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Abstract
Quantum state preparation is a vital routine in many quantum algorithms, including solution of
linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning.
However, to date, there is no established framework of encoding classical data into gate-based
quantum devices. In this work, we propose a method for the encoding of vectors obtained by
sampling analytical functions into quantum circuits that features polynomial runtime with respect
to the number of qubits and provides>99.9% accuracy, which is better than a state-of-the-art
two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are
simulated using tensor networks, and matrix product state representation of vectors. In order to
tune variational gates, we utilize Riemannian optimization incorporating auto-gradient
calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid
barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any
vectors that feature low-rank structure—not limited by analytical functions—can be encoded
using the presented approach. Our method can be easily implemented on modern quantum
hardware, and facilitates the use of the hybrid-quantum computing architectures.

1. Introduction

Quantum state preparation is a key subroutine in the overwhelming majority of quantum algorithms. Such
algorithms as quantum linear system solvers [1–5], quantumMonte-Carlo [6, 7], quantum machine learning
[8–10], and general variational quantum approaches [11] require fast and accurate encoding of classical data
into quantum circuits. The state preparation subroutine is often considered the main bottleneck limiting the
performance of quantum algorithms [9, 12, 13].

In order to prepare a generic n-qubit quantum state, a circuit with depth O(2n) is required since all 2n

inherent parameters corresponding to amplitudes must be encoded using different gates [14]. However, the
depth can be reduced to O(n2) by using O(2n) ancillary qubits [15]. Those approaches do not solve the
problem of exponential circuit growth with increasing the number of coding qubits and are impractical for
large n, especially in case of noisy intermediate-scale quantum (NISQ) devices with finite fidelity and limited
connectivity [16]. On the other hand, one can slightly decrease the circuit depth in exchange for an
approximation error [17] using, for instance, the entanglement reduction technique [18]—specific classes of
quantum states, e.g. normal distributions, can be prepared utilizing relatively shallow circuits [19], however,
such methods still suffer from an exponential circuit width and a complex gate realization.

General engineering of quantum circuits specifically for the generation of particular states is challenging
and impractical. On the other hand, variational quantum circuits with fixed ansatz, which serves as a general
state engineering tool [11], provide a promising approach to state preparation. The general class of quantum
states that can be efficiently prepared via variational circuits using classical computations is Hierarchical
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tensor formats [20]—only such states allow for the contraction with a variational circuit in linear time with
respect to the number of qubits [21–23]. Here, we focus on one of the most well-studied and straightforward
tensor formats, the matrix product states (MPSs) [21, 22, 24], which is at the core of a variety of tensor
networks algorithms [25–27]. In contrast to existing MPS-based algorithms for quantum state preparation,
our work contributes three novel aspects:

• We mainly focus on the encoding of vectors obtained by sampling analytical functions, since they are
of the most interest for quantum practical applications, including partial differential equations [28, 29],
two-electron integral calculation [30], sampling tasks [31], calculation of expectation values [6], which is
required e.g. in finance [12];

• We introduce and utilize the Riemannian optimization for the update of quantum gates, which allows us to
avoid spurious maxima of the fidelity and achieve higher accuracy and speed;

• We develop a scheme, which is resistant to barren plateaus [32], and numerically verify the robustness up
to 100 qubits using QMware system (see appendix A).

1.1. Comparison with previous works
The matrix product state formalism, which emerged from the description of many-body quantum systems
[21, 24], can be utilized for efficient quantum state preparation [33–35]. Although such methods are
accurate, they require unitary operations acting immediately on the (⌊log(r)⌋+ 1) qubits, where r is a rank
(bond dimension) of the corresponding MPS [24], which is undesirable for modern quantum computers
considering the limited connectivity and high gate errors. To reduce the hardware requirements, a matrix
product disentangler algorithm was developed in [36], which prepares the state approximately and requires
the implementation only of two-qubit gates acting on neighbor qubits. The disadvantage of this algorithm is
that updating the gate parameters occurs sequentially layer-by-layer, and not on all gates simultaneously,
which causes a higher approximation error [37]. Also, the quantum circuit is fixed and cannot be tuned
accordingly to the given quantum hardware topology.

To facilitate the change in the architecture of the quantum circuit and simultaneously optimize all the
gates in it, a projected gradient descent algorithm based on the automatic differentiation [38] was introduced
in [37]. Firstly, the approximation error is minimized over unconstrained latent gates in a general matrix
space, which are automatically differentiable. Secondly, the polar decomposition is applied to each latent gate
independently to turn it into the actual (unitary) gate. However, the latter step is not variational, i.e. it does
not take into account the gradient direction, and may produce a suboptimal solution.

In this work, we use a more natural update procedure for variational circuits aimed at MPS preparation
based on the Riemannian optimization [39], where the gates are updated within the manifold of unitary
matrices (see appendix B). This approach was shown to provide a higher speed and accuracy in some regimes
[40] (see detailed comparison in supplemental material). Similarly to [41], we prepare vectors obtained by
sampling analytical and smooth functions, However, in contrast to [41], we prepare states featuring an
arbitrary rank allowing for the encoding of a wider class of functions. We approximate quantum states
utilizing variational circuits with the native quantum gate set and [42] artificially restricting the connectivity
between qubits to adjust the algorithm for NISQ hardware. We demonstrate that despite the limited
connectivity high approximation accuracy is achieved by shallow circuits. Moreover, our method features the
logarithmic complexity in the vector size and, in combination with the simple circuit structure, can be easily
implemented on modern quantum hardware, to be applied to a variety of problems (see appendix C).

2. Results

2.1. The protocol idea—reducing everything to tensors
The matrix product state is a compressed representation of a vector that was originally introduced to
approximate the ground state of a many-body Hamiltonian in quantum theory. The main characteristic of
such a representation is the rank (bond dimension) r, which expresses the correlations and entanglement of
the state vector. In fact, using singular value decomposition (SVD) [43] or cross-approximation [44], any 2n

vector can be represented as MPS with the number of elements 2nr2. In the worst scenario, the rank r
depends exponentially on n. However, considering vectors arising from sampling of analytical functions on
an discretized interval, often a small and n-independent rank is sufficient to approximate the function with
high accuracy [41]. Moreover, there is an exact MPS-decomposition for trigonometric, exponential,
polynomial and rational functions [45]. That is why the idea outlined in this work is not to consider the
preparation of arbitrary states, but vectors that can be represented as MPS with a small rank. It is important
to note that the set of such states, although it may seem small, nevertheless covers a wide range of the applied
problems (see Appendix C).
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Figure 1. Overall quantum state preparation scheme. (a) The function to be prepared is sampled in 2n points on the interval
[xl, xr]—a vector of function values is obtained. (b) This vector is normalized and (c) reshaped into a tensor. (d) This tensor is
converted into an MPS with visible index dimension equal to 2, and ranks (bond dimensions) equal to ri [21]. The rank of the
MPS is r=max(ri). (e) A variational n-qubits quantum circuit with neighborhood interactions is represented as a tensor
network and then contracted with the MPS to obtain the value of projection of the output quantum state onto the target one (1).
(f) The optimal gates of the variational circuit are found using Riemannian optimization and automatic differentiation, yielding
(g) the output state as close to the target one as possible.

The key quality of the MPS is weak entanglement. Indeed, considering the entropy of the reduced
subsystem ρ= Tr2[|ψ⟩⟨ψ|] of an MPS |ψ⟩ with rank r, the following bound on entropy S(ρ) holds:
S(ρ)⩽ log r [21]. Since such states feature a small rank, hence weak entanglement, we expect that they can be
efficiently approximated by a circuit where only neighbor qubits are coupled and the depth is restricted. Such
circuits possess limited entanglement and are similar to circuits specifically generating states belonging to the
MPS class [34, 42].

In order to perform the MPS approximation using a quantum circuit, we represent the quantum circuit
also as a tensor network allowing us to optimize the gate parameters by processing tensors directly.
Leveraging the locality of operations in hardware-efficient circuits, we apply the tensor networks method for
circuit simulation and optimization [46, 47]. Such a method allows us to process the circuit with polynomial
runtime scaling in the number of qubits.

We emphasize that the learning of the circuit parameters for the state preparation does not need to be
run on quantum hardware—the parameters can be learned using tensor networks on a classical computer,
which are subsequently embedded in a circuit executed on a quantum processor.

2.2. Encoding and learning
Here, we provide a step-by-step description of the protocol, which is depicted in figure 1. In order to prepare
a quantum state |ϕf⟩ we utilize a variational circuit, which is represented as an action of a variational unitary
U(a) over a state |ψin⟩= |0⟩n. The problem of quantum state preparation is finding a set of parameters a such
that the output state U(a)|ψin⟩ approximates the desired |ϕf⟩:

max
a

|⟨ϕf|U(a)|ψin⟩|2. (1)

2.2.1. Approximation of a function by an MPS: steps (a) to (d)
The desired state |ϕf⟩ is produced from an analytical function f (x), which is assumed to have a small MPS
rank. One way to encode a function into a quantum state is the amplitude encoding. The function is sampled
on a given interval [xl, xr] at 2n equispaced points x0, . . . ,x2n−1. Then a normalized vector of function values
at these points is encoded in the quantum state amplitudes:

|ϕf⟩=
2n−1∑
k=0

f̃k|k⟩n, f̃k =
f(xk)

Z
, Z=

2n−1∑
k=0

|f(xk)|2.

Further, we represent the obtained normalized vector |ϕf⟩ in the MPS format. For this, the vector is reshaped
into a tensor of an order n and then sequential SVD applications allow us to represent it as an MPS

3
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Figure 2. The variational quantum circuit used in all presented experiments. The unitary U(ukl ) is expressed as a product of L
unitaries Ul(ukl ) sequentially acting on an input state. Each unitary U l is a sequence of non-parametric CNOT gates and
variational gates ukl .

[21, 48, 49]. However, the disadvantage of this approach is that it requires 2n function calls, which is
impractical in case of large vectors. Alternatively, the tensor-train cross approximation technique [44] allows
one to recover an MPS by an adaptive sampling of just O(nr2) points. In this work, we utilize the cross
approximation algorithm.

2.2.2. Processing a circuit as a tensor network: step (e)
In order to prepare states using NISQ devices we consider a unitary U(a) consisting of sequentially applied
single-qubit variational gates ukl mixed with CNOTs, as shown in figure 2.

As we mentioned in the previous section, the quantum circuit itself should be represented as a tensor
network, with gates acting as tensors. The projection of the desired state on the state generated by this circuit
⟨ϕf|U(a)|ψin⟩ is equivalent to the contraction of two tensor networks: |ϕf⟩ as an MPS and utilized circuit as a
tensor network. Weak entanglement in shallow circuits with fixed depth, considered here, leads to the linear
scaling of the simulation runtime with respect to the number of qubits. To achieve this, we utilize
hyper-optimized tensor network contraction introduced in [46] that allows us to find a near-optimal
contraction sequence. We show the numerical runtime of the projection of a randomMPS |ϕf⟩ with rank 2
onto a quantum circuit with different number of layers up to 300 qubits in figure 3(a).

2.2.3. Optimization of the quantum circuit: step (f)
One of the most commonly used ways to solve the optimization problem equation (1) is to use the
gradient-based parameter-shift rule [50]. Usually in that case, variational gates ukl depend on the parameters
θkl and have the form of exp(−iθkl σ), with σ being a Pauli operator. However, such a direct optimization
of θkl may suffer from a barren plateau of vanishing gradients due to the nonlinearity of the exponential
function.

A more general initial circuit can be constructed from arbitrary unitary operators as variational gates. For
this purpose, the Riemannian optimization on the Stiefel manifold ofm1 ×m2 isometric matrices Vm1,m2 can
be used [51], wherem1 = 2, m2 = 2 in case of single-qubit gates.

In order to compare those methods, we optimize a 5-qubit circuit with 2 layers of the said structure for
preparing a randomMPS with rank 2 and show how the approximation error decreases with the number of
iterations of gradient descent in figure 3(b). The shift rule achieves only an approximation error worse than
10−2, while the Riemannian optimization provides an error below 10−4. Since the Riemannian optimization
provides a better accuracy compared to the parameter-shift rule, we proceed with using the former.

4
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Figure 3. (a) Runtime of a single objective function calculation for varying numbers of qubits for 1-, 2-, and 5-layer circuit. The
objective function equation (1) is computed as a tensor network contraction of a quantum circuit with the given number of layers
and qubits and an MPS with rank 2, both populated with random parameters. Times are averaged over 100 runs of objective
function calculation. (b) The approximation error obtained during an objective function minimization using the parameter-shift
rule and the Riemannian optimization. Comparison between mentioned methods is done for a circuit containing 5 qubits and 2
layers approximating a randomMPS with rank 2 sampled at 32 points. Since the Riemannian optimization provides a
significantly lower error we focus on this method hereinafter.

For convenience, let us reformulate the fidelity maximization problem equation (1) into a minimization
problem of infidelity (or approximation error)

C(ukl ) = 1− |⟨ϕ|U(ukl )|ψin⟩|2 →min, (2)

for a unitary 2× 2 matrix ukl for each l= 1. . .L and k= 1. . .2n. In order to find a local minimum of some
differentiable function C(u), where u ism1 ×m2 isometric matrix, the gradient descent algorithm can be
applied

ut+1 = ut −α∇C(ut), (3)

where ut is a matrix u on step t, and α is a step size. Here, we consider the case of single unitary matrix
dependence, however this analysis is valid in case of Cartesian product of such matricies [51].

The optimization problem in equation (2) must be constrained to u ∈ Vm1,m2 . This prevents us from
using a conventional gradient descent algorithm—we cannot guarantee ut+1 ∈ Vm1,m2 even if ut ∈ Vm1,m2 .
Addressing this issue, we use the Riemannian gradient and a retraction R on the manifold [51]. Firstly,
instead of a standard gradient∇C(u) we use the Riemannian gradient∇RC(u) which is a vector in the
tangent space to the point u ∈ Vm1,m2 . The construction of a Riemannian gradient∇RC(u) as an orthogonal
projection of the Euclidean gradient∇C(u) onto the tangent space is described in the appendix B. Secondly,
the next point of approximation ut+1 is determined by the SVD-retraction

ut+1 = RSVD
ut [−α∇RC(ut)].

The SVD-retraction is defined as RSVD
X (Y) = UV† after computing the SVD X+Y= USV†. By definition,

this is just a projection of the matrix (ut −α∇RC(ut)) onto the manifold ofm1 ×m2 isometric matrices.
Using the retraction instead of a linear step equation (3) allows for the movement along the manifold in a
desired direction, satisfying the constraint ut ∈ Vm1,m2 automatically for each step t.

Throughout the optimization, we calculate derivatives of the function with respect to gates using the
automatic differentiation technique [38]. While for large and complex networks an analytical differentiation
becomes impractical, the automatic differentiation computes derivatives of tensor network programs
efficiently with machine precision, in contrast to numerical differentiation. The automatic differentiation,

5
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Figure 4. Results on runtime and approximation error for quantum state preparation using MPS formalism. (a) Runtime of our
algorithm for the quantum circuit with 3 layers to prepare functions with 10−2 approximation error with respect to the number
of qubits. Linear growth in the log–log scale indicates that the preparation is done in a polynomial time. Here, we do not
perform simulations with larger circuits, since 220 − 230 points are enough for the one-dimensional function discretization.
(b) Approximation error of the function approximation for different number of layers for 20 qubits and a fixed number of
optimization iterations equal to 500. Overall, the deeper is the circuit, the higher is the approximation accuracy, however, starting
from 5 layers, we observe a stagnation in the accuracy. (c) Runtimes needed to convert a function into MPS (orange) and to
perform a single iteration of the circuit optimization (to contract tensor network (circuit simulation) in green and to perform a
single iteration of the Riemannian optimization in blue). The approximation accuracy depends on the chosen number of
iterations. The runtime features a linear scaling in the number of qubits. The number of layers in all numerical simulations is set
to 3. (d) Exact Gaussian density functionN (0.5,0.01) and its approximation with an error 6 · 10−4 obtained after 500 iterations
of the algorithm using 10 qubits and 3 layers.

being usually applied for computer programs, is also applicable for tensor networks since the contraction of a
tensor network can be represented as a computational graph [52]. Its algorithmic complexity is theoretically
guaranteed to be not greater than the algorithmic complexity of the original program, which is equivalent to
the complexity of a tensor network contraction [52].

Ultimately, optimization produces a set of unitary matrices that minimize C(u). Such matrices define
single-qubit gates in a quantum circuit for the approximation of the desired state.

2.3. Numerical simulations
In order to demonstrate the capabilities of our method, we consider the frequently-used analytical functions
from different classes and prepare them in a many-qubit quantum state. In this work, we consider the
polynomial x5, the power function

√
x, the trigonometric function sinx, and the Gaussian probability

density function. Polynomials and trigonometric functions are often encountered when considering partial
differential equations [28] and two-electron integral calculation [30]. Distribution functions are needed for
sampling tasks [31] and the calculation of expectation values [6], which is necessary, e.g. in finance [12].
We sample the function over N points on an equidistant grid in [0,1] interval and form the function values
in a N-dimensional vector, which we approximate using N amplitudes of n= logN-qubit state.

In figure 4(a), we show the runtime of the whole state preparation routine as a function of the number of
qubits. Here, we set the fidelity to 99% and the number of layers to 3, which is sufficient to approximate the
considered vectors having low MPS ranks (also depicted in figure 4(a)). For all studied functions, our
quantum state preparation protocol features a polylogarithmic scaling in the function discretization
accuracy: the runtime scales as O(poly(logN)). The number of layers can be increased which leads to an
improvement in the approximation error—the infidelity decrease with the number of layers increase is
presented in figure 4(b) for a 20-qubit circuit. The runtime breakdown is shown in figure 4(c). As an
example, the approximation of a Gaussian density function sampled over 1024 points is depicted in
figure 4(d), where a 10-qubit circuit with 3 layers was used to achieve a 99.94% fidelity.

The most significant advantage of our method is the ability to achieve a low approximation error using a
shallow circuit. While deeper circuits with more parameters improve the accuracy, as shown in figure 4(b), a
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Figure 5. (a) Function sin(x2) shown over four different intervals. As the interval increases, the function shows faster oscillations,
which leads to an increase in its MPS rank. (b) Dependence of the approximation error of sin(x2) via 10 qubits (1024 grid points)
on the number of layers of the quantum circuit for different intervals. Corresponding ranks are shown in parentheses.
As expected, with a larger interval (higher rank), more layers are needed to approximate the function.

low error of 0.01%–0.1% can be achieved using only 5 layers. Such an error is of the same order of magnitude
as an error of state-of-the-art single two-qubit gates [53].

3. Discussion

3.1. Scaling analysis
Here, we analyze the complexity of the whole algorithm.

In order to investigate how the rank of MPS affects the approximation of our algorithm, we consider a
sin(x2) function specified on an interval [0,b]. As b increases, the function features faster oscillations and
becomes more complex, as shown in figure 5(a), which leads to an increase of MPS ranks. In figure 5(b), we
plot the approximation error for various intervals and number of layers. As expected, larger rank requires
more layers and the error is larger for a given number of layers for higher ranks. As our goal is to
approximate a function, we can fix the number of layers that provides certain accuracy. Generally, it is
challenging to specify the exact number of layers for a given approximation as it strongly depends on the
approximated function. Practically, for the functions investigated above shallow circuits are sufficient to
provide decent accuracy.

With fixed number of layers L, the remaining parameters are the number of qubits n and the MPS rank r,
which we assume to be restricted, i.e. r≪ 2n/2. Each step of the algorithm, then, features the following
complexity.

(i) Representation of a function as an MPS is done in O(nr2) time using the cross-approximation algorithm
[44]. Moreover, since this procedure is required to be done only once in the whole algorithm (in contrast
to optimization), the runtime contribution of this step can often be neglected.

(ii) Circuit simulation depends linearly on the number of qubits n with fixed number of layers according
to figure 3(a). At the same time, the contraction time almost does not depend on the rank r, because
all the complexity mainly contributed by the contraction of the quantum circuit, since the dimensions
arising from the contraction of the quantum circuit are much larger than reasonable values of ranks
(supplemental material, section 3). The treewidth [54] of the used circuit is constant with a fixed number
of layers (supplemental material, section 3), thus the complexity of this step is reduced to be proportional
to the total number of gates, i.e. O(nL).

(iii) Riemannian optimization features the complexity of O(nL), where the most computationally demanding
part is the SVD-retraction, which has to be done n(2L+ 1) times for 2× 2matricies. For the fixed number
of layers the runtime scaling is O(n).

Figure 4(c) shows our experimental investigation of the complexity and confirms the scaling is indeed O(n).
It is clear that the most time-consuming part is the circuit simulation since it is has to be done in all
iterations and requires an order of magnitude more operations than Riemannian optimization step. Thus,
for further improvement of the algorithm, first of all, one should focus on this particular step.

3.2. Cut once, measure twice: a technique against barren plateaus
The problem, which remains to be considered, is that hardware-efficient quantum circuits suffer from the
barren plateaus problem [32]. Namely, the number of circuit parameters to be optimized grows linearly with
the number of qubits, but the gradients decrease exponentially. If random values of the parameters in

7
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Figure 6. ‘Cut once, measure twice’ method to combat the barren plateaus problem. First, we partition an MPS into two halves
and truncate the rank at the border of the partition to 1 (left). Middle: we optimize the resulting circuits for each of the halves.
Right: we use the obtained gates as an initial guess in the optimization of the whole circuit. This method can be considered as a
clever initialization of the circuit, which is known to be a cure against barren plateaus.

variational gates are chosen as an initial guess for the optimization, the initial fidelity can be less than the
machine precision (∼1/2n).

However, as was proposed in [32], selecting the appropriate starting optimization gates may help to avoid
this issue. Combining the said idea with our MPS-based method, we modify the state preparation routine in
the ‘cut once, measure twice’ way, shown in figure 6:

(i) We cut the MPS into two parts and truncate the rank at the border of the partition to 1.
(ii) For each of the resulting MPS vectors, we apply the state preparation algorithm for circuits with the same

number of layers as for the initial MPS, but with fewer qubits. As a result, gates for the preparation of the
‘small’ MPS vectors are obtained.

(iii) We use thus obtained gates as an initial guess for the optimization of the original circuit for preparation
of the initial MPS.

If a single cut is not enough, we cut each MPS again into halves and apply this algorithm recursively.
In the numerical experiments, we have found that a single run of this procedure is sufficient to optimize

the 100-qubit circuit with 3 layers for the preparation of the Gaussian density functionN (0.5,0.01) on the
interval [0,1] with a 99.6% approximation fidelity. At the same time, the state preparation algorithm
implemented on the full 100-qubit circuit without any cuts prepares the same state with the fidelity close to
zero.

4. Conclusion

We have extended the fruitful idea of MPS-based encoding schemes by considering variational
hardware-efficient circuits as an encoder for high-dimensional vectors. The derived protocol allows us to
solve the problem of efficient encoding of structured classical data into a multi-qubit quantum state.
Examples of such data are smooth functions [45], probability distributions [55], videos [56], and image
classifiers [57, 58].

As an illustrative example, we consider the preparation of states generated by specific analytical functions
utilizing variational circuits with the canonical quantum gate set and restricting the connectivity to neighbor
qubits. The latter assumption benefits not only physical realization, but also tensor-based simulations
[47, 54], which we exploit to optimize the circuit parameters. We show that shallow circuits suffice to
approximate considered functions with a high accuracy.

Our method can be applied to a wide variety of quantum algorithms. Firstly, partial differential equations
(PDEs) after discretization are reduced to a system of linear equations Ax= b, where b is usually obtained by
sampling an analytical function on an interval. All quantum linear system solvers [1–5] require preparation
of b as the first step. Secondly, preparation of probability distribution functions is the main subroutine in
calculation of the expectation values, which is a central problem in the finance [7, 12], e.g. risk analysis [6],
and option pricing [59]. In addition, preparation of distributions can be applied to the sampling tasks
[53, 60, 61]in computational statistics and quantum mechanics. One of the main bottlenecks in quantum
machine learning [8, 62, 63] is the absence of quantum random access memory [64]. Our approach can be
applied to the encoding of structured data, such as images [41, 65] and videos [56], into quantum circuits.
Besides, our method can be utilized to prepare quantum states for sensing to maximise the detection
efficiency [66, 67]. A more detailed explanation of these applications is given in appendix C.
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It is worth mentioning that 106 − 109 points are sufficient for the discretization of a single-variable
function in the majority of problems, which requires 20–30 qubits. Higher number of qubits is necessary for
multi-parameter functions, where our approach works as well in case when the correlations between
variables are relatively small. Such multi-parameters functions are arising in the multi-dimensional PDEs
[68], option pricing [69] and other problems [70]. The preparation of high-dimensional vectors requires
large quantum circuits, which are generally hard to optimize due to the barren plateaus. Here we proposed a
‘cut once, measure twice’ approach that facilities the circuit optimization by proper initialization.

We also investigated circuits of different structures and found that there is no superior architecture,
leaving the choice of the circuit to the user or hardware topology. Our algorithm is generic and can be
applied to an arbitrary circuit, where variational gates may be applied over multiple qubits and/or defined by
the hardware, e.g. rf-pulses, laser radiation, etc.

Following the paradigm of hybrid classical–quantum computing, we expect tensor-based algorithms to
be the method of choice since the classical tensor networks subroutines feature logarithmic complexity in
memory consumption and runtime and can be easily translated to quantum hardware for further
manipulations. Mainly, the classical part can be done via tensor networks and then its output is transferred
to a quantum computer with the help of our algorithm. Besides, the output quantum state vector that is well
described as an MPS can be obtained using logarithmic—in the vector size—number of measurements [71].
Such an approach concludes the full cycle of hybrid computation MPS→ QC→MPS, where all steps
performed in logarithmic complexity.
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Appendix A. Software

We perform quantum circuits simulation using the QMware system [72]. The circuits are assembled using
QASM language and are, therefore, library-agnostic, i.e. can be run using Cirq, Qiskit, PennyLane, etc. We
implement the proposed algorithm as Python library QPrep, which is publicly available in [73]. The library
requires a function, number of sampling points and layers as an input and provides a circuit for the
corresponding quantum state preparation.

Appendix B. Riemannian optimization

Riemannian optimization allows us to optimize a function constrained on a Riemannian manifold. In this
work, our purpose is to minimize the infidelity equation (2) on the manifold of isometric matrices. We
calculate the (Euclidean) gradient, find its projection onto the tangent space, and project the updated matrix
onto the space of isometric matrices.

Here, we denote the manifold of isometric matrices of sizem1 ×m2 asM and the tangent space at point
X ∈M as TXM. The Riemannian gradient of some differentiable function f (X) at point X ∈M of isometric
matrices is calculated as (see supplemental material, section 4 for further details)

∇Rf(X) =∇f(X)− 1

2
X
[
(∇f(X))†X+X†∇f(X)

]
.

By definition,∇Rf(X) is an orthogonal projection of the Euclidean gradient∇f(X) onto the tangent space
TXM. The last step is the projection of the updated matrix (X−α∇Rf(X)) on the manifold of isometric
matricesM, which is performed via SVD-retraction:

RSVD
X (−α∇Rf(X)) = UV†,

where X−α∇Rf(X) = USV† is the SVD decomposition.

9
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Appendix C. Applications

C.1. Sampling
The most straightforward way to apply quantum state preparation is the sampling task [31]. Our algorithm
allows for the preparation of probability distribution functions, and then measurement of qubit’s states
provides us samples. For instance, the function of interest can be the Gaussian distribution, that has
restricted MPS ranks in case of good structure of the covariance matrix (small ranks of off-diagonal blocks of
the matrix) [74].

C.2. Solution of linear systems of equations
Linear systems of equations usually arise considering partial differential equations after their discretization.
For instance, simple one-dimensional Poisson equation

−u′′(x) = f(x) x ∈ [0,1] u(0) = u(1),

gives the system of linear equations that can be discretized on the uniform grid

Ax= b,

where bi = f(xi) is the function value at the corresponding point.
Most of quantum algorithms for linear systems assumes that it is possible to efficiently prepare any

desired state b [1, 3, 5]. However, there is still no general and established framework for this task and we
expect that our approach facilitates the vectors encoding.

C.3. Expectation value calculation
Calculation of the expectation value is one of the main routine in the computational finance, and many
quantum algorithms are devoted to this problem [7, 12]. At the same time, the quantum state preparation is
one of the main subroutine in these approaches, so our method is applied here as well.

For example, in the risk analysis, the Value at Risk needs to be calculated [6]. That is to find the smallest
X such that:

P[x⩽ X]⩾ (1−α)

for fixed α. This can be reformulated to calculation of the expectation value of the Heaviside step function
θ(x−X) with various values of X. Suppose we have distribution function p(x) defined on the interval (a, b),
then:

P[x⩽ X] =

ˆ X

a
p(x)dx=

ˆ b

a
p(x)θ(x−X)dx= E(θ(x−X)).

Thus, the task is reduced to finding the expectation value. If one wants to calculate it on a quantum
computer one can use the amplitude estimation algorithm [75] which provides quadratically better error
scaling than classical Monte Carlo. But first of all, one needs to prepare the distribution function p(x)
discretized on the interval (a, b):

|p⟩=
∑
i

√
p(xi)|i⟩.
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