using the results from figure 5.

Stable solutions were verified for f(t) = 1/2, demonstrating a static solution with the ion suspended
between the traps for a paused junction operation. Then, transfers were validated using a function f (t) which

8



Quantum Sci. Technol. 9 (2024) 035015 G N Nop et al

has three parts consisting of storing the ion with the bottom trap, linearly transferring to the upper trap, and
finally storing the ion with the upper trap, all scaled to cover an arbitrary number of RF cycles. Sample paths
are displayed in figure 6 in conjunction with their analytic stability triplets. The qualitative behavior of these
paths is discussed in section 4.3. Due to deviations in the trapping potential far from the origin, trap stability
was weakened for large values of α, to the point that stability is lost for α> 0.3. However, as noted at the end
of section 3, large values of α are rarely relevant for practical ion junction operation. Additionally, figure 6
illustrates differences in axial potential strength and practical configurations for ion junction tuning, as
further discussed in the caption.

Instantaneous transfers are theoretically possible, but will be practically limited by filters on the RF
voltages and the need to minimize motional excitation. In numerical tests, control electrodes successfully
contained the ion, although in some transfers, the average vy was increased. This corresponds to the
attenuation of the stability cross-section of the junction transfer observed as α increases in figure 5,
predicting that the ion would be lost in the y-axis for sufficiently large α.

No tuning was necessary to configure the traps, as all tested trap frequencies naturally occurred in the
stable region for the two-trap protocol. This is expected to hold true for common ion trap configurations.

4.3. Dynamic ion path visualization
To gain a holistic, qualitative portrait of the ion trajectories associated with figure 5, four individual ion
trajectories are displayed in figure 6. The parameter µ was taken to be 0.75, and the pairs (α,β) were chosen
as (0,0),(0.2,0),(0.29,0), and (0.29,−0.15) for subfigures (a)–(d), respectively. The total transition time
was T= 2.9µs. The function f (t) was 0 until T/3, increased linearly to 1 at 2T/3, and then held at 1 until T.
For each trajectory, an ion at the RF null was initialized with the exaggerated initial velocity of (5,5,5)ms−1.
Red (solid), green (dashed), and blue (dash and dotted) lines correspond to x, y, and z respectively. Note that
as the trap junction is centered at 1.5µs, for the rotoreflected traps, the x- and y-axes are effectively switched
before and after the 1.5µs mark, and the z trapping potential is inverted.

The first trajectory, visualized in (a), is an example of the ion failing to remain within the confines of the
trap. The reason the confinement fails along this edge of the stability regime is that the longitudinal trapping
potential is non-existent, enabling the ion to drift out the two opposing ends of the trap. Before 1.5µs, the
lack of a trapping potential along the x-axis is visible as the ion drifts to the negative direction in red. After
the junction operation, the axial trapping potential confines the ion along the x direction. However, as a
result of the relative rotation of the traps, the ion is now no longer confined along the y-axis. Before the
junction operation, the ion experiences fine oscillations along the y-axis. However, after the junction
operation, these oscillations are no longer confined, manifesting as a slight bias to the right direction. This
bias can be observed by noting the drift of the green line as the ion starts centered with the red oscillations,
but eventually reaches the peak of the red oscillations. If the diagram were doubled in duration, this drift
would continue until the ion was thrown off the end of the trap.

The second trajectory, visualized in (b). is an example where the ion is successfully confined. At this point
in the stability diagram, the ion is confined along both the x- and y-axes, so the only oscillation is along the
z-axis. Here the ion maintains a smooth transition between the two trap minima at (0,0,1µm) and
(0,0,−1µm). Stability (in terms of ion oscillations) appears to be optimized by sampling from the center of
the stability diagram.

The third trajectory, visualized in (c), is an example where the ion is confined in both the x- and y-axes,
but is close to the edge of the stability diagram. As this corresponds to an increase in α, and therefore an
increase in the z trapping potential, the non-parabolic trapping potential is more obvious, as the ion
oscillates across the center of the two traps, even while being confined.

Finally, (d) illustrates that the performance of (b) may be recovered by increasing β until the trap
operation is again at the center of the stability diagram. However, increased oscillations result from the
increase in the trapping potential, in accord with the harmonic oscillator solution.

Qualitatively, this suggests that the optimal trapping potentials are found as far from the edges of the
stability region as possible, and that stability degenerates as the µ value is increased.

5. Trap configuration and architecture

In order to implement this junction scheme, the RF electrode voltage must be lowered on one entire trap
while it is simultaneously raised on the other trap. There are two ways to accommodate this requirement.
The first is to rely on a segmentation of the RF rails, such that particular sections of the linear traps are on
while other sections are off. This nontrivial hardware change would facilitate a simple qubit transport
protocol that would allow arbitrary ion movement within the array, but would require vias and screened RF
leads under the top metal layer. Segmented RF designs have been studied and attempted, but so far with
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Figure 7. Sample layout of four data ions (blue) and one ancilla ion (red) arranged in a surface code plaquette. In this diagram
they are all trapped at the intersection of the two trapping layers, even though only one trapping layer is active at a time (except
during transitions).

limited success due to technical challenges like equalizing the phase and amplitude of distinct but
neighboring switchable RF electrodes. The second option is to use linear traps where continuous RF
electrodes are all on or all off, depending on the layer. This simplifies the hardware, but limits the allowed
transport at a given time to a single dimension.

Figure 7 presents a layout with continuous RF electrodes. Five ions that form a plaquette in a surface code
are shown; the data ions are stored at the RF rail crossings (in xy) of the two traps so that they can remain
laterally stationary during syndrome extraction, but move in z according to which trap is enabled. The
ancilla ion moves in xy to interact with each neighboring data ion [32]. In this scheme all ions, data and
ancilla, would be confined by one layer or the other at a given time. When making that transition they would
be positioned at the RF rail crossing points and simultaneously moved in z. Neighboring plaquettes with
different movement patterns would require pauses in transport to accommodate times when ancilla ions are
scheduled to move in orthogonal directions. Non-nearest neighbor movement patterns are also possible with
this design, and will be highly dependent on junction timing, cooling protocols, and other specifics in order
to minimize latency due to transport. As an example, consider a particular quantum program, consisting of a
compiled sequence of two-qubit gates entangling qubits i and j. With a fixed maximum qubit capacity per
trap, connectivity may be represented as a graph, and a simple greedy algorithm used to group qubits
according to gate requirements.

6. Conclusion

We have introduced a novel concept for a microfabricated ion trap that supports 2D ion transport using
vertically offset planar traps with RF electrodes that are perpendicularly oriented. We developed a
mathematical model of our junction, and solved it analytically for bounded ion trajectories. The analytical
model was augmented by a dynamic numerical simulation of successful ion transfer, verifying the existence
of stable ion trajectories throughout the transfer from one trap to the other.

We highlighted two types of RF electrode architectures for synchronous ion transport to complement the
unique global trap structure required by the proposed junction geometry. Segmented RF rails require
modifications to the simple and continuous rail designs currently in use, but enable unrestricted ion
transport protocols between traps. Continuous RF rails do not require any additional hardware design or
modification, but will require coordinated transport that may lead to additional latency.

While this novel junction design solves the problem of RF lead routing for larger arrays of 2D ion traps, it
introduces other challenges that have to be overcome to make it practically useful. Some of these may be
solved with additional integration, like replacing free-space delivery and collection optics with
microwave-based gates, integrated waveguides, and detectors. A fuller analysis would also require
trap-specific simulations to identify the optimal RF and control voltage protocols for transferring ions with
minimal motional excitation. The ions would not be stored at a pure RF null during the transition and
therefore would experience an unavoidable amount of micromotion, so the RF drive voltage would have to
be low-noise in order not cause excessive motional heating. Even with these new challenges, the analysis in
this paper shows that a two-layer trap geometry based on surface traps can enable 2D qubit connectivity for
trapped-ion quantum computing.

10



Quantum Sci. Technol. 9 (2024) 035015 G N Nop et al

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This research was conducted at Ames National Laboratory for the U.S. DOE with Iowa State University
under Contract No. DE-AC02-07CH11358. This material is also based upon work supported by the U.S.
Department of Energy, Office of Science, National Quantum Information Science Research Centers,
Quantum Systems Accelerator. Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration
under Contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government

ORCID iDs

Gavin N Nop https://orcid.org/0000-0002-5967-5227
Jonathan D H Smith https://orcid.org/0000-0002-2075-0744
Daniel Stick https://orcid.org/0000-0002-6802-7539
Durga Paudyal https://orcid.org/0000-0002-0060-0220

References

[1] Häffner H, Roos C and Blatt R 2008 Quantum computing with trapped ions Phys. Rep. 469 155
[2] Stick D, Hensinger W K, Olmschenk S, Madsen M, Schwab K and Monroe C 2005 Ion trap in a semiconductor chip Nat. Phys. 2 36
[3] Seidelin S et al 2006 Microfabricated surface-electrode ion trap for scalable quantum information processing Phys. Rev. Lett.

96 253003
[4] Leibrandt D R et al 2009 Demonstration of a scalable, multiplexed ion trap for quantum information processing Quantum Inf.

Comput. 9 901–19
[5] Allcock D et al 2012 Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

Appl. Phys. B 107 913
[6] Wright K et al 2019 Benchmarking an 11-qubit quantum computer Nat. Commun. 10 5464
[7] Pino J M et al 2021 Demonstration of the trapped-ion quantum ccd computer architecture Nature 592 209
[8] Moehring D L, Highstrete C, Stick D, Fortier K M, Haltli R, Tigges C and Blain M G 2011 Design, fabrication and experimental

demonstration of junction surface ion traps New J. Phys. 13 075018
[9] Burton W C, Estey B, Hoffman I M, Perry A R, Volin C and Price G 2023 Transport of multispecies ion crystals through a junction

in an RF Paul trap Phys. Rev. Lett. 130 173202
[10] Brown K, Kim J and Monroe C 2016 Co-designing a scalable quantum computer with trapped atomic ions npj Quantum Inf.

2 16034
[11] Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M and Parazzoli L P 2021 Integrated optical

addressing of a trapped ytterbium ion Phys. Rev. X 11 041033
[12] Pogorelov I et al 2021 Compact ion-trap quantum computing demonstrator PRX Quantum 2 020343
[13] Perrin H and Garraway B M 2017 Trapping atoms with radio frequency adiabatic potentials Advances In Atomic, Molecular and

Optical Physics (Elsevier) pp 181–262
[14] Major F, Gheorghe V and Werth G 2005 Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement

(Springer Series on Atomic, Optical and Plasma Physics) (Springer)
[15] Cho D-I, Hong S, Lee M and Kim T 2015 A review of silicon microfabricated ion traps for quantum information processingMicro

Nano Syst. Lett. 3 2
[16] Hong S, Lee M, Cheon H, Kim T and Cho D-I 2016 Guidelines for designing surface ion traps using the boundary element method

Sensors 16 616
[17] Kielpinski D, Monroe C and Wineland D 2002 Architecture for a large-scale ion-trap quantum computer Nature 417 709
[18] Webber M, Herbert S, Weidt S and Hensinger W 2020 Back cover: efficient qubit routing for a globally connected trapped ion

quantum computer (Adv. Quantum Technol. 8/2020) Adv. Quantum Technol. 3 2070083
[19] Tomita Y, Gutiérrez M, Kabytayev C, Brown K R, Hutsel M R, Morris A P, Stevens K E and Mohler G 2013 Comparison of ancilla

preparation and measurement procedures for the steane [[7,1,3]] code on a model ion-trap quantum computer Phys. Rev. A
88 042336

[20] Holmes A, Johri S, Guerreschi G G, Clarke J S and Matsuura A Y 2020 Impact of qubit connectivity on quantum algorithm
performance Quantum Sci. Technol. 5 025009

[21] Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D and Brown K R 2014 Heating rates and ion-motion control in a
Y-junction surface-electrode trap Phys. Rev. A 89 062308

[22] Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P andWineland D J
2010 Toward scalable ion traps for quantum information processing New J. Phys. 12 033031

[23] Blain M G, Haltli R, Maunz P, Nordquist C D, Revelle M and Stick D 2021 HybridMEMS-CMOS ion traps forNISQ computing
Quantum Sci. Technol. 6 034011

[24] Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S and Hensinger W K 2020 Engineering of
microfabricated ion traps and integration of advanced on-chip features Nat. Rev. Phys. 2 285

11

https://orcid.org/0000-0002-5967-5227
https://orcid.org/0000-0002-5967-5227
https://orcid.org/0000-0002-2075-0744
https://orcid.org/0000-0002-2075-0744
https://orcid.org/0000-0002-6802-7539
https://orcid.org/0000-0002-6802-7539
https://orcid.org/0000-0002-0060-0220
https://orcid.org/0000-0002-0060-0220
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1038/nphys171
https://doi.org/10.1038/nphys171
https://doi.org/10.1103/PhysRevLett.96.253003
https://doi.org/10.1103/PhysRevLett.96.253003
https://doi.org/10.26421/QIC9.11-12-1
https://doi.org/10.26421/QIC9.11-12-1
https://doi.org/10.1007/s00340-011-4788-5
https://doi.org/10.1007/s00340-011-4788-5
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1088/1367-2630/13/7/075018
https://doi.org/10.1088/1367-2630/13/7/075018
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1103/PhysRevX.11.041033
https://doi.org/10.1103/PhysRevX.11.041033
https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1186/s40486-015-0013-3
https://doi.org/10.1186/s40486-015-0013-3
https://doi.org/10.3390/s16050616
https://doi.org/10.3390/s16050616
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1002/qute.202070083
https://doi.org/10.1002/qute.202070083
https://doi.org/10.1103/PhysRevA.88.042336
https://doi.org/10.1103/PhysRevA.88.042336
https://doi.org/10.1088/2058-9565/ab73e0
https://doi.org/10.1088/2058-9565/ab73e0
https://doi.org/10.1103/PhysRevA.89.062308
https://doi.org/10.1103/PhysRevA.89.062308
https://doi.org/10.1088/1367-2630/12/3/033031
https://doi.org/10.1088/1367-2630/12/3/033031
https://doi.org/10.1088/2058-9565/ac01bb
https://doi.org/10.1088/2058-9565/ac01bb
https://doi.org/10.1038/s42254-020-0182-8
https://doi.org/10.1038/s42254-020-0182-8


Quantum Sci. Technol. 9 (2024) 035015 G N Nop et al

[25] Revelle M C 2020 Phoenix and Peregrine ion traps (arXiv:2009.02398)
[26] Akhtar M, Bonus F, Lebrun-Gallagher F R, Johnson N I, Siegele-Brown M, Hong S, Hile S J, Kulmiya S A, Weidt S and

Hensinger W K 2023 A high-fidelity quantum matter-link between ion-trap microchip modules Nat. Commun. 14 531
[27] Hucul D, Yeo M, Olmschenk S M, Monroe C R, Hensinger W K and Rabchuk J 2008 On the transport of atomic ions in linear and

multidimensional ion trap arrays Quantum Inf. Comput. 8 501
[28] McLachlan N 1951 Theory and Application of Mathieu Functions (Clarendon)
[29] Ranocha H, Sayyari M, Dalcin L, Parsani M and Ketcheson D I 2020 Relaxation Runge–Kutta methods: fully discrete explicit

entropy-stable schemes for the compressible Euler and Navier–Stokes equations SIAM J. Sci. Comput. 42 A612
[30] Read F H and Bowring N J 2011 The CPO programs and the BEM for charged particle optics Nucl. Instrum. Methods Phys. Res. A

645 273
[31] Yuksel C, Schaefer S and Keyser J 2011 Parameterization and applications of catmull-rom curves Comput.-Aided Des. 43 747
[32] Kang M, Campbell W C and Brown K R 2023 Quantum error correction with metastable states of trapped ions using erasure

conversion PRX Quantum 4 020358

12

https://arxiv.org/abs/2009.02398
https://doi.org/10.1038/s41467-022-35285-3
https://doi.org/10.1038/s41467-022-35285-3
https://doi.org/10.26421/QIC8.6-7-1
https://doi.org/10.26421/QIC8.6-7-1
https://doi.org/10.1137/19M1263480
https://doi.org/10.1137/19M1263480
https://doi.org/10.1016/j.nima.2010.12.163
https://doi.org/10.1016/j.nima.2010.12.163
https://doi.org/10.1016/j.cad.2010.08.008
https://doi.org/10.1016/j.cad.2010.08.008
https://doi.org/10.1103/PRXQuantum.4.020358
https://doi.org/10.1103/PRXQuantum.4.020358

	Bilayer ion trap design for 2D arrays
	1. Introduction
	2. Basic junction design
	3. Analytic ion stability
	3.1. Mathieu stability
	3.2. Junction stability

	4. Numerical ion stability
	4.1. Field and flight simulation
	4.2. Dynamic junction stability
	4.3. Dynamic ion path visualization

	5. Trap configuration and architecture
	6. Conclusion
	References


