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TOPICAL REVIEW

Computational capabilities and compiler development for neutral
atom quantum processors—connecting tool developers and
hardware experts
Ludwig Schmid1,∗, David F Locher2,3, Manuel Rispler2,3, Sebastian Blatt4,5,6, Johannes Zeiher4,5,6,
Markus Müller2,3 and Robert Wille1,7
1 Chair for Design Automation, Technical University of Munich, 80333 Munich, Germany
2 Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
3 Peter Grünberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
4 Faculty of Physics, Ludwig-Maximilians-Universität, 80799 Munich, Germany
5 Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
6 Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
7 Software Competence Center Hagenberg GmbH (SCCH), 4232 Hagenberg im Mühlkreis, Austria
∗ Author to whom any correspondence should be addressed.

E-mail: ludwig.s.schmid@tum.de, d.locher@fz-juelich.de, rispler@physik.rwth-aachen.de, sebastian.blatt@mpq.mpg.de,
johannes.zeiher@mpq.mpg.de,markus.mueller@fz-juelich.de and robert.wille@tum.de

Keywords: quantum computing, neutral atoms, design automation, compiler, software tool development

Abstract
Neutral Atom Quantum Computing (NAQC) emerges as a promising hardware platform primarily
due to its long coherence times and scalability. Additionally, NAQC offers computational
advantages encompassing potential long-range connectivity, native multi-qubit gate support, and
the ability to physically rearrange qubits with high fidelity. However, for the successful operation of
a NAQC processor, one additionally requires new software tools to translate high-level algorithmic
descriptions into a hardware executable representation, taking maximal advantage of the hardware
capabilities. Realizing new software tools requires a close connection between tool developers and
hardware experts to ensure that the corresponding software tools obey the corresponding physical
constraints. This work aims to provide a basis to establish this connection by investigating the
broad spectrum of capabilities intrinsic to the NAQC platform and its implications on the
compilation process. To this end, we first review the physical background of NAQC and derive how
it affects the overall compilation process by formulating suitable constraints and figures of merit.
We then provide a summary of the compilation process and discuss currently available software
tools in this overview. Finally, we present selected case studies and employ the discussed figures of
merit to evaluate the different capabilities of NAQC and compare them between two hardware
setups.

1. Introduction

To achieve computational advantages with Quantum Computers (QC), large-scale, high-fidelity qubit
entanglement is required, posing a technologically challenging problem. In recent years, qubit systems based
on Neutral Atoms (NA) [1, 2] in combination with Rydberg interactions have established themselves as a
promising candidate, due to their ability to perform high-fidelity long-range gates [3–5], native multi-qubit
gates [4–7], and physical atom shuttling [8, 9], combined with their scalability [10–12].

However, to fully harness these capabilities, it becomes essential to devise hardware-specific optimization
techniques and software tools. In particular, this includes compilation, i.e. translating high-level algorithmic
descriptions into a low-level representation of operations that can be executed on the hardware, obeying
given physical constraints, and optimizing for specific figures of merit. Manual optimization becomes
infeasible as system sizes scale, necessitating automated processes and comprehensive toolkits to establish a
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complete compilation pipeline. While a multitude of frameworks is available for other hardware platforms,
such as superconducting chips [13–22], or trapped ions [23–27], the landscape of compiler tools tailored to
NA-specific hardware constraints [28–36] is still less developed.

Existing solutions for NAs often address specific compilation subproblems or make assumptions about a
particular hardware configuration, failing to fully leverage the expansive capabilities of the NAQC platform.
To properly ensure that corresponding compilers and tools obey physical constraints and optimize for
hardware-specific figures of merit, a close connection between tool developers and hardware experts is
required. The aim is to create valuable and high-quality compilation software that can leverage and take
advantage of the full range of computational capabilities intrinsic to the NAQC platform.

This work aims to provide a basis to establish this connection by furnishing a comprehensive overview of
software compilation for the NAQC platform and laying the groundwork for potential directions in compiler
development geared explicitly toward adaptive, hardware-aware compilation strategies. We discuss
important figures of merit and employ them to evaluate the different capabilities of NAs, as well as compare
them between two different hardware setups.

To achieve this goal, first, we establish a connection from physics to computer science by reviewing the
physical background of NAs and translating the physical principles and processes to a hardware-aware but
more abstract problem formulation suitable for tool developers. The correspondingly resulting ‘take
home-messages’ for tool developers are then summarized in the form of optimization constraints and figures
of merit in self-contained boxes, suitable résumés for individuals who are already familiar with NAs. In this
discussion, we particularly focus on the NA-specific capabilities of long-range connectivity, native
multi-qubit gates, and the possibility of implementing MOVE operations on the qubits, using shuttling.

Secondly, we discuss how these new capabilities impact the compilation task, give a comprehensive
overview of the full range of the compilation possibilities, and contextualize currently available software
within this overview. This discussion gives a possibility to structure the current progress of compilation
development and aids potential tool developers in identifying unsolved subproblems and automation tasks.

Finally, we present selected case studies and error analysis to provide an overview of the current state of
the art of hardware-aware compilation for NAQC. This provides insights for tool developers regarding
suitable figures of merit and optimization metrics depending on available hardware properties.
Concurrently, this gives hardware experts the means to estimate the impact of their hardware configuration
on the final compilation output and could potentially aid in devising forthcoming hardware arrangements,
prioritizing hardware attributes that yield the most encouraging outcomes.

Based on these three main contributions, we provide the basis for a successful connection between tool
developers and hardware experts for physical realization, which is necessary for the future development of
hardware-aware compilation tools, taking full advantage of the broad spectrum of capabilities of the NAQC
platform.

The remainder of this work is structured as follows: In section 2, we discuss the specific compilation
aspects addressed in this work. We define key terms and compilation steps, such as synthesis, mapping, and
routing, at an abstract and hardware-independent level. In section 3, we focus on the NAQC platform. Here,
we explore its distinctive capabilities and characteristics relevant to compilation. Each subsection covers a
particular capability and discusses its underlying physical principles and mechanisms. This is followed by an
abstract formulation tailored to the computer science community, summarized in self-contained boxes
referring to the three previously introduced compilation steps. In section 4, we investigate how these novel
capabilities influence the compilation process, outlining a potential overview and illustrating the overall
compilation problem in an overview figure. Referring to this framework, section 5 reviews existing software
and discusses what capabilities they focus on, giving a comprehensive overview of currently available
software for NAQC. Section 6 offers selected case studies that showcase how the NA platform’s various
capabilities and hardware parameters influence the computation results.

2. Compilation

In its broadest sense, the term ‘compilation’ refers to translating a high-level, abstract description of a
quantum algorithm into a lower-level representation of operations suitable for hardware execution. This is
typically achieved by employing multiple layers of software, each designed to address specific subroutines.
The collective arrangement of these layers is commonly known as a compilation tool-chain [37]. Given the
diverse range of tasks involved and the intersection between computer science- and physics-related
terminology, various terms, including the term ‘compilation’ itself, can vary depending on the context. To
avoid ambiguity, we provide a brief review and definitions of different subroutines considered in this work.
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Figure 1. Illustration of the three steps for platform-dependent compilation. In the synthesis step, general operations and
unitaries are decomposed into the native gate set Σnative. During the mapping step, the circuit qubits qi are assigned to physical
hardware qubits Qi, and necessary SWAP or MOVE operations are introduced to satisfy connectivity constraints. Finally, in the
scheduling step, gate times and restrictions on parallelism are considered. In practice, these steps are often performed
simultaneously as a single step rather than sequentially.

2.1. Compilation subroutines
The subroutines can be divided into three major categories, depending on their abstraction level and their
specificity to a particular hardware configuration.

• Platform-independent compilation
High-level optimization techniques can be applied irrespective of the underlying platform. These techniques
include for example loop unrolling and function inlining [38], to substitute or simplify e.g. for-loops and
function calls on a high level similar to classical compilers. Another possibility are optimization techniques
on the gate level such as gate commutation rules.

• Platform-dependent compilation
These subroutines account for a given hardware platform’s specific capabilities and constraints, such as
superconducting chips, trapped ions, NAs, or photonic quantum computing. The output of these sub-
routines comprises a sequence of platform-specific instructions, which is still agnostic of the physical hard-
ware setup.

• Hardware-dependent compilation
This translation layer is tailored to each hardware configuration, converting abstract quantum operations
into hardware-specific instructions that can be directly executed on the quantum processing unit. It is occa-
sionally referred to as firmware to underscore its close proximity to the underlying hardware.

This work focuses on addressing the subroutines of platform-dependent compilation, particularly the NAQC
platform. Specifically, we assume that all hardware- and platform-independent optimizations have already
been conducted, and our objective is to generate a collection of hardware-oriented operations without
delving into discussions related to direct hardware control through electric signals or pulse-level intricacies.
This leads to three primary objectives.

1. Synthesis entails decomposing abstract gates into operations compatible with the provided platform and
is therefore also often referred to as decomposition.

2. Mapping involves spatially arranging the gates by assigning circuit qubits to corresponding hardware
qubits and inserting SWAP or MOVE operations to fulfill connectivity constraints.

3. Scheduling corresponds to the temporal arrangement of the gates to satisfy the dependencies and consider
the parallelism constraints inherent to the platform or the hardware.

In the following, we present concise and abstract definitions of these three steps tailored to the context of
this work. An illustration is shown in figure 1.

2.1.1. Synthesis
Within the framework of the quantum circuit model, every non-dissipative quantum computationU ∈ C2n×2n

can be expressed as a finite sequence of quantum operations g ∈ C2m×2m known as quantum gates, denoted
by reversible unitary transformations. Here, n (m) denotes the number of qubits upon which the circuit
(gate) acts. According to the Solovay-Kitaev theorem [39], given a universal gate set Σuniv with a discrete
number of gates, an approximate decomposition up to an arbitrarily small error can always be obtained.
Furthermore, this can be done efficiently in terms of the number of gates. In contrast, the native gate set
Σnative characterizes the feasible operations that can be performed on the quantum state using a specific
hardware platform or setup. For universal computing, it is necessary that Σnative is also a universal gate set.

3
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Definition 1 Synthesis). Given a quantum computation U ∈ C2n×2n and the native platform gate set Σnative,
synthesis is the task to find a gate sequence

Ũ= gN−1 ◦ · · · ◦ g0

with all g0, . . .gN ∈ Σnative and U= Ũ up to some small error.

2.1.2. Mapping
Each gate operates on a subset of the circuit qubits denoted as Q= {q0, . . .,qn−1}. For instance, g0(q0,q1)
indicates that the first gate of the computation acts on the circuit qubits q0 and q1. These gates must be
implemented using the available physical hardware qubits represented by P= {Q0, . . .,Qn−1}. Without loss
of generality, we assume that the number of circuit and physical qubits is the same. A common challenge
encountered in current hardware platforms is limited connectivity, which is described by a coupling graph
G= (P,E). In this graph, the nodes correspond to the physical qubits, while the edges E indicate the qubits
capable of interacting with each other.

To execute a gate g(Qi,Qj) with (Qi,Qj) /∈ E (that is, the qubits are not directly connected), it is necessary
to adjust the coupling graph to establish the required connectivity. In most platforms, connectivity is closely
related to the physical locations of the qubits. Therefore, two commonly employed techniques are SWAP and
MOVE operations. The SWAP(Qi,Qj) operation exchanges the positions of the qubits Qi and Qj, resulting in
a modification of their labels in the coupling graph. On the other hand, the MOVE(Qi) operation relocates
qubit Qi to a different position, consequently reassigning the associated edges.

In superconducting (SC) hardware, these operations are typically performed at the virtual level, acting on
Q, and require, for example, three controlled-NOT (CX) gates to implement a SWAP operation. On the
contrary, for other platforms, such as trapped ions or NAs, it may be possible to physically move and swap
the corresponding atoms or ions, directly affecting the hardware qubits P.

Definition 2 (Mapping). Given a quantum circuit U= gN−1 ◦ · · · ◦ g0 on circuit qubits Q and a hardware
configuration with physical qubits P and coupling map G(P,E). The task of mapping is to find a bijective
function f :Q→ P and an insertion of MOVE and SWAP operations such as

U= . . . ◦MOVE(qi) ◦ SWAP
(
qj,qk

)
◦ g
(
qi,qj

)
◦ . . .

such that for each gate g(qi,qj) all inter-qubit connections are fulfilled, i.e. ( f(qi), f(qj)) ∈ E.

It should be noted, that this graph-based approach to mapping can only represent a first approximation.
In general and, in particular, for multi-qubit gates, additional constraints such as gate direction and the
geometric arrangement of the qubits can impose additional constraints.

2.1.3. Scheduling
While mapping primarily concerns the spatial arrangement of gates on qubits to satisfy connectivity
constraints, we must also consider the temporal positioning of the gates. Subject to commutation rules, gates
acting on the same qubit must be executed in a specific order. This aspect can be abstracted by transforming
the gate sequence U= gN−1 ◦ · · · ◦ g0 into a Directed Acyclic Graph (DAG) denoted D. In this DAG, the nodes
correspond to quantum gates, while the incoming and outgoing edges correspond to the qubits on which the
gates operate. The direction of the edges reflects the sequential execution order of the gates.

When two gates act on disjoint sets of qubits, lacking any common path in the DAG, they can generally
be executed in parallel. However, the execution of gates in parallel may face additional constraints imposed
by hardware limitations, such as the availability of control channels for qubit control, or platform-specific
restrictions on gate operations, such as cross-talk effects.

Definition 3 (Scheduling). Given a quantum circuit U and its corresponding DAG representation D, the
objective of scheduling is to determine the optimal timing for the gates to be executed while preserving the
integrity of the DAG up to commutation rules.

Due to decoherence, the primary goal during the scheduling phase is typically to maximize parallelism,
thereby minimizing the overall execution time of the circuit.

In the next section, we delve into a comprehensive study of the NAQC platform, exploring its unique
computational capabilities compared to other platforms. In particular, we analyze how the physical principles
and processes of the NAs can be formulated on an abstract level regarding optimization constraints and
figures of merit, focusing on the three compilation steps of synthesis, mapping, and scheduling.
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3. The neutral atom quantum computing platform

Building on continuous efforts in using NAs for atomic clocks and analog quantum simulations, several
recent experimental and theoretical breakthroughs have allowed this platform to evolve into a promising
candidate for scalable digital quantum computing [1–4, 40–44]. This section provides an overview of the
fundamental physical principles essential for employing NAs in quantum computing and the resulting
additional capabilities. Based on that, we then translate these physical principles and processes to a
hardware-aware but more abstract problem formulation, establishing a connection between physics and
computer science and, hence, hardware experts and tool developers. This results in ‘take-home messages’ for
tool developers, which are provided in terms of dedicated boxes covering optimization constraints as well as
figures of merit and entailing everything relevant for compiler development. Individuals with prior
knowledge of NAs and/or compilation for quantum hardware may only check these boxes or bypass the
corresponding sections completely. In the following, we first show that the NAQC is a suitable candidate for
universal quantum computation. We discuss in depth the NA capabilities and error sources, each entailed by
one of the aforementioned summary boxes focusing on the three hardware-dependent compilation steps of
synthesis, mapping, and routing, extended by hardware and error discussions.

3.1. Platform requirements
For the NAQC to be suitable as a quantum computing platform, one requires multiple properties, which are
commonly known as DiVincenzo’s criteria [45], namely:

1. A scalable physical system of qubits.
2. The ability to initialize the state of the qubits to a simple fiducial state.
3. A universal set of quantum gates.
4. Long relevant coherence times, much longer than the gate operation time.
5. A qubit-specific measurement capability.

The following outlines that all those requirements are fulfilled for NAs trapped in optical tweezer arrays
or optical lattices.

1. System and qubits: NAs can be stored in optical dipole traps [46], which are typically formed by
far-detuned lasers interacting with the atomic dipole moment. Examples include optical lattices, which are
stationary patterns of light that emerge from the interference of multiple laser beams [47], or optical tweezer
arrays, which consist of many individual tightly focused and individually controllable laser beams arranged
in one, two, or three dimensions [48]. In state-of-the-art optical tweezer arrays, atoms are loaded
stochastically and can then be dynamically rearranged in desired configurations [11, 12], with the possibility
of dynamically reloading atoms from a reservoir to compensate for occasional loss of atoms [49, 50]. It is
possible to laser-cool the atoms within the traps to their motional ground states [51]. Commonly used atom
species in such experiments are alkali atoms, e.g. Rb, Cs, or alkaline-earth-like atoms, such as Sr or Yb.
Specific internal electronic states of the atoms serve as the qubit states |0〉 and |1〉. Both states are typically
encoded in two long-lived states of the atom, such as two hyperfine states in alkali atoms [4, 52], a nuclear
spin [53–55], low-energy singlet and triplet states [56, 57], fine-strucure [58, 59], or circular Rydberg
states [60] in alkaline-earth (like) atoms. Due to their different properties, also dual-species atom arrays have
been proposed and demonstrated [61].

2. Initialization, and 3. Quantum gates: Transitions between electronic states can be precisely controlled by
applying laser pulses to the atoms. Such pulses are used to initialize qubits in well-defined initial states,
e.g. |0〉, and to perform arbitrary single-qubit gates. Universal quantum computing also demands controlled
two-qubit gates. To achieve this, atoms can be temporarily excited to Rydberg states, which are electronic
states with very large principal quantum numbers. Atoms in Rydberg states exhibit large polarizabilities, and
as a consequence, two Rydberg atoms interact via dipole-dipole interactions [62]. By coupling one of the
qubit states, e.g. |1〉, to a Rydberg state |r〉, one obtains an effective interaction between two atoms in the state
|1〉 [40, 63]. Depending on the exact settings, interaction characteristics can vary from dipolar to van der
Waals [2]. This mechanism can be used to engineer two-qubit or multi-qubit gates.

4. Coherence times: The two primary error sources of trapped atoms during idling are dephasing and
amplitude damping (|1〉 7→ |0〉). These processes cause the off-diagonal terms in the density matrix ρ of a
qubit to decay on a time scale T∗

2 , and the matrix element ρ11 to decay on a time scale T1. Both time scales
can reach up to the order of several seconds for NAs in optical tweezers [5, 56] and are characteristic for the
specific qubit implementation, e.g. magnetically insensitive clock states with very long lifetimes. Controlled
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phase gates can be performed in timescales of the order of 100 ns–500 ns [64], depending on the physical
details, which is orders of magnitude faster than the decoherence time of such systems.

5. Measurements: Finally, the qubit states of the atoms can be measured by performing fluorescence imaging,
that is, driving transitions between one of the qubit levels and an auxiliary electronic level with a laser and
imaging the emitted photons with a camera.

3.2. Computational capabilities
In addition to fulfilling DiVincenzo’s criteria, NAs offer a broad spectrum of capabilities that can be
employed to perform quantum computations. In the following, these capabilities are discussed in more
detail. This is done by first discussing the corresponding capabilities’ basic physical principles and processes,
followed by self-contained boxes, summarizing the resulting constraints and optimization figures of merit on
a more abstract level. Therefore, tool developers can refer only to the boxes for the development of
NA-specific compilers.

3.2.1. Single-qubit gates
Single-qubit gates are realized with lasers that drive Rabi oscillations between the qubit states |0〉 and |1〉. The
respective Hamiltonian reads

H1 (t)

h̄
=

Ω(t)

2
|0〉〈1|+ Ω∗ (t)

2
|1〉〈0| −∆(t) |1〉〈1|, (1)

where Ω(t) and∆(t) are the effective Rabi frequency and detuning, respectively. Depending on the precise
qubit encoding, the transitions might be either single- or two-photon transitions. In the latter case, the
Hamiltonian in equation (1) is obtained after adiabatic elimination of an intermediate level. Depending on
the experimental setup, some laser beams might only be available as global beams [3], simultaneously
illuminating many atoms. However, single-qubit addressing can also be realized using beams focused on
individual atoms [34, 65].

3.2.2. Two-qubit gates
To execute two-qubit gates, typically, one of the qubit states, e.g. |1〉, is coupled to a Rydberg state |r〉 using a
laser with Rabi frequency Ωr and detuning∆r. Two atoms in the same Rydberg state and separated
sufficiently far from each other interact via the van der Waals interaction

VvdW (d) =
C6

d6
, (2)

where C6 is a state-specific constant and d the inter-qubit distance. The Hamiltonian describing two atoms
illuminated by a global Rydberg laser, therefore, reads

H2 (t)

h̄
=

2∑
i=1

(
Ωr (t)

2
|1〉〈r|i +

Ω∗
r (t)

2
|r〉〈1|i −∆r (t) |r〉〈r|i

)
+

VvdW

h̄
|r〉〈r|1 ⊗ |r〉〈r|2. (3)

The van der Waals interaction imposes an energy penalty to promote two nearby atoms together to a
Rydberg state. Consequently, laser excitation of one atom to a Rydberg state is impossible if another Rydberg
atom is close by. This so-called Rydberg blockade can be utilized to engineer state-dependent interactions and,
thus, two-qubit gates between two atoms. The first proposal by Jaksch et al [63] requires a sequence of locally
addressed laser pulses and was realized for the first time in 2010 with neutral Rb atoms [66, 67]. More recent
two-qubit gate sequences require only global addressing of both involved qubits and are also faster than the
original scheme [4]. The qubits must be located sufficiently close to each other so that the interaction is
strong enough for the Rydberg blockade to hold. From the condition h̄Ωr ' VvdW(rb) follows a blockade
radius

rb '
(

C6

h̄Ωr

)1/6

. (4)

This length scale gives an estimate of how far two atoms participating in a two-qubit gate can be separated at
most. Since the blockade radius can be much larger than the distance between neighboring atoms, two-qubit
gates can be applied to pairs of atoms that are not nearest neighbors, resulting in higher inter-qubit
connectivity.

6
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Figure 2. Capabilities of the NAQC platform. In this setup, atoms are arranged on a regular grid of Spatial Light Modulator
(SLM) traps, with a fixed distance denoted as d. (a) Rydberg blockade interaction: within a specific interaction zone of radius
rint =

√
2d, depicted in yellow, interacting gates can be performed to all qubits within this range. (b) Two-qubit gate: a gate can be

applied between neighboring qubits but restricts the simultaneous execution of other entangling gates on nearby atoms. The
restriction volume, represented by a red sphere of radius rre = d, indicates this restriction. The interaction radius rint = d is not
explicitly shown to simplify the illustration. (c) Long-Range interactions: for gates with larger interaction radii, the restriction
zones (rre = 3d ⩾ rint = 2

√
2d) also expand, resulting in more restricted atoms. (d) CCZ gate with a line arrangement of the

qubits. According to [4] it is sufficient if the central atom interacts with both the outer qubits, resulting in a minimal interaction
radius of rint = d. The restriction radius is illustrated examplatory as rre = 2d. (e) CCCZ gate: in this case, we require that all four
gate qubits must be within the interaction radius rint = rre = 2d of every other qubit, according to equation (8). (f) Shuttling
operation: dynamic Acousto-Optic Deflector (AOD) traps (blue) enable the movement of atoms within the same column (x) or
row coordinate (y) simultaneously. The procedure addresses certain constraints discussed in section 3.2.4. (g) Additional NA
capabilities, useful for future fault-tolerant computations. For example, mid-circuit measurements and possible inter-photonic
connections.

Synthesis: (One- and two-qubit gates)
Assuming local addressability of all qubits, this results in a native gate set Σuniv = {R,CZ} containing
arbitrary single-qubit rotations R and the two-qubit CZ gate to synthesize a given algorithm.

Nevertheless, synthesis for NAs is hard, as the exact synthesis steps required depend heavily on the
chosen atom species and qubit encoding. Furthermore, one has to distinguish between laser pulses
available as global or locally addressable beams. A first approach, leveraging SC synthesis tools with
additional post-processing was demonstrated by Nottingham et al [32].

Mapping: Two-qubit gates can be executed between any pair of qubits sufficiently close for the blockade
to take effect. This constraint can be described by a constant interaction radius denoted as rint, where a
gate g(Qi,Qj) can be performed if

d
(
Qi,Qj

)
⩽ rint, (5)

where d is the Cartesian distance. This is illustrated in figure 2(a).
We can define a coupling graph C= (V,E), with

E=
{(

Qi,Qj

)
|d
(
Qi,Qj

)
⩽ rint

}
. (6)

With this coupling graph, common mapper tools of the SC platform [13, 14, 16, 18, 19] can be partially
employed for the NAQC platform.

However, during the two-qubit gate sequence, both involved qubits are promoted to the Rydberg state
and, therefore, could interact with other nearby atoms in Rydberg states, resulting in unwanted detrimental
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cross-talk. While the strong Rydberg interaction is indispensable for achieving high-fidelity two-qubit gates,
it also imposes limitations on other atoms in close proximity, preventing them from simultaneously
performing similar gates.

Scheduling: To establish the constraint on simultaneous gate executions, we use the concept of a
restriction radius denoted as rre. This parameter represents the minimum distance required between two
atoms in the Rydberg state to prevent undesirable cross-talk. It is worth noting that, in general, rre ⩾ rint,
as cross-talk may arise even at distances where a gate interaction may not yet be feasible.

Thus, for two gates g(Qi,Qj) and g ′(Qa,Qb) to be executed in parallel, the following condition must
be satisfied:

d(Qi,Qa) ,d(Qi,Qb) ,d
(
Qj,Qa

)
,d
(
Qj,Qb

)
> rre. (7)

If the distances between qubits involved in gates are too small, gates must be executed in sequential
order, possibly increasing the execution time of the circuit. This limitation is commonly known as
blocking; however, to avoid any potential confusion with the concept of Rydberg blockade, we use the
term restriction. We refer to the region surrounding a gate, affected by this phenomenon, as the
restriction volume.

A simple visual example with different radii is illustrated in figures 2(b) and (c), where the
restriction volume and the corresponding restricted atoms are colored in red.

The interdependence of rint and rre on the strength of the Rydberg blockade rb allows us to establish a
relationship between them as rre = k · rint, where k⩾ 1 is referred to as blocking factor. This gives rise to an
interesting trade-off between higher connectivity achieved with a larger rint, which, in turn, leads to larger
restriction volumes and consequently reduces the number of parallel gate executions. This phenomenon has
been investigated by Baker et al [33] and is further discussed in greater detail with additional case studies and
error analysis in section 6.

3.2.3. Multi-qubit gates
In NA quantum processors, it is also possible to apply native multi-qubit gates to sets of atoms.

Analogous to the case of two-qubit gates, the atoms must be located within the blockade radius of each
other such that the atoms interact when excited to Rydberg states. There exist multiple theoretical proposals
to implement multi-qubit gates such as CkZ and CZk gates, up to single-qubit rotations, and also more exotic
versions [5–7, 68]. Parallel applications of Toffoli (CCZ) gates to multiple sets of atoms have already been
demonstrated in experiments with trapped Rb atoms [4, 5].

Synthesis: This expands the possible native gate set to Σuniv = {R,CkZ,CZk} and, therefore, gives much
more possibilities to synthesize a given circuit. First, multi-qubit gates within an algorithm do not have
to be decomposed to a more basic gate set, possibly increasing gate or decoherence errors.

Furthermore, native multi-qubit gates are of great interest for the implementation of classical
reversible circuits, using Toffoli and multiple controlled gates [69–72]. Those classical circuits can be
used for algorithmic subtasks or the synthesis of oracles used in quantum algorithms. In this context,
oracles refer to black-box functions performing the required operation. Although often used during the
construction of quantum algorithms, the task of finding an adequate realization is non-trivial in general.

Secondly, instead of decomposing unitaries to one- and two-qubit gates only, also other gate
combinations such as Hadamard plus Toffoli [73, 74] may be used, resulting in alternative
decompositions.

Mapping: The mapping constraints for multi-qubit gates depend on the specific implementation and
the corresponding laser pulses. To simplify the discussion we assume the worst case, where each qubit
needs to interact with each other qubit within the gate. Therefore, to implement a multi-qubit gate g(Q)
acting on the set of qubits Q= {Qi, . . . ,Qj}, all qubits have to be within the interaction radius of each
other:

d
(
Qi,Qj

)
⩽ rint∀i, j ∈ Q. (8)
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Furthermore, this implies that rint places a constraint on the size and configuration of multi-qubit gates.
For instance, a Toffoli gate with its three qubits aligned in a straight line necessitates rint ⩾ 2d as in
figure 2(d), while a possible perpendicular arrangement could be achieved with rint ⩾

√
2d.

As mentioned, this constraint’s extent can be mitigated depending on the specific gate and its
implementation. For instance, in the case of the CCZ gate [4] in figure 2(d), solely a single qubit needs
to be within rint of the others, while among themselves, they may be situated at a greater distance. On the
other hand, depending on the implementation, constraints in addition to equation (8) must be fulfilled.
Taking again the example of the CCZ gate, one also has to take into consideration the geometric
arrangement of the qubits. In this case, the gate requires the three qubits to sit along a straight line, while
a perpendicular arrangement would not be possible [4].

Scheduling: The restriction mechanism from the two-qubit gates generalizes to the case of two
multi-qubit gates by composing the minimal distance rre between any two qubits of the respective gates.
So, for two gates g(Q) and g ′(Q ′) acting on the two-qubit sets Q,Q ′ we need

d(Qi,Qm)⩾ rre ∀Qi ∈ Qand ∀Qm ∈ Q ′. (9)

In difference to the interaction constraint of equation (8), this cannot be relaxed, as both control and
target qubits are potentially in the Rydberg state during gate execution. As a result, multi-controlled
gates restrict a larger number of atoms compared to simpler gates.

The necessity for a larger interaction radius, along with the increased number of qubits, leads to an
expanded restriction volume for multi-qubit gates in contrast to two-qubit gates. Nevertheless, this could
potentially be compensated by a more efficient synthesis process facilitated by utilizing a larger native gate set
or the faster execution of the corresponding multi-qubit gate.

3.2.4. Atom shuttling
In the context of NAQC, individual tweezers holding qubits can be dynamically moved during computation
without disrupting entanglement, as demonstrated in [8, 9, 75]. This capability offers an alternative to
implementing SWAP operations at the virtual level, requiring three CX gates. In addition, physically
shuttling atoms to new locations provides the flexibility to establish dynamic connectivity between qubits.

One physical realization of these shuttle operations involves placing atoms intended for shuttling within a
tweezer array generated using a 2D crossed Acousto-Optic Deflector (AOD). On the contrary, stationary
qubits remain in a static tweezer array formed by employing a Spatial Light Modulator (SLM). A typical
complete shuttling operation requires first a pick-up from a static SLM to a dynamic AOD trap. Via a
controlled frequency ramp applied to the AOD, the qubit is rearranged to the destination, followed by a
controlled release of the atom back into a static trap. The selection of atoms to move can be altered for
subsequent maneuvers, and specific parallel moves are feasible [42, 48], with the constraints summarized in
the following box.

Mapping: The AOD can be characterized by two sets of coordinates: xi, . . .xk and ya, . . .yc. Each
intersection (xi,ya) defines a potential trap where an atom can be confined. Shuttling is achieved by
modifying these coordinates, effectively relocating the corresponding traps. Consequently, changing the
value of a specific coordinate, say x0, results in the simultaneous movement of all AOD-trapped atoms
in the first column, with identical displacements in the same direction. This implies that not all atoms
within a single AOD can be moved independently. By examining the movement vectors m⃗i,a for atoms
located at coordinate (xi,ya), the following constraints emerge:

m⃗i,a · êx = m⃗i,b · êx ∀a,b
m⃗i,a · êy = m⃗j,a · êy ∀i, j ,

(10)

where êx and êy are the respective unit vectors. An illustrative example of this scenario is shown in
figure 2(f), where two atoms are simultaneously shuttled row-wise. On the contrary, a third
AOD-trapped atom remains stationary, corresponding to different row and column traps.
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Figure 3. Neutral Atom Dynamically Field-Programmable Array (DPQA) Processor. In this architecture, atoms are strategically
placed within Spatial Light Modulator (SLM) trap pairs, ensuring that the distance between them is smaller than rint while
maintaining an inter-pair distance larger than rre to prevent mutual restrictions. Computation in a DFPA processor can be
considered as the repetition of three major phases: (a) Loading phase: a subset of atoms undergoes a switching process to be
rearranged using Acousto-Optic Deflectors (AODs), indicated by the AOD coordinates x and y. (b)+ (c) Shuttling phase: the
trapped atoms are rearranged by readjusting the AOD coordinates. To avoid conflicts due to row crossing, the atom in the lower
left corner (indicated in red) must be displaced first, allowing the other atom to occupy its designated position. In particular, for
y2 to reach its destination, the y3 row has to be moved along as the coordinates are not allowed to cross. Subsequently, the
remaining atoms, and also y3, can be shuttled to their respective locations. For more complicated shuttling operations this
requires sophisticated methods to find adequate AOD movements. (d) Gate phase: an entangling CZ gate can be performed on
atoms within the same pair of traps. This operation can be accomplished either with a global laser beam or individually using
selective beams, as discussed in figure 2. Phases (a)–(d) are repeated iteratively until all the required gates have been executed.

As a second constraint, we observe that two coordinates are not allowed to be closer than a given
minimal distance dmin

|xi − xj|> dmin ∀i, j
|ya − yb|> dmin ∀a,b.

(11)

Otherwise, this would result in overlapping trap potentials and undefined behavior with potential atom
loss. Equation (11) enforces that the coordinate lines cannot cross each other, maintaining a fixed
ordering x0, . . . ,xk throughout the process.

Scheduling: There are two possible approaches to shuttle multiple AOD-trapped atoms in parallel.
First, by spanning an AOD with multiple x or y coordinates to trap multiple atoms using a single

AOD. In this scenario, all parallel movements must comply with the constraints described in
equations (10) and (11). Specifically, columns (rows) can only move along the same x (y) displacement
and must not cross each other.

The second case involves using multiple AODs, each with their respective coordinates. In this setup,
movements from different AODs are independent of each other, allowing for maximum flexibility. The
remaining constraint is to ensure that the atoms keep a minimal distance through the shuttling process.

Instead of using shuttling only as a substitute for virtual SWAP and MOVE operations, the recently
discussed Dynamically Field-programmable Qubit Arrays (DPQA or D-FPQA) [8, 9, 30, 35] has emerged as a
quantum processor design, which entirely focuses on shuttling. Compared to the previous discussion, this
new computation architecture is not based on qubits placed on a regular grid. A short definition is given in
the following box and described in figure 3.

Architecture: (DPQA)
In the Dynamically Field-Programmable Qubit Arrays (DPQA) setup, stationary SLM traps are
arranged in groups on a grid, ensuring that the qubit distance within a single group is smaller than rint,
allowing gates to be applied within the group. Meanwhile, the groups themselves are placed at an
inter-group distance greater than rre, preventing interference between gates on different groups, as
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illustrated in figure 3. This arrangement requires more space than the previous configuration, especially
for larger rre values.

The computation process in DPQA can be divided into three phases, assuming that all atoms start in
one of the SLM traps:

1. Loading: Depending on the following gates to be executed, atoms that need to be shuttled are loaded
into the AOD traps by activating the corresponding coordinates.

2. Shuttling:Modulating the AOD coordinates enables the atoms to move column/row-wise. Due to the
constraints of equations (10) and (11), direct movement of atoms to their destinations may not
always be possible, necessitating intermediate shuttling, as depicted in figure 3(b). Here, the left
atom has to be shuttled downwards first to let the other atom reach its destination. After reaching
their destinations, the atoms switch traps back to stationary SLM traps.

3. Gate execution: Entangling gates can be performed on qubits within the same group. This can be
achieved by addressing individual atoms, possibly implementing multi-qubit gates, or using a global
beam to apply the same entangling gate on all groups with more than one atom. In this phase,
required single-qubit gates can also be performed by addressing the atoms individually or globally.

These three steps are iterated until all the gates in the circuit have been executed. Due to the
movement dependencies of equation (10), finding suitable AOD movements is a highly non-trivial task.

An extension of the DPQA setup adds the possibility of defining separate zones for dedicated entangling,
measuring and storing qubits which allows for experimentally optimized setups [8]. The routing between
these zones on the other hand imposes an additional computational overhead, resulting in a trade-off
situation regarding processor design similar to the discussions between gate-based and shuttling-based
mapping in section 6.4.

3.2.5. Measurements
The qubit state of an atom can be measured by performing fluorescence imaging on a cycling transition
between one of the computational states and an auxiliary electronic state [1]. During this process, the
fluorescence light emitted by the atoms is imaged with a camera such that bright spots in a final image
correspond to atoms in a specific qubit state. However, this procedure is experimentally challenging.
Scattering of photons for readout heats the atoms, leading to significant atom loss from the shallow optical
dipole traps without laser cooling. Measurements that preserve the atoms in the traps have been
demonstrated in free space [76, 77], but might be easier to achieve by performing cavity-enhanced
fluorescence imaging [78, 79]. Next to being faster and non-destructive, the latter technique has the
advantage that much fewer photons must be scattered for detection, reducing atom heating and cross-talk
problems at the expense of serial readout. Parallel mid-circuit measurements of qubits have also been
demonstrated recently [8, 80–84].

3.2.6. Errors
Qubits in a quantum computation can suffer from idle-errors, incurring when the qubits are unused, or gate
errors when imperfect quantum gates are applied. During idling, NA qubits mainly experience two error
processes. First, atoms can decay from the qubit state with higher energy, commonly referred to as |1〉, to the
ground state, which typically encodes the qubit |0〉 state. This amplitude damping causes the matrix element
ρ11 of the density matrix ρ of a qubit to decay on a characteristic time scale T1, called relaxation time. The
relaxation time for NAQC is typically very large; it can be of the order of 100 s for hyperfine qubits, but even
for other qubit encodings T1 can reach several seconds [56]. Second, atoms undergo dephasing, mainly
resulting from fluctuating external fields or drive fields. Due to both error processes, the off-diagonal
elements of the qubit’s density matrix decay on a time scale T∗

2 . Canceling noise on slower time scales with
dynamical decoupling techniques results in a modified, increased, dephasing time T2. Encoding a qubit in
two states insensitive to external field fluctuations yields long dephasing times that can be as high as several
seconds. As a simplification to the exact error analysis, which is highly non-trivial in general, we want to
define the artificial parameter of an effective coherence time

Teff =
T1T2

T1 +T2
. (12)
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If either T2 � T1 or vice versa, Teff reduces to the respective shorter time, such that it correctly captures the
typical time scale, limiting the system’s coherence.

Furthermore, the application of gates can induce errors on a qubit. Besides experimental imperfections
such as e.g. miscalibrations or laser intensity fluctuations, there are physical processes that limit achievable
gate fidelities. In particular, two- and multi-qubit gates require atoms to be temporarily excited to Rydberg
states. Those states decay quickly, either to the qubit subspace, leading to computational errors, or to other
electronic states, resulting in leakage errors. Experimentally, specific pulse shapes can be utilized to minimize
the effect of such errors [85, 86]. Typically, these Rydberg decay errors are combined with other gate
execution errors, resulting in a gate-specific average gate fidelity Fg for a given gate g.

Unfortunately, even given the average gate fidelities of all gates in a quantum circuit, it is not possible to
compute the exact final output fidelity. In general, it is even hard to establish useful thresholds, as the exact
fidelity depends on complicated microscopic error characteristics and their interplay with each other. To still
account for different gate fidelities and coherence times, we consider a strongly simplified error discussion in
the following which should be considered only a very rough estimate of the actual errors. Nonetheless, we
can consider it a first proxy criterion regarding optimization techniques during compilation.

We can summarize this discussion of physical errors into two principal error types. Decoherence errors
for idle qubits and gate fidelities for executing gates. In this simplified scheme, we can make the following
abstraction from physical error processes to an error measure, which requires only a small set of physically
motivated parameters to get a basic but hardware-aware error estimation.

Errors: Given a quantum computation U with synthesis, mapping, and scheduling already performed,
including inserted MOVE and SWAP operations, we obtain a sequence of Ñ operations O:

U= ON−1 ◦ · · · ◦O0̃.

In addition, let the fidelities f of all operations and the coherence times T1 and T2 be given. We can
define the abstract measure of approximate success probability P. It is defined as the product of all average
gate fidelities, combined with the term for the idle error:

P(U) = exp

(
− tidle
Teff

) Ñ∏
i=0

FOi , (13)

where Teff is given according to equation (12) and the idle-time tidle describes the time in which no gate
is applied to a qubit, summed over the whole register. In the case that all operations, including SWAPs
and MOVEs, are realized by gates, equation (13) simplifies to

P(U) = exp

(
− tidle
Teff

) N∏
i=0

Fgi , (14)

where we only need the gate fidelities F(gi) for all gates gi ∈ Σnative in the native gates set.
The idle-time can be computed given the gate execution times t and the total circuit execution time

T as

tidle = n ·T−
N∑

i=0

t(gi) , (15)

after routing has been employed to compute T.

The scheme of approximate success probability provides a simple and fast-calculated proxy criterion for
the occurrence of errors in quantum computation. The general concept allows comparison between
operations at different abstraction levels, such as native gates or oracles, and operations performed using
additional capabilities, such as SWAP gates or SWAP shuttling movements, as long as it is possible to assign
an operation-specific execution time t and an average fidelity F .

3.2.7. Fault-tolerant QC and error correction
For the long-term goal of large-scale quantum computation, it will be necessary to employ techniques from
quantum fault tolerance to deal with the accumulation of noise and errors [87]. In the case of NAs, not only
computational errors but also leakage errors must be corrected to achieve fault tolerance. There are proposals
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to convert leakage errors into Pauli Z-errors [88] or detect and thus convert them into erasures [89–92].
Two-qubit gate designs have been proposed in which errors mainly occur in the form of detectable erasures
[93, 94].

Regarding quantum error correction, most schemes require mid-circuit measurements and real-time
feedback, a procedure which has been demonstrated lately with NAs [8, 83, 84] but remains challenging.
Therefore, progress on measurement-free fault-tolerant quantum error correction might be promising for
NAs [95–97]. Also, the possibility of using atom-photon interactions has been discussed lately [98, 99],
allowing for photonic interconnects on long distances. Due to experimental demonstrations [8], current
work is focused on the possibility of using the shuttling capability of NAs to prepare and manage encoded
states for qLDPC [100], the surface code [101], and generalized bicycle codes [102]. Combined with the
discussion on fault-tolerant realizations of non-Clifford gates [103], this paves the way towards fault-tolerant
computation on the NAQC platform. This is of particular interest, as the requirements for proposed qLDPC
code realizations on superconducting platforms, are still beyond current hardware capabilities [104–106].

4. Compilation for neutral atoms

Meeting DiVincenzo’s criteria at the hardware level is not sufficient to achieve a fully operational quantum
computer. Abstractly formulated quantum algorithms must be translated into physical operations available
on the hardware and carefully coordinated to satisfy constraints and conditions imposed by the physical
process or experimental setup.

In this section, we will explore how the computational capabilities and constraints of the NAQC
platform, as discussed in section 3.2, impact hardware-focused compilation steps. Additionally, we will
propose a set of simplified proxy criteria as figures of merit to evaluate the compilation results, enabling
comparison between fundamentally different operations, such as virtual or physical swapping.

This discussion proposes potential compilation paths to address the increased number of possibilities,
given the diverse quantum operation capabilities of NAs. Such efforts may aid the development of design
automation and compilation software, taking full advantage of the capability spectrum of the NAQC
platform. In particular, regarding the choice of figures of merit to evaluate the compilation results.

4.1. Overview
The NAQC platform introduces a novel set of capabilities for implementing gates and new degrees of
freedom for conducting operations, but consequently, also additional constraints within the compilation
processes. Moreover, for certain operations like shuttling, conventional figures of merit for evaluating
compilation quality are no longer directly applicable. This necessitates new schemes on how a given quantum
algorithm is compiled and how the efficacy of the resulting compilation can be assessed. To this end, we
propose an abstract compilation overview that considers the distinct computational capabilities and
appropriate figures of merit for optimization processes and evaluation in the specific case of NAs. The
proposed procedure encompasses three main steps, depicted in figure 4 as a three-layer diagram.

1. Input/pre-processing: The initial step involves providing the input to the workflow, comprising a quantum
circuit in which all platform-independent optimizations have already been performed.

2. Computational capabilities: This part involves the compilation process, which varies depending on the
specific hardware capabilities, encompassing long-range interactions, multi-qubit gates, and shuttling as
discussed in section 3.2.

3. Figures of merit: The final step requires using suitable figures of merit to evaluate the quality of the
compilation, which may differ across various capabilities.

4.1.1. Input/pre-processing
The initial stage acts as the input layer in the proposed compilation overview. It outputs a fully optimized
circuit where all hardware- and platform-independent optimizations have been applied. Because this phase is
not tied to any particular platform, well-established optimization techniques and software initially designed
for SC hardware can be employed here. The result is a sequence of gates, still including abstract gates that will
be broken down in the subsequent steps based on the available hardware. Certain aspects of this process can
also be pre-compiled beforehand, stored, and later retrieved from an intermediate representation [107, 108].

4.1.2. Computational capabilities
The subsequent layer includes hardware-dependent compilation steps, specifically synthesis,mapping, and
scheduling. Unlike the previous optimizations, these steps depend on the available operations, such as the
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Figure 4. Compilation and evaluation process overview for the neutral atom quantum computing platform. 1.
Input/Preprocessing: the platform-independent compilation processes lead to a circuit description that includes abstract and
hardware-independent gates. 2. Computational capabilities: the different computational capabilities of the NAQC platform, as
elaborated in section 3.2 with a short description of the constraints for the corresponding compilation subtasks of synthesis,
mapping, and routing. Depending on the hardware setup, multiple capabilities, including all, can be considered. 3. Figures of
merit: the compilation output is evaluated based on capability-specific proxy criteria, such as gate or shuttling operation counts.
To achieve a more comprehensive comparison and evaluation of gate-based routing and shuttling, figures of merit, such as the
final execution time and fidelity of the compilation result, can be computed.

basis gate set and how SWAP operations can be performed. Consequently, the compilation process may vary
based on the set of available capabilities and the corresponding constraints, which directly correspond to the
sections of section 3.2.

(A) Nearest-neighbor connectivity: The first option involves utilizing capabilities equivalent to those often
considered for the SC platform. This includes employing single-qubit rotations and Rydberg
blockade-based controlled phase gates, which differ from CX by just single-qubit operations. Together,
they form a universal gate set for decomposing non-native gates during synthesis. Qubit connectivity
follows nearest-neighbor connections, defining the connectivity graph G. Synthesis, mapping, and
routing techniques applied in SC systems can be adapted with adjustable parameters such as gate time
or fidelity. The additional constraint, gate restriction from section 3.2.2, must be considered on top as it
is unique to the NAQC platform.

(B) Long-range interactions: One significant distinction of NAs is their ability to execute two-qubit phase
gates not only between adjacent qubits but also between any two atoms where the blockade interaction
reaches sufficient strength. This increases connectivity, reducing the need for additional SWAP
operations during circuit execution. However, the larger restriction volume due to long-range
interactions may lead to more sequential gate execution.

(C) Multi-qubit gates: Besides higher connectivity, the long-range Rydberg interaction enables the
implementation of native multi-qubit gates, which is particularly beneficial for the synthesis task or
algorithms that inherently consist of many multi-qubit gates, such as reversible classical logic circuits.
However, involving more atoms also increases the restriction volume, potentially limiting simultaneous
gate executions.

(D) Shuttling/DPQA: A fundamental advantage of the NAQC platform is the ability to physically move
atoms, and hence qubits, rather than relying on virtual SWAP operations. High-fidelity shuttling is a
promising alternative for gates between distant qubits. Additionally, a fully shuttling-based architecture
(dynamically field-programmable quantum array—DPQA) might be possible, eliminating the need for
virtual swaps altogether.

(E) Fault-tolerant quantum computing: NAs also offer additional capabilities relevant to future compilation
tasks, such as fault-tolerant quantum computing. The details of compiling logical circuits are beyond
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the scope of this work, but with the recent experimental progress, first work in this direction has been
done, in particular discussions on the implementation of qLDPC codes Xu et al [100], surface
codes [101], and generalized bicycle codes [102].

Theoretically, it is feasible to combine multiple, or even all, of the aforementioned capabilities. For
instance, it is possible to harness both physical shuttling operations and virtual SWAP gates within the same
computation. Alternatively, one could adopt the DPQA approach while organizing atoms into subgroups
instead of pairs, thereby utilizing shuttling and the ability to implement multi-qubit gates within the atomic
subgroups. Examples are given by Viszlai et al [101] studying possible surface code architectures to take
advantage of such a setup, or mapping algorithms taking advantage of using both, gate and shuttling-based
mapping techniques [36]. Nevertheless, there remains a diverse set of compilation tasks and open avenues for
further investigation.

4.1.3. Figures of merit
The evaluation of a compilation output requires the use of appropriate performance measures or metrics.
The choice of metrics varies depending on whether the aim is to compare different compilers, capabilities, or
platforms. For instance, the common practice of counting additional swap gates as a measure in SC
compilers lacks significance for a DPQA-based architecture that avoids swap gates altogether. Therefore,
novel metrics may be required to measure the quality of a compilation output for NAs. The same holds for
the figures of merit used during optimization in the form of cost functions. These figures of merit, suitable
for NA-based hardware, are discussed in the following.

(A) Gate count: The predominant approach to evaluate the quality of a compilation is to quantify the total
number of gates. Directing attention to the gates with the lowest fidelity often suffices, as they exert the
most significant influence on the final output. In the context of synthesizing, notable metrics include
the counts of CX gates for NISQ computing or T gates in the regime of fault-tolerant quantum
computing. In the case of NAs, a similar figure of merit could be employed, where, depending on the
hardware, the focus lies on the gates with the lowest fidelity or longest execution time.

In addition to the total number of gates, another critical aspect to consider is the number of gate
layers, referred to as circuit depth, where each layer contains operations that can be executed
simultaneously. This evaluation considers the scheduling of operations and serves as a proxy criterion
for estimating the overall execution time. However, when dealing with NA, especially in cases involving
nearest-neighbor interactions (2.A), it is imperative to account for the existence of gate restriction
volumes, as elaborated in section 3.2.2, during the scheduling process. This will result in larger circuit
depths in general.

(B) Operation count: Since shuttling does not introduce additional gates into the circuits, the previous
gate-based measure is not applicable. An alternative approach would be to define a similar and
straightforward operation count. A suitable candidate for this count could be the number of
AOD-based MOVE or SWAP operations. For DPQA architectures, one can use the number of iterations
of the three phases of loading, shuttling, and execution as a first-order evaluation measure.

(C) Fidelity and runtime: The diverse possibilities for implementing a quantum circuit on the NAQC
platform render simple measures such as gate count less suitable, especially when multiple capabilities
are leveraged. The most comprehensive measure for evaluating a quantum computation is the output
fidelity and the total runtime. Unfortunately, computing the exact output fidelity is generally not
feasible. To address this limitation, we considered the proxy of approximate success probability of
equation (13), quantifying the likelihood of executing the circuit successfully without errors. It enables
a comparative analysis of compilation outcomes for various circuits, facilitating the evaluation of a
given compiler’s performance. Additionally, this metric allows for comparing different capabilities,
assisting in estimating the most promising approach for mapping, for example, whether employing
nearest neighbor, long-range SWAP gates, or shuttling SWAP operations are most suitable.

4.2. Compilation parameters
All stages within the overview depicted in figure 4 are contingent upon hardware-specific parameters, such as
the strength of the Rydberg blockade, the gate execution time for the mapping and -scheduling task, and the
corresponding gate fidelities used to compute the final output fidelity. These parameters heavily depend on
the chosen hardware and the overall experimental configuration, including the atom species and the protocol
employed to implement specific gates. Nonetheless, the development of compilers necessitates the utilization
of reasonable hardware parameters to generate practical results for hardware experts and other users. Hence,
we present a list of estimated parameters in table 1 for two exemplary setups. These parameters align with the
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Table 1. The hardware parameters pertain to the compilation steps of mapping and scheduling, alongside the subsequent evaluation
measures shown in the overview of figure 4. These parameters are provided for two hypothetical experimental setups and are intended
solely for a preliminary estimation, as they are dependent on the specific hardware utilized and are likely to change with future
experimental improvements.

Setup 1 Setup 2

General Atom species Strontium [56, 64, 109] Rubidium [5, 9]
Inter atomic distance d 3µm 3µm

Gate durations t Single-qubit 200µs [109] 0.5µs [110]
CZ 0.1µs [64] 0.2µs [5]
CCZ ∼1µs ∼1µs
CCCZ ⩾1µs ⩾1µs

Gate fidelities F Single-qubit >0.99 [109] >0.999 [110]
CZ >0.99 >0.995 [5]
CCZ ∼0.95 >0.98 [5]
CCCZ ∼0.95 ∼0.95

Coherence times Qubit decay T1 >1 s [56] >100 s
Dephasing T§

2 >10 s [56] >1.5 s [5]

Long-range Interaction radius rint 2 2
Restriction radius rre 4 4

Shuttling Fidelity 1 1∗ [9]
Shuttling speed vs <0.025µmµs−1 [109] <0.55µmµs−1∗ [9]
Trap swapping 20µs [75] 20µs [75]

According to figure 1(d) of Bluvstein et al [9] we assume perfect fidelity if the average shuttling speed is below

the indicated threshold.

We consider T2 times using additional dynamic decoupling techniques.

more abstract description of the physical capabilities, suitable for tool developers, and discussed in
section 3.2. It is important to note that these parameters are not fixed and will inevitably evolve in the
coming years with advancements in hardware and control systems. The underlying idea is that one can then
reason on an updated set of the same or similar parameters but with the same general considerations, as all
shown parameters can change with future hardware improvements. Therefore, the objective is to develop
more adaptable compilers that can adjust to specific hardware configurations provided.

4.3. Discussion
Figure 4 provides a comprehensive overview of the whole hardware-dependent compilation process by
bringing the summary boxes of section 3.2 in relation to each other and to possible figures of merit for
evaluation. Nevertheless, it should not be viewed as an inflexible framework dictating the compilation
process. Instead, it should be perceived as a graphical representation delineating the broad spectrum of
compilation possibilities of the NAQC platform. This complexity arises from the potential selection or
amalgamation of multiple capabilities to achieve improved outcomes. In addition to the increased number of
compilation options, the overview underscores the need for additional or more intricate metrics and figures
of merit, depending on the available capabilities. Depending on the available hardware, a compiler can take
multiple paths along the three layers, leveraging different capabilities. As a tool developer, one must check
which paths the compiler should cover and, therefore, which figures of merit are suitable for optimization. In
the following section 5, we will consider already available examples of compilers and discuss which path in
figure 4 has been chosen. Afterward, in section 6, we will perform multiple selected case studies to compare
error rates along different paths and discuss appropriate figures of merit, depending on the given hardware
parameters.

5. Related work and software

Based on the compilation overview of figure 4, we want to give a concise summary of already available
compilation software for NAs. For this aim, we categorized the compilers based on the capability they focus
on most, including long-range, multi-qubit gates, and shuttling. Additionally, we also discuss the usage of SC
compilers for the NAQC platform, since we will employ such an approach for some of the case studies in
section 6. We briefly discuss each compiler’s functionality and the corresponding methods used. All
compilers and the respective supported capabilities are summarized in table 2. This section aims to review
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currently available compilers and aids interested tool developers in identifying subproblems that still lack a
corresponding software solution.

5.1. Compilers for superconducting platform
Before discussing compilers specific to the NAQC platform, we first want to briefly discuss the idea of reusing
already available compilers. While general compilation for NAQC has to consider a more extensive range of
capabilities and constraints, it is still possible to leverage e.g. currently available SC compilers with additional
pre- and post-processing steps to get compilation outputs valid for NAQC. In this way, the full potential of
NA-specific capabilities cannot be fully exploited. However, we still want to mention this possibility here, as
we used similar techniques for the evaluations in section 6. Furthermore, SC compilation algorithms may
provide a suitable basis for generalization and adaptation to the NAQC platform.

The SC platform has access to a broad range of advanced software tools [13, 14, 18–22] that greatly
facilitate the compilation process. However, when applied to the NAQC platform, these tools are only
partially suitable for the synthesis, mapping, and scheduling steps.

• Synthesis: As the SC platform lacks straightforward support for multi-qubit gates, the corresponding syn-
thesis steps usually decompose to one- and two-qubit gates, omitting capability 2.C from figure 4.

• Mapping: SC relies on gate-based virtual swapping to establish the required connectivity, excluding 2.D from
the process. However, the mapping problem can be adapted for NAs by defining the coupling graphC based
on the interaction radius rint as shown in equation (6).

• Scheduling: Additional scheduling constraints of the restriction volume according to equation (7) require
an extra scheduling post-processing step for the NAQC platform.

Evaluation proxies commonly used in these tools involve gate count and circuit depth. This leads to the
following path in figure 4: 1→ 2.A/2.B→ 3.A.

5.2. Long-range compiler
When directly compared to other QC platforms, one of the constraints of the NAQC platform is the
occurrence of restriction volumes whenever an atom employs the Rydberg state to execute a two- or
multi-qubit gate. This significantly impacts the scheduling task, as such gates that restrict each other must be
executed sequentially rather than in parallel, increasing the total execution time. Given that quantum
information can only be stored for a limited time without decoherence, this directly affects the output
fidelity, which can be estimated according to equation (13).
1. The initial solution to address this problem was proposed by Baker et al [33], with an openly available

Python package [113]. Their approach assumes that the synthesis task has already been performed and
concentrates on the mapping part and potential strategies to mitigate atom loss.

• Mapping: Utilizing a look-ahead scheme to select the shortest SWAPpathwithminimal disruption for future
interactions.

• Scheduling: Execute swap gates in parallel when they do not impose restrictions on other operations.

Baker et al [33] primarily investigated the trade-off between long-range interactions and the effect of the
simultaneously increasing restriction volume.

Remark. It should be noted that Baker et al consider a slightly different definition of the restriction volume
than the one proposed in our work. Additionally, they assume the restriction to be variable, depending on the
inter-qubit distance of the gate and, therefore, possibly varying from gate to gate.

The Mapper also supports multi-qubit gates, enabling the utilization of the full gate-based mapping
capabilities of the NAQC platform, represented as 1→ 2.A-C→ 3.A in figure 4.
2. Addressing the same problem formulation, Li et al [28] presented a C++ based solution named

Q-Tetris, inspired by the resemblance of the problem to the renowned block puzzle game. In contrast to
Baker et al, they consider distinct execution times for single, multi-qubit, and SWAP gates.

• Mapping & scheduling: Employ a greedy heuristic algorithm in conjunction with a Monte Carlo tree search
(MCTS) approach to strategically insert necessary SWAP gates and simultaneously minimize the overall
circuit execution time.

By arranging the gates in this time-aware manner, they claim that their method produces more time-efficient
circuits compared to Baker et al Hence, they do not consider the gate count but the total execution time of
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the circuit. Nevertheless, their approach supports the same capabilities as Baker et al, leading to the
compilation path 1→ 2.A-C→ 3.A→ 3.C in figure 4.

5.3. Multi-qubit compiler
Although both previous compilers only support the mapping and scheduling tasks, as of our current
knowledge, there is no available software capable of performing multi-qubit-aware synthesis for general
quantum algorithms. For classical reversible logic, tools [118, 119] exist that create circuits containing Toffoli
and higher controlled NOT gates.
1.However, Patel et al [29] and the corresponding open-source Python software Geyser [115] take a

different approach. Instead of decomposing a large unitary into a basis gate set containing multi-qubit gates,
they compose blocks of Toffoli gates from a set of two-qubit gates.

• Synthesis: The approach involves identifying gate blocks containing three qubits and seeking an equivalent
gate sequence built from Toffoli gates and single-qubit gates. This is achieved by minimizing the Hilbert-
Schmidt distance between the original gates and the substitute gates.

• Mapping: The SC compiler Qiskit [13] is used, considering that the constructed Toffoli blocks do not restrict
each other.

For evaluation, they do not consider gate count but rather laser pulse count, which can be seen as an
estimation for the total execution time of the circuit. In terms of the overview in figure 4, this leads to a
similar path as the previous two compilers, 1→ 2.A-C→ 3.A→ 3.C, but with a focus on the previously
unexplored synthesis task, allowing the possibility of leveraging both approaches.

5.4. Shuttling compiler
All previous compilers have solely considered the virtual gate-based SWAP operation for the mapping task.
However, the Rydberg platform offers the additional capability of physically rearranging atoms to achieve an
equivalent SWAP or a simple MOVE operation.
1. The pioneering attempt to harness this extra degree of freedom was made by Brandhofer et al [31].

Their approach does not encompass general shuttling operations but focuses solely on one-dimensional
displacements of atom rows. This choice is justified because atoms trapped in rows or columns using AOD
traps can be efficiently shuttled in parallel.

• Mapping: The model involves considering SWAP gate insertion (similar to SC [21, 120]) and potential one-
dimensional displacements. The authors employ Satisfiability Modulo Theories (SMT) [121] solvers to find
an optimal solution.

They compute the final circuit fidelity to evaluate the results and compare gate-based swapping with
displacement-based swapping. Consequently, the compiler path in figure 4 can be described as
1→ 2.A/B→ 3.A→ 3.C and 1→ 2.D→ 3.B→ 3.C, covering a significant portion of the NA capabilities.

Rather than considering only one-dimensional displacements, Tan et al [111] focus on a shuttling-only
DPQA architecture as discussed in section 3.2.4. The corresponding open-source Python package [116]
enables users to explore DPQA movements and offers helpful visual animations of these operations.

• Mapping & scheduling: They encode the possible DPQA movements as an SMT problem and solve it to
optimize the number of shuttling operation cycles. Additionally, they propose a heuristic approach based
on the exact solver with better runtime scaling.

In the overview figure 4, this compiler corresponds to the path 1→ 2.D→ 3.B, but this time it takes
advantage of the full two-dimensional shuttling capability.
2. Recently, Nottingham et al [32] presented a novel compiler that addresses the crucial synthesis step for

the NAQC platform, considering the global addressing of the qubits. Additionally, they propose a unique
mapping approach for a shuttling-only architecture, with less stringent constraints compared to Tan et al
[111].

• Synthesis: The authors propose two distinct decomposition approaches to address the challenge posed by
single-qubit rotations that are only available as global beams. They leverage Qiskit’s internal decomposition
to single-qubit and CZ gates and apply their own optimization post-processing.

• Scheduling: Accounting for global beams in single-qubit gates, the gates are organized into groups of par-
allelizable single-qubit gates and parallelizable CZ gates. CZ gates that restrict each other are executed
sequentially.
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• Mapping: By relaxing the shuttling constraints from equations (10) and (11), they allow different AOD
rows/columns to cross. This enables the definition of amovement graph that indicates all possible shuttling
moves analogous to the connectivity graph for gate-based interactions. Mapping is then performed on this
denser graph by selecting shuttling movements that bring the gate qubits closer to each other.

Nottingham et al [32] marks the first step toward synthesis for NAs, addressing global single-qubit rotations
and CZ gates. They subsequently evaluate both virtual swapping and shuttling-based swapping in a
DPQA-like problem scenario. Their evaluation accounts for the influence of a gate-based error model and
decoherence errors. Regarding the compilation overview, this approach can be described as
1→ 2.A/B/D→ 3.A/B→ 3.C, encompassing all NA-specific capabilities except for native multi-qubit gate
support.
3. Supporting all capabilities of figure 4 was done by Schmid et al [36], proposing a hybrid compilation

scheme where a heuristic decides the most suitable mapping capability for each gate.

• Mapping: A SABRE-based [16] heuristic is used to compute the necessary SWAP gates. The duration and
fidelity of these are compared to AOD-based shuttling operations, choosing the more favorable option.

• Scheduling: Assumes single addressability and taking into account multi-qubit gate restrictions. Shuttling
operations are converted to the respective AOD movements and scheduled according to the constraints in
equations (10) and (11).

This approach allows to take advantage of the full spectrum of capabilities and covers all paths in figure 4
except the consideration of fault-tolerant quantum computing.
4. A complementary approach, also employing a combination of shuttling operations and SWAP gates is

FPQA-C [35]. Based on the FPQA setup, SWAP gates are used to connect atoms, which cannot be brought
close together due to the AOD constraints.

• Mapping & Scheduling: First, the qubits are assigned to different atom arrays with one trapped in static
SLM traps and the others controlled by a separate AOD each. This is done using a MAX k-cut heuristic
to minimize the intra-array entangling gates, which require additional SWAP gates to connect. Inter-array
gates are performed by rearranging the AOD coordinates according to equations (10) and (11).

In this sense, FPQA-C represents a hybrid mapper for the DPQA setup, currently taking into account
two-qubit gates only, resulting in 1→ 2.A/B/D→ 3.A/B→ 3.C.
5.Wang et al [112] propose the use of so-called flying ancillas within the FPQA setup, refered to as

Q-Pilot. Instead of bringing the gate qubits close to each other, a third ancilla qubit is shuttled between them
to establish the entanglement. In this way, trapping only the ancilla qubits in movable AODs eliminates the
switching between AOD and SLM traps.

• Mapping & Scheduling: The movements of the ancilla qubits are computed based on a heuristic taking into
account equations (10) and (11), with a specialized version for QAOA circuits.

While the work concentrates on mapping everything using flying ancillas, this can be considered
as an alternative or complementary mapping approach using shuttling. The respective path is
1→ 2.D→ 3./B→ 3.C.

In addition to the capability-specific compilers, Tan et al [34] proposed depth-optimal addressing of
single qubit gates on a two-dimensional grid using SMT solvers. As this represents a scheduling-only
problem, it can be considered in addition to any of the four capability paths, assuming the hardware supports
this type of single qubit gate execution.

5.5. Overview and discussion
A summarized overview of all compilers and their respective functionalities are provided in table 2,
categorized based on the supported computational capabilities of section 3.2. These correspond directly to
the paths in the second layer of figure 4 and the entailed figures of merit. Note that this should be considered
as an abstract overview at the current point in time. The assignment to the different compiler functionality
may vary depending on the exact definitions of the compilation steps and can also change in the future with
the ongoing development of the tools.

However, this overview also reveals that numerous open problems still need to be addressed. Notably, one
significant challenge is the synthesis step, which involves decomposing general quantum algorithms into
one- and two-qubit gates and the full set of supported multi-qubit gates. Additionally, there is a need to
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explore the combination of multiple capabilities as done by for example by FPQA-C [35] and Schmid et al
[36]. In this regard, in section 6.4, we perform case studies and error analysis to illustrate possible metrics to
decide between multiple capabilities to perform the same operation.

In summary, while progress has been made in addressing NA-specific compilation challenges, further
advancements are needed to fully exploit the platform’s capabilities and simplify its utilization for both
hardware experts and computer scientists. The aim of the ‘big picture’ view proposed and discussed in this
section is to consider the full range of hardware capabilities instead of studying them independently of each
other. This results in compilers that take full advantage of the NAQC platform, necessary to compete with
other hardware platforms. For this aim, it is essential to evaluate promising capabilities for their usefulness
and study hardware-dependent error sources to find valuable figures of merit that can be employed as cost
functions during optimization. This is done and discussed in the following section 6, with complementary
evaluations of the NA capabilities discussed in other recent work [122, 123].

6. Selected case studies

We now proceed to study the platform-specific capabilities of NAs in the compilation context through
selected case studies. More concretely, we evaluate when and how much the platform-specific features and
limitations impact the compilation process. This is done by employing existing compilers from section 5 and
analyzing their outcome based on the approximate success probability metric outlined in section 3.2.6. The
aim is to provide estimations on error sources considering current and imminent hardware configurations.

These considerations offer insights for compiler developers, aiding in identifying predominant error
sources and refining optimal compilation software. This section does not aim at providing a final decision on
the most suitable capability but to exemplarily discuss potential techniques to compare among them. In
particular, it provides information on suitable figures of merit, depending on a given hardware setup. For
hardware experts on the other side, the discussion provides a forward-looking perspective for devising future
hardware designs, concentrating on the most promising capabilities within the NAQC platform. The
concepts discussed in this section can be generalized and used also for example in the context of compiling
for DPQA setups.

First, a brief discussion on the error analysis based on the summary box of section 3.2.6 is given, focusing
on the mapping and scheduling part only. The aim is to get an easy-to-compute metric to evaluate and
compare different mapping and scheduling approaches. With this study, we can get insights about interesting
figures of merit by comparing different hardware setups. In particular, the two most commonly used figures
of merit are the questions of whether compilation passes should be optimized for gate count or circuit depth.

As a second step, we apply this analysis to numerically analyze and discuss the NA-specific capabilities,
namely long-range, multi-qubit gates and shuttling. In this case, we aim to identify the most promising
capability, depending on some given hardware parameters. This includes open questions such as the required
gate fidelity or shuttling velocity to achieve an advantage for one of the two possible mapping capabilities.
Both considerations are of importance for both tool developers and hardware experts. Software tool
developers get insights into how hardware parameters can affect the compilation process and change the
choice of figures of merit. Concurrently, the latter can estimate the potential of given capabilities, aiding
them in devising forthcoming hardware configurations.

6.1. Error metrics and code availability
For the evaluations, we adopt the hardware parameters detailed in table 1. Following the compilation process
outlined in section 4.1, we examine the three distinctive capabilities of long-range interactions, multi-qubit
gates, and atom shuttling. Depending on the scenario, we will vary hardware parameters, compilation
constraints, and the employed compilation software to study their impact on the error metrics discussed in
section 3.2.6.

6.1.1. Fidelity estimation
Due to the absence of NA-specific synthesis software, our focus will be on the mapping and scheduling stages
in the subsequent sections. We compute the final output fidelity, as introduced in equation (13), as our
performance metric. As we will focus on the mapping and scheduling steps, the considered circuits are all
fully decomposed. Therefore, the gate errors of different mapped circuits differ only on the added SWAP
gates. When comparing different mapping approaches, it is, therefore, sufficient to focus on the fidelity
reduction due to SWAP gates and idle errors instead of computing the full approximate success probability P
as discussed in section 3.2.6.
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For gate-based swapping, this leads to the following commutative fidelities regarding mapping and
scheduling:

FSWAP = Fidle · Fmapping = exp

(
− tidle
Teff

)
(FCX)

3·NSWAPS . (16)

Here, tidle corresponds to the idle time of the register according to equation (15), and NSWAPS represents the
total count of introduced SWAP gates, each executed through three CX gates. The value of NSWAPS can be
extracted directly from the compilation results. Furthermore, we assume CX to be realizable by a
combination of one single-qubit gate and a CZ gate and, therefore, add the corresponding gate durations and
multiply the fidelities to get the parameters for the CX gate. For the computation of tidle, we used
Python-based post-processing scripts to correctly map and schedule the circuit gates on a given hardware. A
visualization of the scheduling is available together with the scripts at Zenodo [124].

For shuttling-based swapping, on the other hand, we assume a process fidelity of 1 (table 1) for the
shuttling procedure, making decoherence during idle the sole source of error.

Fsh = exp

(
−
tshidle
Teff

)
. (17)

Here, tshidle represents the idle time of the register, incorporating the time necessary for performing the
shuttling operations.

6.1.2. Software and code availability
All the compilers employed in the subsequent analysis are accessible as open-source software. These tools
have been installed and used in adherence to their respective documentation. The evaluation and
interpretation of data, encompassing tasks like scheduling and error computation, have been realized in
Python. The complete set of scripts employed to generate and visualize the ensuing outcomes, along with the
analysis data, can be found on Zenodo [124]. This collection also encompasses a list of utilized software
packages with their corresponding version numbers.

The considered quantum circuits are taken fromMQT Bench [125], a benchmarking suite containing
commonly used quantum algorithms. In particular, we selected the following from the collection of
benchmarks.

• dj: Deutsch-Jozsa algorithm.
• ghz: Preparation circuit of the Greenberger– Horne–Zeilinger state.
• graphstate: Circuit corresponding to a 2-regular random graph with edges representing two-qubit gates.
• qft: Quantum Fourier Transform.
• twolocalrandom/two-local: The two-local Variational Quantum Eigensolver ansatz with random
parameters.

• wstate: Preparation circuit of the entangling W-state.

6.2. Long-range interactions
First, we want to study the long-range capability and the question regarding the trade-off between high
connectivity and the simultaneous gate restriction. In contrast to the considerations already done in Baker
et al [33], we focus on the question of whether the compilation pass should minimize SWAP gates or gate
restriction, depending on different fidelities and coherence times.

Performing mapping with long-range interactions implies gate-based mapping incorporating a fidelity
Fmapping and Fidle, as given in equation (16). The former arises due to the introduction of extra SWAP gates,
while the latter emerges from gate durations and restrictions, resulting in idling qubits. In the following, we
aim to investigate the circumstances under which each error contribution supersedes the other, highlighting
potential optimization avenues on both the hardware and software fronts. Furthermore, we investigate, if
familiar figures of merit like SWAP gate count or circuit depth are applicable for NAs. For this aim, first, we
will study different hardware configurations by varying parameters rint and rre, followed by utilizing two
compilers optimizing for different figures of merit.

6.2.1. Interaction and restriction radius
A larger interaction radius rint yields increased connectivity, resulting in a reduction of SWAP gates and
subsequently improving Fmapping. However, the stronger influence of long-range Rydberg interactions also
imposes limitations on a greater number of nearby atoms. As discussed in section 3.2.2 this impedes gate
parallelization, amplifying qubit idling, and thereby reducing Fidle. Depending on hardware parameters,
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Figure 5. Long-range interaction analysis: in the left graph, we computed the fidelity reduction based on SWAP gate insertion and
qubit idling for diverse circuits with a dimension of n= 120 and varying interaction radii rint. The displayed curve represents the
effective coherence time required to equate Fidle and Fmapping. This signifies that, given a circuit, when Teff surpasses (falls below)
the line, the dominant fidelity reduction is caused by SWAP gates (decoherence). Larger rint diminishes the SWAP error due to
augmented connectivity, necessitating larger coherence times to balance the influence of both errors. Owing to the prolonged
coherence times of the Rubidium hardware, SWAP gates stand as the prevailing source of fidelity reduction across all circuits. The
right graph follows a similar procedure, modifying the restriction factor rre while maintaining a fixed interaction radius of
rint = 2d, showing different behavior depending on the structure of the circuit. The error bars correspond to the standard
deviation averaged over 10 iterations.

such as Teff, one of these two factors becomes the predominant source of error. We employ the Qiskit
compiler [13] to map circuits comprising n= 120 qubits onto a square grid, followed by post-processed
scheduling. We evaluate the effects by computing the coherence time per gate duration Teff/Tgate, where Fidle

and Fmapping are equal. Placing hardware parameter sets in the same graph thus provides a direct guideline
for future improvements. First, we varied rint with a fixed restriction factor k= 1, while afterwards, we
modified the restriction radius rre = krint for k= 1,2,3, maintaining a constant rint = 2d. Each configuration
is averaged over 10 runs to account for the stochastic character of the SABRE compiler.

The results are shown in figure 5. For all the algorithms considered, an increment in rint leads to a
corresponding rise in Teff needed to achieve a balance between gate and decoherence errors. For a given
circuit, data points situated above the depicted line signify a higher Teff, indicating that the primary source of
reduced fidelity is SWAP gate insertion. Conversely, points below the line indicate a larger decoherence error.
For the Rubidium hardware configuration as detailed in table 1, the dominance of SWAP gate errors holds
true for nearly all scenarios. Except for instances of large interaction radii, such as rint ⩾ 4.5 for the W-state
preparation, decoherence errors begin to supersede SWAP gate errors.

On the right side of the graph, we observe how this point of error equivalence is influenced by altering
the restriction radius. Evidently, algorithms featuring a more sequential gate arrangement, like the GHZ state
circuit, are less impacted by greater restrictions. In contrast, circuits such as the Graphstate circuit or the
Two-local ansatz, characterized by numerous parallel gate executions, experience more pronounced effects
from an increased restriction radius. This is due to the more sequential execution of the gates, as a parallel
execution is impossible due to gate restrictions. Subsequently, the total idle time increases and, therefore, also
the decoherence error.

After varying hardware parameters and studying the influence on the output fidelity, we now want to use
two compilers in the following, each optimizing for different figures of merit.

6.2.2. Compiler comparison
With all hardware parameters held constant, the exploration now extends to using two different compilers,
each optimized for a distinct figure of merit. In particular, we utilize the Qiskit internal SABRE
heuristic [16], which aims to minimize NSWAPS, and the Q-Tetris heuristic [114] elaborated upon in
section 5.2. All runs are repeated four times and averaged to account for the stochastic character of SABRE.
Q-Tetris orchestrates gate arrangements to amplify parallelism, hence reducing tidle. This trend is evident in
table 3, demonstrating that Q-Tetris, on average, yields a 20%–30% reduction in idle time, albeit at the
expense of requiring a notably larger number of SWAP gates. This results in up to double the SWAP gate
count when compared to Qiskit. This divergence becomes particularly pronounced for larger rint values.
Consequently, Qiskit prioritizes minimizing NSWAPS and, therefore, optimizing Fmapping, while Q-Tetris
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Figure 6. Comparison of compiler mapping fidelity: by utilizing the values from table 3, one can derive the gate-based fidelity
reduction FSWAP for the outcomes of the compilers. Each circuit displays a line depicting the point at which the fidelity of both
compiler outputs matches exactly while varying the CX fidelity FCX. Given that Qiskit’s compilation outcomes involve fewer
SWAP gates but result in longer idle times, instances lying above the line (and therefore larger T̃eff) should opt for the Qiskit
compiler. In contrast, those lying below signify lower coherence times, thus favoring Tetris to curtail qubit idling. The error bars
correspond to the standard deviation over four runs of the SABRE mapping.

focuses on achieving optimal tidle. Variations in CX fidelity and coherence times favor one of the two fidelities
thereby selecting one of the two compilers can be favorable.

It is important to note that for this evaluation, the utilization of Q-Tetris adheres to the gate durations
found in Li et al [28]. Specifically, it assumes that CX (SWAP) gates require 2× (6×) the execution time of a
single-qubit gate. The definition of qubit restriction aligns with that presented in Baker et al [33], which
differs from the definition given section 3.2.2. Consequently, we solely consider the single-qubit gate time
from table 1 and compute the CX (SWAP) gate duration as the corresponding multiple. Therefore, the
hardware parameters are indicated with a tilde (∼) to emphasize that they do not directly correspond to the
actual hardware parameters.

As our evaluation is based on rudimentary proxy criteria for the errors in question, it is imperative to
treat these findings as approximations or rough estimates.

In figure 6, the computation of the effective coherence time T̃eff, where both error components balance, is
showcased. Large coherence times increase idle fidelity Fidle, rendering the Qiskit compiler more favorable.
Hence, for data points situated above (below) the line, the Qiskit (Q-Tetris) compiler should be chosen,
respectively.

When contrasting the results against the two hardware configurations listed in table 1, it becomes evident
that, for the Strontium scenario, both compilers yield comparable outcomes across most algorithms, barring
the W-state preparation and the Deutsch-Jozsa algorithm, where the Q-Tetris compiler is more suited. This
becomes clear, in particular for the W-state, considering again table 2. Q-Tetris is able to reduce the idle time
of about 60 ms while adding only 50 additional SWAP gates compared to Qiskit. For other circuits, the cost
of reducing the idle time is at a larger increase in the SWAP gate number. For these considerations, one must
take into account that the fidelity difference between the two compilation outputs is based on the absolute
difference in tidle and NSWAPS, while in table 2 only the relative difference is shown. For the Rubidium
hardware, on the other hand, the Qiskit compiler remains advantageous for all cases due to the extended
coherence times in relation to the short gate duration.

6.2.3. Discussion—long-range
Examining the process of gate-based swapping reveals the emergence of two significant sources of fidelity
reduction: the insertion of SWAP gates and the occurrence of decoherence during qubit idle periods. The
numerical error analysis provides insights, benefiting both hardware experts and tool developers in their
efforts to improve the final fidelity of the results.
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Table 3. Compiler comparative analysis: a comparison is drawn between the Qiskit compiler [13] and the Tetris compiler [114], focusing
on the resultant idle time tidle and the count of inserted SWAP gates NSWAPS. While Qiskit prioritizes the minimization of NSWAPS, Tetris
aims at enhancing parallelism, leading to a reduction of tidle. The final column showcases the relative variance of Tetris in comparison to
Qiskit, elucidating that each compiler performs best in its respective domain. For Qiskit the numbers are averaged over four runs.

tidle (µs) NSWAP

rint Qiskit Tetris % Qiskit Tetris %

dj
1 187 352 119 887 –36.0 314 500 +59.0
2 113 363 66 703 −41.2 152 372 +145.1
3 72 582 49 099 −32.4 84 209 +150.0

ghz
1 97 847 74 545 −23.8 181 368 +102.9
2 59 990 52 147 −13.1 81 227 +179.6
3 48 855 37 669 −22.9 45 121 +167.7

graph
1 31 893 17 340 −45.6 434 515 +18.6
2 23 035 16 926 −26.5 182 357 +95.7
3 20 683 14 412 −30.3 96 248 +158.3

qft
1 1108 553 813 101 −26.7 6117 8010 +31.0
2 1177 610 900 108 −23.6 2849 5576 +95.7
3 1470 671 979 202 −33.4 1479 3481 +135.3

two-local
1 2172 426 1239 620 −42.9 29 989 39 882 +33.0
2 2118 934 1462 344 −31.0 14 252 24 102 +69.1
3 2750 812 2035 308 −26.0 7446 18 188 +144.3

wstate
1 153 827 94 693 −38.4 360 410 +13.8
2 106 314 72 741 −31.6 129 245 +89.9
3 90 755 68 965 −24.0 68 164 +139.8

Hardware experts have the opportunity to engage in similar considerations as those demonstrated in
figure 5, allowing them to analyze how hardware parameters influence the execution of specific circuits.
Moreover, it becomes feasible to estimate the potential enhancements that hardware modifications could
bring about. For instance, in figure 5, further increasing Teff would result in only partial error improvements
as the SWAP error due to small rint overshadows the improved decoherence errors.

Compiler developers, on the other hand, will find this discourse to be of significant relevance. While the
prevailing optimization objective is often considered the reduction of inserted SWAP gates, figure 6
illustrates that the key figure of merit to optimize for can substantially vary based on hardware parameters
such as Teff and FCX.

This underscores the necessity for a more flexible and adaptable compiler strategy that can adjust its
optimization cost function following the specific hardware configuration.

Lastly, the observation that different circuits are influenced to varying degree by the constraints imposed
by gate restrictions provides advanced compilation strategies with the opportunity to choose suitable
hardware configurations for each type of circuit. Specifically, sequentially structured circuits, such as the
Deutsch-Jozsa algorithm, could be scheduled for hardware setups characterized by higher rre, given that such
algorithms are less sensitive to gate restriction.

6.3. Multi-qubit gates
The primary focus on using native multi-qubit gates is during the synthesis step. This involves exploring
whether simpler decompositions can be achieved using a broader set of native gates, including advanced
gates such as the Toffoli gate. Unfortunately, we observe currently a lack of software tools available to address
this issue, and the development of such algorithms for the NAQC platform remains a mostly unresolved
challenge.

Another approach is to look at circuits that already contain multi-qubit gates, for example, for reversible
classical logic, and compare the native execution of the gate with the corresponding decomposition. While
multiple approaches exist for decompositions [126, 127], we want to focus on direct decomposition without
additional auxiliary qubits. In this case, the multi-quit gate can be substituted one-to-one with the
corresponding decomposed set of gates. As a result, the native execution is favorable if it has a smaller error
in terms of fidelity and decoherence compared to the decomposition.

To compare the native multi-qubit gates with their decomposition we employed the Qiskit transpiler
function to get a decomposition of the CCZ and the CCCZ gates in terms of single-qubit gates and CZ gates.
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Figure 7. Required multi-qubit gate fidelity: the lines indicate the multi-qubit gate fidelity required for the CCZ (solid) and
CCCZ (dashed) gate, to be favorable to the approximate success probability (section 3.2.6) of the decomposition. The fidelity is
computed for varying CZ fidelities. The respective decompositions have been found employing the Qiskit transpile function. This
threshold is depicted for both hardware setups, Strontium (blue) and Rubidium (green) with the parameters taken from table 1.
For the CCZ gate, indicated by the crosses, the native implementation is preferable compared to the decomposition. The general
lower success probability of the Strontium setup is due to worse single-qubit fidelity and longer gate durations.

The decompositions are constructed of 9 single-qubit, and 6 CZ gates for the CCZ gate, and 28 single-qubit,
and 20 CZ gates for the CCCZ gate. Subsequently, we computed the approximate success probability P from
section 3.2.6 for the native gate and the decompositions respectively. Figure 7 depicts the multi-qubit fidelity
necessary depending on the CZ fidelity FCZ. Additionally, the parameters from table 1 are indicated for the
CCZ gate, showing that for both hardware setups, the native implementation is favorable compared to the
found decomposition. This is in particular interesting for the Rubidium setup, where the CCZ gate with the
corresponding fidelity has been demonstrated in experimets [5]. The worse performance of the Strontium
setup for the same FCZ, is mainly due to the single-qubit gates with lower fidelity and longer gate durations.

From a compilation point, this step is trivial, as the decomposition error can be computed beforehand
according to equation (14), and depending on the outcome, the substitution can be performed or not.
According to figure 7, the native gate implementation would be favorable if its fidelity lays above the
corresponding line of the decomposition. For our considerations, the native gate execution of the CCZ gate
would be preferred for both hardware setups.

6.4. Shuttling
This section focuses on the comparison between the two mapping capabilities, namely long-range SWAP
gates or qubit shuttling. Recently, Nottingham et al [32] have taken a first step toward qubit shuttling as a full
replacement for SWAP gates. In the following, we want to study the possibilities of this approach in more
detail. In particular, we want to study, how different hardware parameters like gate fidelity or coherence times
affect the choice between the two alternatives. For this aim, we make multiple assumptions regarding the
shuttling capability and analyze how the results compare to current gate-based shuttling approaches like
SABRE [16].

First, we estimate the shuttling operations as a direct replacement for the computed SWAP gates and
distinguish the two cases where shuttling can be executed simultaneously to regular quantum gates or has to
be scheduled in a separate shuttling layer. As a second step, we examine the possible advantage of
reconfiguring all qubits between different layers. Finally, we perform an error analysis on the shuttling
velocity required for shuttling to be directly superior to a similar SWAP gate.

First, we make some assumptions about the shuttling error and the possibilities of parallelization for
shuttling to simplify the analysis. For the gate-based shuttling approach, one has to consider errors stemming
from imperfect CX gates as well as decoherence errors originating from qubit idling, as outlined in
equation (16). In the case of perfect shuttling, only decoherence errors remain, as per equation (17). Our
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Figure 8. Shuttling Scenarios: (a) mapping output using a gate-based approach. (b) Parallel shuttling: the SWAP gates are
replaced by shuttling operations in a one-to-one fashion. Each shuttling operation consists of initial trap-switch operations, the
atom shuttling, and the final trap-switch operations. In this scenario, shuttling operations can be performed in parallel to each
other and also to regular gate operations, requiring local qubit control at the hardware level. (c) Sequential shuttling: the same
shuttling operations are performed but in a sequential order. Furthermore, regular gates and shuttling are executed in a
non-parallel fashion, resulting in shuttling layers indicated by the cyan box.

interest here is in investigating a simplified model, wherein each SWAP operation between physical qubits Qi

and Qj is replaced by a corresponding shuttling operation characterized by a duration approximated by:

tsh
(
SWAP

(
Qi,Qj

))
= 2

(
ttrap +

d
(
Qi,Qj

)
vs

)
. (18)

In this equation, ttrap denotes the time required for transitioning between traps from SLM to AOD to
initiate the shuttling and then back from AOD to SLM, d is the physical separation distance between the two
qubits, and vs stands for the maximal shuttling velocity. The factor of two takes into account the fact that the
two shuttling operations required to swap the qubits have to be executed sequentially due to the non-cross
shuttling constraint of equation (11). An illustration of this assumption is given in figure 12.

Considering the first hardware setup of Strontium atoms in table 1, we can estimate the shuttling time for
a nearest neighbor SWAP operation as

tsh = 2

(
2 · 20µs+ 3µm

0.025µmµs−1

)
= 160µs .

This is significantly faster than a corresponding gate-based SWAP consisting of three CX gates:

tSWAP ≈ 3 · (200µs+ 0.2µs)≈ 600µs .

As a result, for the Strontium setup, the shuttling SWAP operation is always preferable, as it is both faster and
has a higher fidelity. Therefore, we will focus mainly on the second hardware setup based on Rubidium in the
following.

6.4.1. Shuttling-based mapping
To draw a comparative analysis between the gate-based and shuttling-based mapping strategies, we intend to
once again introduce variations in different hardware parameters favorable to one of the two cases.
Specifically, we aim to delve into the influence of two parameters: the CX fidelity, denoted as FCX, which
substantially impacts the precision of gate-based shuttling, and, on the other side, the effective coherence
time Teff, corresponding to the decoherence errors occurring during shuttling. For the following evaluations,
we always use a fixed circuit size of n= 80 qubits. This analysis maintains the assumption of equal values for
rint and rre, fixed at d.

To perform our studies, we undertake circuit mapping using the SABRE compiler. Subsequently,
following the considerations provided earlier, we engage in a post-processing step. This step encompasses the
consolidation of consecutive SWAP gates, thereby generating the requisite shuttling operations, each with its
corresponding shuttling distance. The duration for each shuttling operation is subsequently calculated
following the formula delineated in equation (18).

Within the realm of scheduling, we consider two distinct scenarios, both depicted in figure 8 in
comparison to a SWAP gate-based mapping.

In the first scenario, labeled as parallel shuttling, we presuppose the availability of a sufficiently high
number of independent AODs. This premise allows for the concurrent execution of all shuttling operations
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Figure 9. Error analysis for shuttling: a comparative evaluation of SWAP gate- and shuttling-based Mapping is presented. The
coherence time at which the gate-based fidelity FSWAP equates to the shuttling-based Fsh is showcased by aline, corresponding to
two different circuits while varying the CX fidelities. The solid lines depict scenarios where shuttling and gate operations can be
executed concurrently, while the line indicated with a bullet represents the case where shuttling and gate executions are performed
alternately. The lines of sequential shuttling lay on top of each other, as due to the sequential execution of all shuttling operations
the difference between circuit structures is reduced. Additionally, two different inter-qubit distances d are distinguished, indicated
by solid and dashed lines. The error bars indicate the standard deviation averaged over 20 iterations.

that pertain to a non-overlapping set of qubits. Moreover, we assume that both gate and shuttling operations
can be executed simultaneously, requiring local qubit control on the hardware level.

Conversely, in the second scenario, referred to as sequential shuttling, we operate under the constraint of
possessing only a solitary AOD. Furthermore, the simultaneous execution of gate and shuttling operations is
restricted, meaning shuttling and gate operations have to be executed in an alternating fashion, similar to the
DPQA setting of figure 3. In this configuration, the circuit operation involves executing all gates feasible to
the current qubit layout, succeeded by another layer encompassing the sequentially executed shuttling
operations, resulting in shuttling layers, discussed in more detail in section 6.4.2.

It is important to note that the differentiation between these two approaches resides solely within the
scheduling component, with the actual shuttling operations remaining unaltered.

Depicted in figure 9 is the boundary that delineates an equilibrium point wherein gate-based and
shuttling-based methodologies yield precisely the same total fidelity. This assertion aligns with earlier
discussions, signifying that data points situated above the depicted lines exhibit elevated coherence times
and, therefore, favor a shuttling-based approach. Notably, higher CX fidelities necessitate elevated values of
Teff to render shuttling-based mapping competitive.

Within the context of parallel shuttling, as denoted by the continuous lines, a difference between different
circuits is visible. Circuits inherently characterized by a sequential architecture, exemplified by cases like the
Deutsch Jozsa algorithm (blue), diverge from circuits with more parallel structures, such as the Quantum
Fourier Transform(red), which benefits from the concurrent execution of shuttling operations. Conversely,
when confined to a sole AOD, as indicated by the circled lines, disparities between these categories tend to
attenuate, as in this case, all operations are executed sequentially. In addition, we varied the inter-qubit
distance d between the value d= 3µm as given in table 1 and a prospective value of d= 0.574µm. For
smaller d (dashed line) lower Teff are required, as the shuttling takes less time. Nevertheless, the difference is
small, as SABRE accounts only for nearest neighbor SWAPS and in this case, the shuttling duration is almost
neglectable compared to the trap switching time of ttrap = 40µm.
Regarding the Rubidium hardware configuration, the large Teff favors shuttling-based swapping in all cases
compared to the error-prone gate-based swapping. CX fidelities of Fcx ≈ 0.999 would be necessary to make
gate-based swapping a comparable alternative again.

Nonetheless, as this approach uses the SC-specific SABRE algorithm to find necessary SWAP gates, it
does not take full advantage of the shuttling capability, which can also perform non-local and non-trivial
SWAP operations. We will take account of this shortcoming in the following section.
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Figure 10. Comparative analysis of idle times: the correlation between shuttling and gate execution times in layer-based shuttling
is depicted as a ratio. This ratio is influenced by distinct circuit types and increasing circuit sizes (n). The analysis takes into
account the Rubidium hardware configuration for both shuttling and gate timings. Remarkably, over 90% of the overall circuit
execution time is attributed to shuttling and trap-switching operations, with this proportion rising as the number of qubits
increases. The large contribution of gate-switch is caused by SABRE preferring multiple short-range SWAP gates, each requiring
the corresponding trap switch duration ttrap. The error bars indicate the standard deviation over 50 iterations.

6.4.2. Shuttling layers
Now, we want to consider the second shuttling scenario of sequential, layer-based shuttling. This separation
between gate execution and shuttling facilitates the examination of their respective impacts on the overall
idle time, denoted as tidle, and thereby, the resultant decoherence error.

As depicted in figure 10, the graph portrays the proportion of idling attributed to gate-related factors
versus idling linked to shuttling operations across different circuits and varying numbers of qubits. For all
instances considered, the contribution from shuttling operations accounts for more than 90% of the
cumulative idle time, in particular for larger qubit numbers. Furthermore, it shows that for our assumptions
more than half of the total idle time is due to trap switching. Here, it should be noted that the long trap
switching times are due to SABRE, with its SC background, preferring multiple short-distance SWAPs
compared to a single long-range operation. So the results can be expected to be improved by employing a
shuttling-specific compiler.

This method, involving the utilization of SABRE followed by the subsequent substitution of resultant
SWAPs with shuttling operations, does, therefore, not use the full shuttling potential. SABRE consistently
opts for the shortest feasible swapping path to minimize the count of SWAP gates. Conversely, for shuttling,
it may be strategically advantageous to transport a qubit across a greater distance, potentially improving the
future requirement for swapping. To address this prospect, we modify the mapping process, whereby SABRE
is initially employed to ascertain a mapping configuration, enabling the execution of as many gates as
feasible. Subsequently, a wholly fresh initial mapping is determined for the remaining circuit. Then again, all
feasible gates are executed, and the process of finding a new mapping for the next layer is iterated until the
complete circuit is processed.

As depicted in figure 11, the illustration showcases the proportion by which the cumulative count of
layers can be diminished by employing this comprehensive qubit reconfiguration for each layer. Depending
on the specific circuit and the count of qubits, this approach can yield reductions of up to 50% in the
number of shuttling layers. While it is generally expected that the required inter-layer shuttling becomes
more complicated with this technique, it still underscores a promising benefit of utilizing the full
reconfiguration capabilities of NAQC platforms.

Until now, we assumed fixed shuttling hardware parameters and only modified Teff. But also other
parameters such as the trap switching time or the actual shuttling velocity vsh affect the shuttling time of
equation (18) and therefore the shuttling error. In the following, we want to study these parameters by the
question, how fast must the shuttling be to be favorable compared to a corresponding gate-based SWAP
operation?
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Figure 11. Layer reduction via full reconfiguration: the lines present the ratio by which the number of layers is reduced when the
mapping algorithm is granted complete reconfigurability for each layer. This demonstrates the potential improvement by utilizing
long-range shuttling compared to nearest neighbor SWAPs. The error bars indicate the standard deviation over 50 iterations.

Figure 12. Shuttling as direct SWAP substitution: illustration of the estimations taken in figure 13. (a) SWAP(Q0,Q1) executed as
a long-range interaction over distance rint. (b) Illustration of a two-step shuttling process for the same SWAP operation, using
shuttling. Due to equation (11) these operations can not be executed exactly as shown, but are used as a first approximation of the
actually required operations.

6.4.3. Shuttling velocity
The shuttling duration, as expressed in equation (18), is determined by two components: the time ttrap
required to transition between trap types, i.e. SLM to AOD and vice versa, and the shuttling velocity vsh.
When considering a specific CX fidelity FCX, the duration of shuttling must be less than a certain critical
value for shuttling-based SWAP to exhibit improved error performance compared to the equivalent SWAP
gate.

In the context of the Rubidium hardware, even though the time taken for shuttling-based SWAP
surpasses that of three consecutive CX gates, the large Teff mitigates decoherence errors, particularly when
only two qubits are involved. However, with larger values of n, which also implies more qubits idling during
the shuttling SWAP, a crossover exists where less accurate yet faster CX gates become the preferred choice.
This is of particular interest for SWAP operations that can not be parallelized with other gate operations,
occurring often, particularly for sequentially structured algorithms.

An illustration of this direct substitution of gate-based SWAP operations by the corresponding shuttling
operations is shown in figure 12, where the SWAP(Q0,Q1) gate over a distance rint is substituted by two
shuttling operations.

Figure 13 showcases the required shuttling velocity (vsh) to achieve parity of FSWAP and Fsh for a single
SWAP operation, depending upon the count of idle qubits. Points situated above the lines denote scenarios
where the implementation of shuttling for SWAP gates results in improved shuttling fidelity compared to the
gate-based alternative. Within the context of the Rubidium scenario (FCX = 0.995 and rint = 2d, shown in
blue), the critical number of idle qubits is determined by the intersection with the maximal shuttling velocity
(vsh = 0.55µmµs−1), occurring at approximately 550 qubits. As examples, higher CX fidelities and
interaction radii are depicted, both reducing further the maximal number of allowed idle qubits. While this
consideration does not take into account parallel shuttling, it still shows the possibility of preferring SWAP
gates compared to shuttling for near-term hardware with qubit numbers in the range of multiple hundreds.
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Figure 13. Shuttling velocities: depicted here is the minimum necessary shuttling velocity to attain an error equivalent to that
induced by gate-based swapping for a single swap pair for the Rubidium hardware setting. The x-axis indicates the number of
qubits n which must idle during the shuttling operation. For more idle qubits, and therefore increased idle errors, the shuttling
speed must also increase to keep the overall shuttling error the same. The steep increase of vsh is due to the fact that the shuttling
time has a lower limit by the trap switching time ttrap. For an increased interaction radius rint, the shuttling has to be performed
faster due to the longer shuttling distance. While shuttling is a suitable substitute for SWAP gates with a current fidelity of 0.995,
even for high idle qubit numbers of 500, an increase in FCX favors the gate-based swapping again.

The advantages of a shuttling-based approach for shuttling over longer distances and in parallel will be
subject to future work, requiring a fully working shuttling compiler.

6.4.4. Discussion—shuttling
The approximations conducted in this section underscore the substantial promise inherent to atom shuttling
as a prospective substitute for gate-based mapping. This particularly holds true for scenarios characterized by
large Teff and lower FCX. These insights can be beneficial for hardware experts striving to enhance available
hardware capabilities. Considerations like the layer-based complete reconfiguration, as demonstrated in
figure 11, underscore the latent advantages of employing mapping strategies specifically tailored to shuttling.

For compiler developers, this introduces a range of implications. Initially, compilation strategies must
ascertain the availability of shuttling operations, and subsequently devise mapping strategies that effectively
leverage the capacity to perform qubit swaps over significant distances in parallel. Recently, pioneering work
in this direction has been made [32, 116]. Our calculations indicate, furthermore, that for the Rubidium
hardware setting with a single AOD, the shuttling and trap switch process constitutes the central part of qubit
idling. Additionally, we show that using the capability of NAs to completely rearrange all qubits after each
gate layer can reduce the total number of shuttling layers by up to 50%. In this way, we delineate the
prospective advantage of adopting a fully reconfigurable mapping strategy instead of the conventional
nearest-neighbor methodology.

Furthermore, the evaluations presented in figure 13 offer indications that hardware parameters such as
Teff, FCX, rint, and the number of idling qubits n impact the decision of whether a SWAP operation should be
executed using the slower yet accurate shuttling method or faster gate operations, although error-prone. This
accentuates the need for a hybrid compiler strategy capable of making informed choices based on the
underlying hardware parameters, guiding the execution of remapping through either of the two available
capabilities. For decision-making, a similar approach as proposed in this work can be employed to find the
optimal compilation process, given the available hardware.

6.5. Discussion
In this section, we performed multiple selected case studies using different hardware parameters to study the
compilation output error for the available NA capabilities.

For the possibility of long-range SWAP gates, we focused on comparing fidelity reduction due to SWAP
gates and decoherence on the other hand. Our considerations indicate that for the Rubidium setup, the
SWAP gate errors dominate for all considered circuits. In this scenario, high connectivity with rint ⩾ 5d
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would be necessary to get comparable error contributions from decoherence errors. This also implies that
SWAP gate minimization can be considered a suitable figure of merit, making common SC compilers such as
SABRE and their techniques interesting candidates. For the first hardware setup, based on Strontium atoms,
on the other hand, both errors contribute equally, requiring simultaneous optimization of the SWAP gate and
idle-time minimization. This implies the need for hardware adaptive compilers that can optimize different
figures of merit depending on given hardware parameters and, therefore, the primary source of errors.

For multi-qubit gates, the task of synthesis remains an open question. In contrast, a simple error
estimation can be performed for circuits already containing multi-qubit gates to decide if the gate should be
executed natively or decomposed.

For the shuttling capability, we make multiple simplifying assumptions to illustrate the promising
potential as an alternative to regular gate-based swapping. We compare the two swapping techniques
concerning different hardware parameters such as coherence times, CX gate fidelity, shuttling velocity, and
qubit number. As a result, shuttling outperforms gate-based swapping for both considered hardware setups.
Nevertheless, we also indicate possible situations regarding high CX fidelity or a large number of idle qubits,
where the error-prone but faster SWAP gates become interesting again. This would imply the need for a
hybrid compilation process, where the mapping pass decides dynamically if gate-based swapping or
shuttling-based qubit rearrangement is favorable.

In summary, the evaluations performed in this section illustrate the use of the capabilities discussed
previously and give multiple insights on how different hardware parameters affect the compilation output.
This is helpful for tool developers to build hardware-aware compilation software based on optimization
techniques based on valuable figures of merit and, this way, facilitates the development of NA-specific
compilers. At the same time, the results can also give hardware experts insight into devising future hardware,
prioritizing hardware attributes that yield the most likely output improvement. As an advantage, this allows
for the effective co-design of hardware setups and compilation software, necessary to explore the full
capabilities of the NAQC platform.

7. Summary and outlook

In this work, we studied the overall compiler development for the Neutral Atom Quantum Computing
platform and provided important groundwork to promote further collaboration between hardware experts
and computer scientists.

Initially, we expounded upon the foundational physical aspects integral to realizing quantum processors
utilizing neutral atoms, explicitly emphasizing the distinct computational capabilities intrinsic to the
platform. We provided abstraction layers that cater to the design automation community and software tool
developers, facilitating their comprehension and abstraction of the physical processes. Subsequently, we
delved into the structural organization of this spectrum of compilation strategies and explored figures of
merit for assessing the quality of the resultant compilation outcomes. Furthermore, we furnished an
overarching view of the currently available software tools and compilers, contextualizing their roles within
the previously discussed compilation overview. Lastly, we performed multiple selective case studies and
fidelity analyses to investigate the implications of different hardware parameters on the final compilation
outcome. In particular, we evaluate and compare the different capabilities and match the results to two
possible hardware setups, giving insights to both hardware experts and tool developers. The results
underscore the imperative to develop hybrid and hardware-aware compilation software capable of effectively
addressing the broad spectrum of capabilities offered by the neutral atom platform.

We posit that this comprehensive overview can effectively contribute to the development of top-tier
compilers and design automation tools, enabling the neutral atom platform to catch up with comparable
solutions available for other hardware platforms. In particular, the next steps entail the development of new
compilation software, based on the information gained within this work regarding possible hardware
capabilities and useful figures of merit.

Furthermore, neutral atoms have been shown to be promising candidates for fault-tolerant quantum
computing [8, 100] due to their extended range of capabilities. This includes high gate fidelities, combined
with e.g. the ability to perform native multi-qubit gates, mid-circuit measurements, and qubit shuttling. In
particular, the qubit shuttling allows beyond nearest-neighbor connectivity without breaking fault tolerance
due to error propagation such as SWAP gates, and the simultaneous control of large qubit patches using
parallel AOD movements. The fundamental basics discussed in this work also pave the way toward
fault-tolerant compilation, which will add another layer of complexity to the compilation chain, and finding
suitable automation techniques is still an open question.
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[67] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Entanglement of two individual

neutral atoms using Rydberg blockade Phys. Rev. Lett. 104 010502
[68] Dlaska C, Ender K, Mbeng G B, Kruckenhauser A, Lechner W and van Bijnen R 2022 Quantum optimization via four-body

Rydberg gates Phys. Rev. Lett. 128 120503
[69] Shende V V, Prasad A K, Markov I L and Hayes J P 2002 Reversible logic circuit synthesis Proc. 2002 IEEE/ACM Int. Conf. on

Computer-Aided Design (ICCAD ’02) (Association for Computing Machinery) pp 353–60
[70] Adarsh S, Burgholzer L, Manjunath T and Wille R 2022 SyReC synthesizer: an MQT tool for synthesis of reversible circuits Softw.

Impacts 14 100451
[71] Wille R, Große D, Teuber L, Dueck G W and Drechsler R 2008 RevLib: an online resource for reversible functions and reversible

circuits 38th Int. Symp. on Multiple Valued Logic (ismvl 2008) pp 220–5
[72] Wille R, Offermann S and Drechsler R 2010 SyReC: a programming language for synthesis of reversible circuits 2010 Forum on

Specification & Design Languages (FDL 2010) pp 1–6
[73] Amy M, Glaudell A N, Li S M and Ross N J 2023 Improved Synthesis of Toffoli-Hadamard Circuits Reversible Computation

(Lecture Notes in Computer Science) ed M Kutrib and U Meyer (Springer Nature Switzerland) pp 169–209
[74] Aharonov D 2003 A simple proof that Toffoli and Hadamard are quantum universal (arXiv:0301040)
[75] Beugnon J et al 2007 Two-dimensional transport and transfer of a single atomic qubit in optical tweezers Nat. Phys. 3 696
[76] Kwon M, Ebert M F, Walker T G and Saffman M 2017 Parallel low-loss measurement of multiple atomic qubits Phys. Rev. Lett.

119 180504
[77] Covey J P, Madjarov I S, Cooper A and Endres M 2019 2000-times repeated imaging of strontium atoms in clock-magic tweezer

arrays Phys. Rev. Lett. 122 173201
[78] Bochmann J, Mücke M, Guhl C, Ritter S, Rempe G and Moehring D L 2010 Lossless state detection of single neutral atoms Phys.

Rev. Lett. 104 203601
[79] Deist E, Lu Y-H, Ho J, Pasha M K, Zeiher J, Yan Z and Stamper-Kurn DM 2022 Mid-circuit cavity measurement in a neutral atom

array Phys. Rev. Lett. 129 203602
[80] Graham T M, Phuttitarn L, Chinnarasu R, Song Y, Poole C, Jooya K, Scott J, Scott A, Eichler P and Saffman M 2023 Midcircuit

measurements on a single-species neutral alkali atom quantum processor Phys. Rev. X 13 041051
[81] Norcia M A et al 2023 Midcircuit qubit measurement and rearrangement in a 171Yb atomic array Phys. Rev. X 13 041034
[82] Lis J W, Senoo A, McGrew W F, Rönchen F, Jenkins A and Kaufman A M 2023 Midcircuit operations using the omg architecture

in neutral atom arrays Phys. Rev. X 13 041035
[83] Huie W, Li L, Chen N, Hu X, Jia Z, Sun W K C and Covey J P 2023 Repetitive readout and real-time control of nuclear spin qubits

in 171Yb atoms PRX Quantum 4 030337
[84] Singh K, Bradley C E, Anand S, Ramesh V, White R and Bernien H 2023 Mid-circuit correction of correlated phase errors using

an array of spectator qubits Science 380 1265
[85] Pagano A, Weber S, Jaschke D, Pfau T, Meinert F, Montangero S and Büchler H P 2022 Error budgeting for a controlled-phase

gate with strontium-88 Rydberg atoms Phys. Rev. Res. 4 033019
[86] Jandura S and Pupillo G 2022 Time-optimal two- and three-qubit gates for Rydberg atoms Quantum 6 712
[87] Campbell E T, Terhal B M and Vuillot C 2017 Roads towards fault-tolerant universal quantum computation Nature 549 172
[88] Cong I, Levine H, Keesling A, Bluvstein D, Wang S-T and Lukin M D 2022 Hardware-efficient, fault-tolerant quantum

computation with Rydberg atoms Phys. Rev. X 12 021049
[89] Wu Y, Kolkowitz S, Puri S and Thompson J D 2022 Erasure conversion for fault-tolerant quantum computing in alkaline earth

Rydberg atom arrays Nat. Commun. 13 4657
[90] Sahay K, Jin J, Claes J, Thompson J D and Puri S 2023 High threshold codes for neutral atom qubits with biased erasure errors

Phys. Rev. X 13 041013
[91] Scholl P, Shaw A L, Tsai R B-S, Finkelstein R, Choi J and Endres M 2023 Erasure conversion in a high-fidelity Rydberg quantum

simulator Nature 622 273
[92] Ma S, Liu G, Peng P, Zhang B, Jandura S, Claes J, Burgers A P, Pupillo G, Puri S and Thompson J D 2023 High-fidelity gates and

mid-circuit erasure conversion in an atomic qubit Nature 622 279
[93] Jandura S, Thompson J D and Pupillo G 2023 Optimizing Rydberg gates for logical-qubit performance PRX Quantum 4 020336
[94] Fromonteil C, Bluvstein D and Pichler H 2023 Protocols for Rydberg entangling gates featuring robustness against quasistatic

errors PRX Quantum 4 020335
[95] Heußen S, Locher D F and Müller M 2024 Measurement-free fault-tolerant quantum error correction in near-term devices PRX

Quantum 5 010333
[96] Crow D, Joynt R and Saffman M 2016 Improved error thresholds for measurement-free error correction Phys. Rev. Lett.

117 130503
[97] Perlin M A, Premakumar V N, Wang J, Saffman M and Joynt R 2023 Fault-tolerant measurement-free quantum error correction

with multiqubit gates Phys. Rev. A 108 062426
[98] Nagib O, Huft P, Safari A and SaffmanM 2023 Robust atom-photon gate for quantum information processing (arXiv:2312.13221)
[99] Li Y and Thompson J 2024 High-rate and high-fidelity modular interconnects between neutral atom quantum processors

(arXiv:2401.04075)
[100] Xu Q, Ataides J P B, Pattison C A, Raveendran N, Bluvstein D, Wurtz J, Vasic B, Lukin M D, Jiang L and Zhou H 2023

Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays (arXiv:2308.08648)
[101] Viszlai J, Lin S F, Dangwal S, Baker J M and Chong F T 2023 An architecture for improved surface code connectivity in neutral

atoms (arXiv:2309.13507)
[102] Viszlai J, Yang W, Lin S F, Liu J, Nottingham N, Baker J M and Chong F T 2023 Matching generalized-bicycle codes to neutral

atoms for low-overhead fault-tolerance (arXiv:2311.16980)

35

https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1038/s41567-020-0903-z
https://arxiv.org/abs/2310.19741
https://doi.org/10.1103/PhysRevLett.104.010503
https://doi.org/10.1103/PhysRevLett.104.010503
https://doi.org/10.1103/PhysRevLett.104.010502
https://doi.org/10.1103/PhysRevLett.104.010502
https://doi.org/10.1103/PhysRevLett.128.120503
https://doi.org/10.1103/PhysRevLett.128.120503
https://doi.org/10.1016/j.simpa.2022.100451
https://doi.org/10.1016/j.simpa.2022.100451
https://arxiv.org/abs/0301040
https://doi.org/10.1038/nphys698
https://doi.org/10.1038/nphys698
https://doi.org/10.1103/PhysRevLett.119.180504
https://doi.org/10.1103/PhysRevLett.119.180504
https://doi.org/10.1103/PhysRevLett.122.173201
https://doi.org/10.1103/PhysRevLett.122.173201
https://doi.org/10.1103/PhysRevLett.104.203601
https://doi.org/10.1103/PhysRevLett.104.203601
https://doi.org/10.1103/PhysRevLett.129.203602
https://doi.org/10.1103/PhysRevLett.129.203602
https://doi.org/10.1103/PhysRevX.13.041051
https://doi.org/10.1103/PhysRevX.13.041051
https://doi.org/10.1103/PhysRevX.13.041034
https://doi.org/10.1103/PhysRevX.13.041034
https://doi.org/10.1103/PhysRevX.13.041035
https://doi.org/10.1103/PhysRevX.13.041035
https://doi.org/10.1103/PRXQuantum.4.030337
https://doi.org/10.1103/PRXQuantum.4.030337
https://doi.org/10.1126/science.ade5337
https://doi.org/10.1126/science.ade5337
https://doi.org/10.1103/PhysRevResearch.4.033019
https://doi.org/10.1103/PhysRevResearch.4.033019
https://doi.org/10.22331/q-2022-05-13-712
https://doi.org/10.22331/q-2022-05-13-712
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1103/PhysRevX.12.021049
https://doi.org/10.1103/PhysRevX.12.021049
https://doi.org/10.1038/s41467-022-32094-6
https://doi.org/10.1038/s41467-022-32094-6
https://doi.org/10.1103/PhysRevX.13.041013
https://doi.org/10.1103/PhysRevX.13.041013
https://doi.org/10.1038/s41586-023-06516-4
https://doi.org/10.1038/s41586-023-06516-4
https://doi.org/10.1038/s41586-023-06438-1
https://doi.org/10.1038/s41586-023-06438-1
https://doi.org/10.1103/PRXQuantum.4.020336
https://doi.org/10.1103/PRXQuantum.4.020336
https://doi.org/10.1103/PRXQuantum.4.020335
https://doi.org/10.1103/PRXQuantum.4.020335
https://doi.org/10.1103/PRXQuantum.5.010333
https://doi.org/10.1103/PRXQuantum.5.010333
https://doi.org/10.1103/PhysRevLett.117.130503
https://doi.org/10.1103/PhysRevLett.117.130503
https://doi.org/10.1103/PhysRevA.108.062426
https://doi.org/10.1103/PhysRevA.108.062426
https://arxiv.org/abs/2312.13221
https://arxiv.org/abs/2401.04075
https://arxiv.org/abs/2308.08648
https://arxiv.org/abs/2309.13507
https://arxiv.org/abs/2311.16980


Quantum Sci. Technol. 9 (2024) 033001 L Schmid et al

[103] Wang Y-F, Wang Y, Chen Y-A, Zhang W, Zhang T, Hu J, Chen W, Gu Y and Liu Z-W 2023 Efficient fault-tolerant
implementations of non-Clifford gates with reconfigurable atom arrays (arXiv:2312.09111)

[104] Delfosse N, Beverland M E and Tremblay M A 2021 Bounds on stabilizer measurement circuits and obstructions to local
implementations of quantum LDPC codes (arXiv:2109.14599)

[105] Tremblay M A, Delfosse N and Beverland M E 2022 Constant-overhead quantum error correction with thin planar connectivity
Phys. Rev. Lett. 129 050504

[106] Strikis A and Berent L 2023 Quantum low-density parity-check codes for modular architectures PRX Quantum 4 020321
[107] Cross Andrewet al 2022 OpenQASM 3: a broader and deeper quantum assembly language—ACM transactions on quantum

computing ACM Transactions on Quantum Computing 3 1–50
[108] Lubinski T, Granade C, Anderson A, Geller A, Roetteler M, Petrenko A and Heim B 2022 Advancing hybrid quantum–classical

computation with real-time execution Front. Phys. 10 940293
[109] Shaw A L, Finkelstein R, Tsai R B-S, Scholl P, Yoon T H, Choi J and Endres M 2024 Multi-ensemble metrology by programming

local rotations with atom movements Nat. Phys. 20 195–201
[110] Levine H, Bluvstein D, Keesling A, Wang T T, Ebadi S, Semeghini G, Omran A, Greiner M, Vuletíc V and Lukin M D 2022

Dispersive optical systems for scalable Raman driving of hyperfine qubits Phys. Rev. A 105 032618
[111] Tan D B, Bluvstein D, Lukin M D and Cong J 2024 Compiling quantum circuits for dynamically field-programmable neutral

atoms array processors Quantum 8 1281
[112] Wang H, Tan B, Liu P, Liu Y, Gu J, Cong J and Han S 2023 Q-Pilot: field programmable quantum array compilation with flying

ancillas (arXiv:2311.16190)
[113] Litteken A 2023 Neutral atom compilation (available at: https://github.com/AndrewLitteken/neutral-atom-compilation)
[114] S4Plus 2022 Q-Tetris (available at: https://github.com/S4Plus/Q-Tetris)
[115] Patel T, Silver D and Tiwari D 2022 GEYSER (ISCA’22) code and dataset Zenodo https://doi.org/10.5281/zenodo.7084132
[116] UCLA VAST Lab 2023 OLSQ-DPQA compiler (available at: https://github.com/UCLA-VAST/DPQA)
[117] Chair for Design Automation - Technical University of Munich 2024 MQT QMAP (available at: https://github.com/cda-tum/

mqt-qmap)
[118] Zulehner A and Wille R 2018 One-pass design of reversible circuits: combining embedding and synthesis for reversible logic IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 996
[119] Soeken M, Wille R, Hilken C, Przigoda N and Drechsler R 2012 Synthesis of reversible circuits with minimal lines for large

functions 17th Asia and South Pacific Design Automation Conf. pp 85–92
[120] Wille R, Burgholzer L and Zulehner A 2019 Mapping quantum circuits to IBM QX architectures using the minimal number of

SWAP and H operations Proc. 56th Annual Design Automation Conf. 2019 (DAC ’19) (Association for Computing Machinery)
pp 1–6

[121] Biere A, Biere A, Heule M, van Maaren H and Walsh T 2009 Handbook of Satisfiability (IOS Press)
[122] Wagner N, Poole C, Graham T M and Saffman M 2024 Benchmarking a neutral-atom quantum computer Int. J. Quantum Inf.

(https://doi.org/10.1142/S0219749924500011)
[123] McInroy K, Pearson N and Pritchard J D 2024 Benchmarking the algorithmic performance of near-term neutral atom processors

(arXiv:2402.02127)
[124] Schmid Ludwig et al 2023 Dataset and evaluation scripts Zenodo
[125] Quetschlich N, Burgholzer L and Wille R 2023 MQT bench: benchmarking software and design automation tools for quantum

computing Quantum 7 1062
[126] Shende V V and Markov I L 2009 On the CNOT-cost of TOFFOLI gates Quantum Inf. Comput. 9 461–86
[127] He Y, Luo M-X, Zhang E, Wang H-K and Wang X-F 2017 Decompositions of n-qubit Toffoli gates with linear circuit complexity

Int. J. Theor. Phys. 56 2350

36

https://arxiv.org/abs/2312.09111
https://arxiv.org/abs/2109.14599
https://doi.org/10.1103/PhysRevLett.129.050504
https://doi.org/10.1103/PhysRevLett.129.050504
https://doi.org/10.1103/PRXQuantum.4.020321
https://doi.org/10.1103/PRXQuantum.4.020321
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.1038/s41567-023-02323-w
https://doi.org/10.1038/s41567-023-02323-w
https://doi.org/10.1103/PhysRevA.105.032618
https://doi.org/10.1103/PhysRevA.105.032618
https://doi.org/10.22331/q-2024-03-14-1281
https://doi.org/10.22331/q-2024-03-14-1281
https://arxiv.org/abs/2311.16190
https://github.com/AndrewLitteken/neutral-atom-compilation
https://github.com/S4Plus/Q-Tetris
https://doi.org/10.5281/zenodo.7084132
https://github.com/UCLA-VAST/DPQA
https://github.com/cda-tum/mqt-qmap
https://github.com/cda-tum/mqt-qmap
https://doi.org/10.1109/TCAD.2017.2729468
https://doi.org/10.1109/TCAD.2017.2729468
https://doi.org/10.1142/S0219749924500011
https://arxiv.org/abs/2402.02127
https://doi.org/10.22331/q-2023-07-20-1062
https://doi.org/10.22331/q-2023-07-20-1062
https://doi.org/10.26421/QIC9.5-6-8
https://doi.org/10.26421/QIC9.5-6-8
https://doi.org/10.1007/s10773-017-3389-4
https://doi.org/10.1007/s10773-017-3389-4

	Computational capabilities and compiler development for neutral atom quantum processors—connecting tool developers and hardware experts
	1. Introduction
	2. Compilation
	2.1. Compilation subroutines
	2.1.1. Synthesis
	2.1.2. Mapping
	2.1.3. Scheduling


	3. The neutral atom quantum computing platform
	3.1. Platform requirements
	3.2. Computational capabilities
	3.2.1. Single-qubit gates
	3.2.2. Two-qubit gates
	3.2.3. Multi-qubit gates
	3.2.4. Atom shuttling
	3.2.5. Measurements
	3.2.6. Errors
	3.2.7. Fault-tolerant QC and error correction


	4. Compilation for neutral atoms
	4.1. Overview
	4.1.1. Input/pre-processing
	4.1.2. Computational capabilities
	4.1.3. Figures of merit

	4.2. Compilation parameters
	4.3. Discussion

	5. Related work and software
	5.1. Compilers for superconducting platform
	5.2. Long-range compiler
	5.3. Multi-qubit compiler
	5.4. Shuttling compiler
	5.5. Overview and discussion

	6. Selected case studies
	6.1. Error metrics and code availability
	6.1.1. Fidelity estimation
	6.1.2. Software and code availability

	6.2. Long-range interactions
	6.2.1. Interaction and restriction radius
	6.2.2. Compiler comparison
	6.2.3. Discussion—long-range

	6.3. Multi-qubit gates
	6.4. Shuttling
	6.4.1. Shuttling-based mapping
	6.4.2. Shuttling layers
	6.4.3. Shuttling velocity
	6.4.4. Discussion—shuttling

	6.5. Discussion

	7. Summary and outlook
	References


