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Abstract
We review some of the recent efforts in devising and engineering bosonic qubits for
superconducting devices, with emphasis on the Gottesman–Kitaev–Preskill (GKP) qubit. We
present some new results on decoding repeated GKP error correction using finitely-squeezed GKP
ancilla qubits, exhibiting differences with previously studied stochastic error models. We discuss
circuit-QED ways to realize CZ gates between GKP qubits and we discuss different scenarios for
using GKP and regular qubits as building blocks in a scalable superconducting surface code
architecture.

1. Introduction

There has been a recent surge in interest in bosonic error correction, both from the experimental as well as
from the theoretical side. By bosonic quantum error correction we mean the representation of a qubit as a
two-dimensional subspace of an oscillator, a means of performing some error correction on this qubit, as
well as a suite of techniques to perform universal computation on the qubit.

We review some of these recent developments and older proposals, with an eye towards integration of
the ideas into a scalable (code) architecture. To be concrete, we concentrate on superconducting devices as
physical realizations, due to the excellent control and engineerability of strong non-linearities, as described
by the formalism of circuit quantum electrodynamics (circuit-QED). For more background, we refer the
reader to a recent review of circuit-QED [1] and also the realization of quantum error correction in
circuit-QED [2].

Due to the commonality of the quantum optics language, some of our discussion applies more generally
to other physical systems realizing oscillators, such as optical modes or mechanical oscillators. Our paper
does not aim to be comprehensive in reviewing all possible bosonic codes, but rather seeks to identify some
promising approaches and future work to be undertaken, in particular emphasizing scalable bosonic GKP
error correction.

A first condition to even consider encoding a qubit into an oscillator is that a high-Q oscillator is
available6. Examples of such high-Q oscillators are microwave cavity modes, of 3D or co-planar resonators
in a frequency range f = 3–10 GHz where single-photon life-times can be up to τ = 1/κ = 1–10 ms [3, 4].
Thus, without additional couplings and drives, the native noise model of such microwave cavities is simply
photon loss, governed by the cavity decay rate κ.

In order to prepare and manipulate an encoded qubit as prescribed by some code, one induces
additional errors which the chosen code should, ideally, also be able to correct. It is thus important to pick a
code in which computational manipulations and error corrections are relatively simple and the chosen code
can also handle the errors which occur in these processes. As is well known, no finite code can correct all
errors, and hence the goal of bosonic quantum error correction is simply to provide a logical qubit which

6 The Q of the oscillator captures the number of oscillations until it is fully damped and is given by Q = ω
κ

with ω = 2πf the angular
frequency of the oscillator and κ the oscillator decay rate.
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can be used as a building block in a further coding scheme. The repetition or surface codes are the simplest
examples of such further encoding steps, using then multiple oscillators.

Even though we can embrace the surface code as the simplest scalable 2D coding scheme [5], variants on
who is playing the role of data and ancilla qubit and what additional error correction on these qubits takes
place, are important in actually getting the very demanding engineering it, to pan out. If we have learned
anything over the past 20 years of Hamiltonian engineering it is that partially-coherent dynamics can be
implemented in many quantum systems, while very few to none may allow for the high-precision control
and scalability needed for quantum error correction.

Overall, the challenges of efficiently using a bosonic qubit encoding are in (1) keeping the harmonicity
of the oscillators as high as possible while temporally coupling to this mode, with high on/off ratio, to create
and manipulate non-classical code states, (2) finding a photon number regime in which approximations of
engineered Hamiltonians are accurate while the error correcting properties and benefits of the encoding are
valid. When using bosonic qubits as basic qubits in a code architecture, it may be advantageous to choose
data qubits differently than ancilla qubits and we will give some examples of such choices. The simplest
encoding of a single qubit into a bosonic mode can be done using Fock states: the vacuum state represents
the logical |0〉, denoted as |0〉, and a single-photon state represents the logical |1〉, denoted as |1〉.

For superconducting devices one can view the difference between bosonic encoding versus the regular
transmon qubit encoding [6] as an interchange between the roles played by the anharmonic and the
harmonic oscillator. Using transmon qubits to store information, resonators are used as couplers and for
read-out. Using bosonic qubits to store information, anharmonic oscillators can be used for state
preparation and couplers generating effective nonlinearities to realize gates. In this review we will refer to
systems in which the lowest two energy eigenstates (in the absence of couplers) are used as regular qubits:
this definition covers a Fock encoding as well as a transmon or a fluxonium qubit.

1.1. Preliminaries & notation
Here we collect a few definitions and mathematical identities that are used throughout the paper.
Additionally, useful textbooks for quantum optics and its mathematical description are [7–9]. We use
q̂ = 1√

2
(a + a†) and p̂ = i√

2
(a† − a), where a (a†) are annihilation (creation) operators, so that [q̂, p̂] = iI

and we sometimes refer to p̂ and q̂ as quadratures. A displacement in phase space is denoted as
D(α) = exp(αa† − α∗a) and acts as D†(α)aD(α) = a + α, while a coherent state is defined as
D(α)|0〉 = |α〉 = exp(−|α|2/2)

∑∞
n=0

αn

n! |n〉. We have eiθa†aa e−iθa†a = a e−iθ so that

eiθa†aD(α)e−iθa†a = D(α eiθ). The following identities hold

exp(−ivq̂)|p〉 = |p − v〉, exp(−iup̂)|q〉 = |q + u〉, |p〉 = 1√
2π

∫
R

dq eipq|q〉, (1)

so that
exp(ivq̂)p̂ exp(−ivq̂) = p̂ − v, exp(iup̂)q̂ exp(−iup̂) = q̂ + u. (2)

A single-mode squeezing transformation is given by exp(−iHsqt) = Sq(ξ) = exp( 1
2 (ξ∗a2 − ξa†

2
)) with

Hamiltonian Hsq = Ea†
2
+ E∗a2 with ξ = 2iEt. The squeezer enacts the mode transformation

aout = Sq†(ξ)aSq(ξ) = a cosh(r) − a† eiθ sinh(r) with r = |ξ| and θ = arg(ξ).
In Lindblad equations we use the notation D(A)(ρ) = AρA† − 1

2{A†A, ρ} for some operator A.
It is standard to denote gates acting on a logical qubit subspace with overlines, i.e. CNOT etc. In order to

avoid notation clutter, only in section 2.3.2 we denote logical gates on the GKP codewords without it, i.e.
CNOT and Z instead of CNOT and Z.

2. Bosonic qubits and their components

2.1. Early birds & cats and their generalizations
The first bosonic codes were formulated in [10] and designed to protect against photon loss. Of particular
interest is a two-mode code with codewords

|0〉 = 1√
2

(|40〉+ |04〉) , |1〉 = |22〉, (3)

with |k〉 denoting a Fock state with k photons. If either |0〉 or |1〉 (or both) were hit by the loss of a single
photon on any one of the two modes, we can readily see that the resulting states would still be orthogonal.
This orthogonality is a prerequisite for being able to correct the photon loss error, but it is not a sufficient
condition. To examine the error correction capability of a (bosonic) code, one asks whether a set of

2
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dominant errors satisfies the quantum error correction (QEC) conditions [11] of the code: if this holds
(approximately) then there is an (approximate) recovery operation undoing these dominant errors. For a set
of errors E = {E1, . . . , Ek} acting on the encoding of a single qubit, the quantum error conditions are as
follows. ∀i, j, we require

〈0|E†
i Ej|0〉 = 〈1|E†

i Ej|1〉 logical states are indistinguishable, (4)

〈0|E†
i Ej|1〉 = 〈1|E†

i Ej|0〉 = 0 orthogonality remains. (5)

To examplify the use of these conditions, let us first look at the single-mode version of the code in
equation (3):

|0〉 = 1√
2

(|0〉+ |4〉) , |1〉 = |2〉. (6)

This code was introduced in [12] as the smallest member of a family of so-called binomial codes, hence its
name kitten or ‘baby-binomial’ code. This code and its logical gates has been implemented using a
superconducting microwave cavity mode as an oscillator in reference [13], but the life-time of the encoded
qubit was comparable to that of a Fock state encoding. One can easily check that for the error set
E = {I,

√
γa}, the QEC conditions in equations (4) and (5) for this code are met. However, these errors are

only an approximation of the real noise. A photon loss channel with photon decay rate κ lasting for time t
with γ ≡ κt 	 1, can be modeled by a superoperator Nγ with Kraus operators

E0 = I − γ
2 a†a + O(γ2) ≈ e−γa†a/2 and E1 =

√
γa, or

Nγ(ρ) = E0ρE†
0 + E1ρE†

1, E†
0E0 + E†

1E1 = I + O(γ2). (7)

For the Kraus operators E0 and E1 the QEC conditions in equations (4) and (5) are not quite met. In
particular, we have

〈0|E†
0E0|0〉 − 〈1|E†

0E0|1〉 = O(γ2)(〈0|(a†a)2|0〉 − 〈1|(a†a)2|1〉) �= 0, (8)

as |1〉 is an eigenstate of a†a, while |0〉 is not. This means that upon the detection of no photon loss
(corresponding to E0) the code states undergo an irreversible distortion. The two-mode version of this code,
equation (3), improves on this distortion issue as the quantum error correction conditions for the two
mode code are met for the error set E = {√γa,

√
γb, exp(− γ

2 (n̂a + n̂b)) ≈ I − γ
2 (n̂a + n̂b)}. These error

operators can be viewed as the three Kraus operators of a process in which there is either photon loss on
mode a, photon loss on mode b, or no photon loss on either modes. For the states in equation (3) we have
no distortion upon not detecting a photon from either modes as |0〉 and |1〉 are both eigenstates of
exp(− γ

2 (n̂a + n̂b)) with eigenvalue exp(−2γ). As far as we know, this two-mode code is still awaiting
experimental realization.

By allowing ourselves code states with higher average photon number, we can correct for more loss
errors, as well as gain and dephasing errors. More precisely, reference [12] has introduced families of
binomial and so-called cat codes which correct against the set of errors

E = {I, a, . . . , aL, a†, . . . , a†
G

, a†a, . . . , (a†a)D} for arbitrary L, G and D. For example, the idea behind the
binomial codes can be understood as follows. Using the Holstein–Primakoff transformation a†a → Jz + J,
the binomial code words |0〉 and |1〉 can be seen as spin-eigenstates of Jx = ±J with 2J = N + 1, where one
defines N = max(L, G, 2D). Dephasing errors (a†a)m, m = 1, . . . , D thus lead to a change in Jx by at most
D � 
J�, hence keeping codewords orthogonal. At the same time, protection against photon loss and gain is
achieved by using a subspace of sufficiently separated Fock states stabilized by the operator

ΠS = ei2πa†a/(S+1) with S = L + G. For S = 1 this gives the photon parity operator ΠS=1 ≡ Πphoton = eiπa†a:
the even-photon codewords in equation (6) are clearly +1 eigenstates of this photon parity operator.

Another family of single-mode codes are the cat codes. A very simple encoding is |0〉 ≈ |α〉 and
|1〉 ≈ | − α〉 with coherent state |α〉, first proposed in [14, 15]. Since |α〉 and | − α〉 are not orthogonal, it is
more appropriate to define the code states as |C±

α 〉 = 1√
N±

(|α〉 ± | − α〉) with N± = 2(1 ± exp(−2|α|2)).

These states are orthogonal for all α and we can define |±〉 ≡ |C±
α 〉. On this encoding, photon loss induces

immediate phase-flip errors since a|C±
α 〉 ∝ |C∓

α 〉. Thus the phase-flip error rate (probability per unit time) is
proportional to κ|α|2 with κ the photon loss rate of the encoding mode.

On the other hand, for large enough α, bit-flips, α ↔ −α, can be expected to occur at a much lower
error rate as they correspond to a large change of the state in phase space. Particularly interesting is the
engineering of Hamiltonians or dissipative processes which have these code states |±α〉 as degenerate
fixed-points, so that there is a ‘macrosopic’ energy barrier to transition between them, leading to a bit flip
rate exponentially small in |α|2. This design can lead to a qubit for which the noise is biased as phase-flip

3
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errors are more prominent than bit-flip errors. We will discuss this noise-biased qubit in more detail in
section 2.2.

The next-level cat encoding was introduced in [15, 16], and is sometimes referred to as the four-legged
cat code since its codewords have four blobs in phase space:

|0〉 = 1√
N0

(
|α〉+ | − α〉 + |iα〉+ | − iα〉

)
, |1〉 = 1√

N1

(
|α〉+ | − α〉 − |iα〉 − | − iα〉

)
,

Nb = 8 e−α2 (
cosh α2 + (−1)b cos α2

)
, α ∈ R. (9)

Using the standard identity 〈α|β〉 = e−(|α|2+|β|2)/2eα
∗β one can verify the orthogonality of these two states.

As for the kitten code, we can verify that both states are +1 eigenstates of the photon parity operator

Πphoton = eiπa†a using that Πphoton|α〉 = | − α〉. The photon parity thus functions as a check operator,
taking eigenvalue +1 on the code space and measuring it is a natural way to detect photon loss and perform
error correction.

The states |0〉 and |1〉, both having even photon parity, are however distinguished by their photon parity

modulo 4, expressed as the ±1 eigenvalues of the operator Π1/2
photon = exp(iπa†a/2). To measure the photon

parity operator via an ancilla qubit, a cavity mode-qubit dispersive interaction −χZa†a/2 can be used [7].
In circuit-QED the interaction Za†a comes about naturally as the effective interaction between, say, a cavity
mode and a linearly-coupled, off-resonant, transmon qubit mode [6]. The measurement of Πphoton then
proceeds by preparing the ancilla qubit in |+〉, letting the interaction take place for time t = π/χ and
subsequently measuring the qubit in the |±〉 basis. Using a transmon qubit and cavity mode, reference [17]
has shown that tracking the photon parity by repeated measurements of Πphoton makes for a logical qubit
which has a longer life-time than a Fock qubit without error correction in the same cavity mode. This result
has essentially been the first demonstration of quantum error correction lengthening the life-time as
compared to that of native qubits (transmon and/or Fock encoding) in the hardware.

Before we discuss further generalizations, let us examine the quantum error correction conditions,
equations (4) and (5) for this cat code with respect to the set of errors E = {I,

√
γa}. One can quickly

observe that all conditions are obeyed except 〈0|a†a|0〉 ?
=〈1|a†a|1〉. Besides the uninteresting case of taking α

very large (so that all |±α〉, |±iα〉 are orthogonal), this last condition is exactly met at sweet spots given by
the equation tanα2 = −tanhα2. The smallest sweet-spot at |α|2 = 2.34 lies close to the number of photons
n̄ = 2 of the cat code used in the experiment [17].

There are several error channels which impact the performance of the cat code using repeated photon
parity measurements. First of all, the code cannot fully correct against the photon loss channel as it cannot
correct the distortion Kraus operator E0 = I − γa†a/2. Secondly, two photon-loss events ∝ a2 implement a
logical bit-flip |0〉 ↔ |1〉. Thirdly, photon loss in combination with the inevitable Kerr nonlinearity
∼ (a†a)2 on the cavity mode causes incorrectable dephasing: the Kerr interaction makes the cavity rotation
speed depend on the number of photons in the cavity, but this number becomes indeterminate in the
presence of photon loss. Last but not least, transmon qubit decay during the qubit controlled-a†a
interaction, is a serious source of feedback error. For example, when the qubit decays half-way through the
interaction, |1〉 → |0〉, it applies only half the rotation on the cavity mode. The result is that the eigenvalues

of Π1/2
photon = Z are measured via the qubit measurement, collapsing the logical state.

This last feedback error problem is an important issue for any bosonic qubit, and it has been a central
theme in the theory of fault-tolerant computing in general [18]. A disadvantage of the theoretical schemes
for fault-tolerant quantum error correction is that they typically require additional hardware resources,
such as logical ancilla qubits or (verified) multi-qubit GHZ states. Instead, we may seek hardware-efficient
mitigation of the feedback error problem. As an example, reference [19] has addressed the feedback error
due to transmon relaxation by drive-engineering the dispersive coupling Hamiltonian to equal
−χ(|2〉〈2|+ |1〉〈1|)a†a and starting the ancilla transmon qubit in the state 1√

2
(|0〉+ |2〉). Transmon qubit

decay from 2 → 1 then commutes with the transmon–cavity interaction and does not cause errors on the
cavity mode. The decay does—as in the normal case—affect the reliability of the transmon qubit
measurement outcome. All-in all, this has led to an overall factor 5 in improvement of the life-time of the
encoded cat qubit [19].

Another way of minimizing feedback errors on a bosonic code is to use a biased-noise ancilla qubit
(section 2.2) as an ancilla qubit. As proposed in reference [20], the goal is then to let the strong-noise error
channel affect the ancilla qubit measurement, while the low-noise (bit-flip) channel on the ancilla feeds
back low-noise to the bosonic code.

Single-mode cat codes with higher-photon numbers can be formulated and form a class of codes [12,
21]. Reference [22] studied the performance of binomial, cat and GKP codes (see section 2.3), against

4
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photon loss, assuming optimal noisefree recovery as permitted by the quantum error correcting conditions.
Reference [23] has formulated a general framework of rotation-symmetric codes of which the binomial and
cat codes are subclasses: the unifying theme is rotation symmetry of the code states in phase space captured
by invariance under the operator ΠS. Another interesting class of bosonic codes uses a three-wave mixing
χ(2)-interaction, equation (32), as the central element for defining the code and correcting photon loss [24].
Various classes of multi-mode codes against photon loss exist, see for example [22, 25, 26] and references
therein.

A challenge in using a bosonic qubit is that some computational manipulations can be more involved
than for a regular qubit. For example, on a regular qubit such as a transmon qubit, rotations by an angle θ
around axes X or Y are easily accomplished by temporarily supplying microwave radiation. On a bosonic
qubit, these simple single-qubit gates can be non-trivial. An advocated solution in reference [27] is to always
use a dual-rail (dr) encoding of a bosonic qubit with |0〉dr = |01〉 and |1〉dr = |10〉, where |0〉 and |1〉 are the
states of (an arbitrary) bosonic qubit itself. Having mapped the Bloch-sphere of a qubit onto a two-mode
state space, the exponential mode-SWAP operator exp(iθSWAPa,b) becomes a universal gate to do
single-qubit and two-qubit gates, and has been realized in [28]. Here the linear SWAPa,b transformation
interchanges two modes a and b, i.e. its action on quadrature operators for the modes is given by qa ↔ qb

and pa ↔ pb. If we envision using a bosonic qubit as a building block qubit in a stabilizer code, it is however
not necessary to perform any gate, but rather we can focus on performing CNOT or CZ, Hadamard (H)
and T gates possibly using ancilla qubits, see e.g. reference [5].

2.2. Noise-biased cat qubit
A method to set up a dissipative process which stabilizes the coherent states |±α〉 was devised in [15]. The
idea is to engineer the Lindblad equation (in a frame rotating at the mode frequency):

ρ̇ = −i[Hsq, ρ] + κ2phD(a2)(ρ) ≡ L(ρ), (10)

with Hsq = Ea†
2
+ E∗a2 where E = i|E| with |E| proportional to the strength of a pumped microwave

mode acting as a classical field. To understand the fixed points of this evolution—ρ for which
L(ρ) = 0—we can write the Lindblad equation as

ρ̇ = −i
(

Heffρ− ρH†
eff

)
+ κ2pha2(ρ)a†

2
, (11)

with Heff = Hsq −
iκ2ph

2 a†
2
a2. We can then use, with K =

κ2ph

2 :

−iHeff = −Ka†
2
a2 + |E|

(
a†

2 − a2
)
=− KM̃†

αMα −
|E|2
K

,

with Mα = a2 − α2I, M̃α = a2 + α2I, α =

√
|E|
K

. (12)

This immediately implies that the states |±α = ±
√
|E|/K〉 are fixed points of the Lindblad evolution, as

Mα|±α〉 = 0, and the last term in equation (11) is canceled by the constant −|E|2
K which remains from the

first term. Hence, any linear combination of the states |α = ±
√
|E|/K〉 is a fixed point of the dynamics.

When the pump inducing the squeezing Hamiltonian Hsq is off, E = 0, we can observe that the Fock
states |0〉 = limα→0|C+

α 〉 and |1〉 = limα→0|C−
α 〉 are fixed points, distinguished by their photon parity. Thus

when E is gradually increased, we can smoothly change from a Fock encoding into the cat |C±
α 〉 encoding.

Photon loss at rate κ, which can be modeled by introducing an additional term κD(a)(ρ) in equation (10),
causes phase-flip errors, i.e. flipping between the states |C±

α 〉, but does not interfere with the stabilization
itself as |±α〉 are eigenstates of a so that D(a)(|±α〉〈±α|) = 0. One can add a drive term
Hdrive = ε(t)a† + ε∗(t)a to the Lindblad equation and observe that the annihilation operator a will generate
rotations around the Z-axis (periodically interchanging |C±

α 〉). At the same time, a† in principle leads to a
departure from the qubit subspace spanned by |±α〉 corresponding to leakage. However, due the ∼ |α|2 gap
of the Lindbladian, such departure from the eigenvalue-0 manifold is exponentially suppressed and the
effect of the driving term can be analyzed by projecting it onto the stabilized subspace. In this subspace it
then induces Rabi oscillations around an axis which is exponentially-closely aligned with the Z-axis, with
Rabi frequency Ω ∝ |ε||α|, experimentally demonstrated in [29].7 A measurement in the X-basis can be
accomplished by measuring the photon parity through a coupled transmon qubit. The (pumped) squeezing

7 In references [15, 30] and some other papers a different convention is used, namely |C+
α 〉 (resp. |C−

α 〉) is the Z eigenstate |0〉 (resp. |1〉),
thus interchanging what is called Z and X here.

5
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interaction and the required two-photon dissipative process have first been experimentally realized in [31].
This was achieved by coupling a 3D storage cavity (at frequency ωa) via a bridging transmon to a lossy
cavity (at different frequency ωb) and applying a two-tone drive on the lossy cavity so as to set up a process
to convert two storage photons to one lossy cavity photon which is subsequently lost (the κ2phD(a2)
process). The lossy cavity is driven at pump frequency ωp = 2ωa − ωb as well as close to its own frequency
ωb, generating, through the transmon nonlinearity, an effective degenerate parametric oscillator with

resonant terms of the form a†
2
b + b†a2.

A more recent experimental realization in reference [32] has been able to cleanly generate the desired
interactions (via an effective three-wave mixing, see also section 3.3) and observe the exponential decrease
of the bit-flip error rate in |α|2 as well as the linear increase of the phase-flip error rate with |α|2.

An alternative, non-dissipative, route towards a noise-biased qubit was first proposed in [33]. Instead of
invoking dissipation, the idea is to engineer a Hamiltonian which has |±α〉 as degenerate eigenstates, using
a Kerr nonlinearity and squeezing. The two-photon dissipation is then considered an optional add-on
which helps in mitigating leakage, i.e. a departure from the subspace spanned by |±α〉. The target
Hamiltonian (in the rotating frame of the cavity mode) is

H = −Ka†
2
a2 + Ea†

2
+ E∗a2 = −KM†

αMα +
|E|2
K

,

Mα = a2 − α2, α =

√
|E|
K

eiϕ, E = |E| e2iϕ. (13)

The spectrum of H has eigenvalues running from |E|2
K downwards as the first term in H is

negative-semi-definite. Omitting the factor |E|2
K , the highest eigenstates are the states |±α〉 with degenerate

zero eigenvalues. We can observe the similarity and difference with equation (12): here we consider a
Hermitian matrix and the phase of the pump amplitude E is variable and determines the phase of the
coherent states which are the zero energy eigenstates. Thus, by adiabatically changing the phase of E we
move to different zero energy eigenstates, allowing us to transform α→−α and hence realize a X gate on
|C±

α 〉. For the stability of the encoded space it is important to understand the spectrum of H and the gap
below these degenerate zero eigenstates, see the analysis in [20, 33]. To understand this, assume that the
phase ϕ = 0 for simplicity. We can displace the Hamiltonian by D(±α) with α =

√
|E|/K. For large |E|/K ,

one can approximate D†(±α)HD(±α) ≈ −4K|α|2a†a, a harmonic oscillator Hamiltonian. This shows that
for large α, the spectrum approximately has the gap 4K|α|2 and the first excited states below |±α〉 are
roughly equal to D(±α)|1〉. The so-called ‘Cassinian’ Hamiltonian in equation (13) was first studied in
[34]: the surfaces of constant classical energy are described by Cassinian ovals in 〈p〉 and 〈q〉 with the focii
of the ovals at 〈q〉 = ±

√
|E|/K. As a quantum system the spectrum is that of an inverted double-well

(‘double-oscillator’) with the well maxima at zero energy for the states |±α〉. We can consider the effect of
driving and several dissipative processes for the Hamiltonian in equation (13). For example, when one
includes photon loss κD(ρ) in the Lindblad equation and the pump amplitude is sufficiently large, i.e.
16|E|2 > κ2 [33, 35, 36], the fixed point of the Lindblad equation is the state p|α̃〉〈α̃|+ (1 − p)| − α̃〉〈−α̃|
with modified α̃, |α̃|2 < |E|

K . In this regime the system neatly represent the dissipative storage of a classical
bit.

The effect of other sources of noise such as dephasing (κdephD(a†a)(ρ), see also equation (29)), photon
gain (κn̄thermD(a†)(ρ)) due to the coupling with a finite temperature heat bath, as well coupling with baths
with other spectral densities are discussed in detail in [15, 20, 33, 37].

Reference [30] has implemented the Kerr-cat Hamiltonian in equation (13) and the corresponding qubit
in the resonant mode of a so-called SNAIL element (see section 3.3), coupled to a read-out cavity mode.
The fourth-order nonlinearity of the SNAIL element gives the wanted −Ka†2a2 term, while one can drive

the mode at twice its frequency so as to use the third-order SNAIL term ∝ a†
3
+ a3 to turn on squeezing.

The experiment generated cat states with |α|2 ≈ 2.5 with a dephasing life-time of 3μs, and an enhanced
decay life-time of 105μs, and a π/2 rotation around the Z-axis obtained by driving took 24 ns. The ability
to convert the noise-biased qubit to a Fock encoding by turning off the squeezing drive allows to measure
Pauli X via a standard dispersive measurement [30]. One can also measure a noise-biased qubit in the
X-basis by dispersively coupling (−χa†aZ/2) it to an ancilla qubit to map the photon parity onto the state
of the ancilla qubit which is subsequently measured. To realize a (nondestructive) Pauli Z measurement,
distinguishing ±α, reference [30] had applied, besides the squeezing drive, a drive at the difference
frequency of the SNAIL mode and the read-out cavity mode (b) to get a resonant beam-splitting interaction
∝ a†b + ab†. The upshot is that the coherent states |±α〉 are mapped to corresponding coherent states in
the cavity mode which are heterodyne-measured when leaking out of the cavity.

6
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Given that the noise-biased cat qubit is designed to have a low bit-flip error rate, it can function as an
ancilla control qubit in the error correction circuit for another code [20] inducing low feedback noise.
Assume we have a code which is an eigenspace of a stabilizer S = eiA and S is to be measured using the
noise-biased cat qubit to detect or correct errors. This requires an interaction of the noise-biased cat qubit
and the code of the form Hint ∝ (a + a†) ⊗ A since a + a† ≈ Z on the noise-biased cat code space (besides
some leakage), allowing for a qubit controlled-S operation. For example, for the cat code,

S = eiπb†b = Πphoton, requiring a tunable photon–pressure coupling between the two modes of the form
Hint ∝ (a + a†)b†b. For the GKP code, see section 2.3, S is a displacement so that Hint can be chosen to be a
tunable beam-splitting interaction of the form a†b + ab†.

It has been argued that, if the noise-bias of this qubit is sufficiently strong, only a classical repetition
code [38] might suffice to correct for the dominant phase-flip (Z) errors due to photon loss. Crucial in this
idea is that the CNOT gate which is needed to measure the XX checks of this code preserves the noise-bias,
that is, Z errors during the gate do not propagate to become X errors after the gate. For the Kerr-cat qubit a
noise-bias preserving CNOT gate has been proposed in [37]. A similar idea is to use this Kerr-cat qubit as a
basic qubit in a surface code architecture in which the XXXX and YYYY checks are measured [37, 39]. In
this modified form of surface code one gains much more information about Z errors. It has been shown
that when the probability for phase-flip errors and measurement errors is a factor 100 more than that of
bit-flip errors within a phenomenological error model, the threshold against Z errors can be as high as 5%
[39]. It is an open question whether such high bias will be feasible in practice as experiments for doing the
CZ gate and the noise-bias preserving CNOT gate on these noise-biased qubits are still to come.

2.3. The GKP qubit
The (square) Gottesman–Kitaev–Preskill (GKP) qubit introduced in reference [40] is defined through two
commuting displacement operators, acting as translations in phase space, i.e. Sq = exp(i2

√
πq̂) and

Sp = exp(−i2
√
πp̂).8 The ideal GKP code is the space invariant under these two phase-space translations.

As a result, any wave function in q (resp. p) in this space has support on q = k
√
π (resp. p = l

√
π) for

integers k, l ∈ Z. The logical operators of the qubit are Z = exp(i
√
πq̂) and X = exp(−i

√
πp̂) with

X Z = −Z X. In addition, Y = iX Z = exp(iπ/2) exp(−i
√
πp̂) exp(i

√
πq̂) = exp(i

√
π(−p̂ + q̂)). This choice

makes the wave function in q of |0〉 a sum of delta functions at values of q which are even multiples of
√
π,

while |1〉 has uniform support on values of q which are odd multiples of
√
π. The ideal code meets the

quantum error correction conditions for a continuous set of ‘at most half-logical’ displacements
E = {eiup̂, eivq̂ : |u|, |v| � √

π/2}, since any products of these shifts maps a |0〉 onto a state orthogonal to
both |1〉 and |0〉 (and vice-versa). The set of correctable displacements forms a square Wigner–Seitz or
Voronoi cell (containing only one lattice point such that all points in the cell are closer to this point than to
another lattice point) in the code lattice generated by the logical phase-space translations.

Naturally, an asymmetric version of the GKP code which corrects more shift errors in q̂ than shift errors
in p̂ can also be defined. However, when there is no hardware-based noise asymmetry between p̂ and q̂ this
does not seem immediately useful.

In principle, and in theory, to perform quantum error correction the eigenvalues (phases) of the unitary
operators Sp and Sq are to be measured. Performing such measurements projects the continuum of errors
onto (superpositions of) possible displacements, and we perform error correction by choosing a
displacement of minimal amplitude which resets these eigenvalues to +1, corresponding to the code space.
In section 2.4 we will analyze GKP quantum error correction using encoded GKP ancilla qubits, see
figure 7. The advantage of this form of error correction is that it does not suffer from feedback errors
induced by a poor ancilla qubit (instead, it suffers feedback errors from a GKP ancilla qubit) and the
information gained through measuring the GKP ancilla states is analog rather than binary. The
disadvantage is that one needs to prepare GKP ancilla states themselves first.

For this latter task one can perform some form of phase estimation to measure the eigenvalues of the
unitary operators Sp and Sq. Since the eigenvalues take continuous values, one only ever realizes an
approximate estimation of these phases. Phase estimation can readily be executed by coupling the GKP
mode repeatedly to a single ancilla qubit via controlled-displacement gates as was proposed and discussed
in great detail in reference [41], focusing on a circuit-QED implementation. The idea behind this is simple.
To measure the eigenvalue of a unitary operator U such as the displacements Sp or Sq, one can use ancilla
qubits applying qubit controlled-Uk gates for k = 1, 2, . . . .For example, when k = 1, the circuit on the left
in figure 1 has outcome probabilities P(±) = 1

2 ( 1 ± 〈Re(U)〉, while the circuit on the right has
probabilities P(±) = 1

2 ( 1 ∓ 〈Im(U)〉.

8 The commutation of Sp and Sq can be verified by using the identity exp(A)exp(B) = exp(B)exp(A)exp([A, B]) for operators A and B
whose commutator is proportional to I.
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Figure 1. Single round of phase estimation with U|ψn〉 = eiθn |ψn〉 where the probability for ancilla qubit to be measured in the
state |±〉 equals P(±) =

∑
n|αn |2 1

2 (1 ± cos(θn)) (left) and P(±) =
∑

n|αn |2 1
2 (1 ∓ sin(θn)) (right). In the applications here U is

a displacement Sp or Sq.

In phase-estimation schemes, higher powers k > 1 of Uk are often used, but applying Uk, a displacement
of strength ∼ k, increases the number of photons in the state by ∼ k2 and does not provide a good
approximation of an approximate GKP state [41]. Instead of repeating the phase estimation to collect bits of
the phase and then do a final corrective displacement, it is experimentally simpler to opt for immediate
feedback on the code state based on each new bit obtained in a round of phase estimation. This is the route
taken in the experimental realization of the GKP code in [42], where a small conditional displacement on
the GKP qubit is executed depending on the ancilla qubit measurement outcome. In fact, using such
immediate feedback the state of the ancilla qubit does not even need to be measured, as the feedback can be
done depending on the qubit state itself, followed by an approximate disentangling step [43] or alternatively
a qubit reset step (to avoid entropy build-up).

In addition, in reference [42] only the right circuit in figure 1 measuring Im(U) is used (instead of
measuring both Re(U) and Im(U)). If the state to be measured is (approximately) symmetrically centered
around the vacuum so that its wavefunction is symmetric under q →−q and p →−p, we have∫

dp|ψ(p)|2Im(Sp) = 0 and
∫

dq|ψ(q)|2Im(Sq) = 0. This implies that P(±) = 1
2 (1 ± 〈Im(U)〉) = 1

2 ,
suggesting that the measurement outcome ± can gain a maximal amount of information by weakly
projecting onto sin(θ) ≷ 0, and subsequently shifting the state to the point θ = 0. These feedback shifts are
realized in [42] by small displacements. Note that if the input state has eigenvalue phase θ close to 0, then
Re(U) is close to 1, implying that not much is learned by doing the measurement with outcomes
P(±) = 1

2 (1 ± 〈Re(U)〉).

We remark that the length of the displacement of the logical Y is
√

2 larger than that of X and Z. This
implies some asymmetry in error correction. Namely, if we correct by measuring Sp and Sq, shifts such as
exp(−iu\p̂ + iv\q̂) with u2 � π/4 and v2 � π/4 can be corrected which, as displacements, are a factor

√
2

larger than correctable displacements in pure p̂ and q̂ directions. Given a noise model which is
rotationally-symmetric in phase space, this does not seem to be an optimal choice. It also implies that
logical Y eigenstates which can flip due to large displacements in pure p̂ and q̂ directions can have shorter
lifetimes [42].

A ‘hexagonal’ GKP qubit has also been defined in [40] by choosing two phase-space lattice translations
which are not orthogonal such that all three logical operators X, Y and Z have the same length as
phase-space translation vectors. For this choice we take as stabilizers exp(iξ(

√
3q̂ − p̂)/2) and exp(iξp̂) with

ξ = 2
√

2π/
√

3, generating a hexagonal lattice in phase space. Again the logical operators are
half-stabilizers, forming the vectors generating a hexagonal lattice. The correctable displacements now form
a hexagonal Wigner–Seitz cell. This cell is larger in volume than the square Wigner–Seitz cell in the square
GKP lattice. If we assume that displacement errors occur according to a stochastic Gaussian model as in
equation (24), it implies that the hexagonal code can correct a larger probability volume of errors.

If we were to choose stabilizers Sq = exp(i
√

2πq̂) and Sp = exp(−i
√

2πp̂), there would be no additional
commuting displacement operators, implying that the +1 eigenspace Sp and Sq is one-dimensional. This
eigenstate, also called the sensor state |ψsensor〉 in [44], is a uniform sum of delta function at q = k

√
2π with

k ∈ Z (and similarly a uniform sum of delta functions at p = l
√

2π with l ∈ Z). The sensor state is
interesting in allowing one to simultaneously estimate the complex and real part of the amplitude α of a
displacement D(α), by performing phase-estimation for Sq and Sp on D(α)|ψsensor〉 [44].

We will uniquely focus on the square GKP code in the remainder of this review, although most points
apply with small variation to the hexagonal code.

2.3.1. Approximate GKP states
Any physical GKP code state will occupy a finite volume in phase space and will have a finite number of
photons. In principle, an infinite number of approximations to the perfect GKP code states exist, but some
are more useful than other’s and here we will mention four. Reference [40] introduced a form of
approximate GKP state obtained by applying a Gaussian superposition of displacements, characterized by a

8
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‘squeezing’ parameter Δ > 0 to a perfect state:

|ψ〉 = E|ψideal〉, E ≡ 1√
πΔ2

∫
R2

dudv exp

(
−u2 + v2

2Δ2

)
exp(−iup̂ + ivq̂). (14)

For this model wavefunction it holds that n̄ ≈ 1
2Δ2 − 1

2 [40, 41]. One can perform the Gaussian phase-space

integral in equation (14) and—neglecting contributions O(Δ4) 	 1, see e.g. [45]—one gets a different
approximation using an operator D:

E ≈ 2
√
πΔ2D, D ≡ exp(−Δ2n̂). (15)

The envelope operator D has approximately the same effect as the ‘no loss’ Kraus operator of a photon
loss channel Nγ , equation (7), with γ = 2Δ2. Another approximation, valid for small Δ is

E|0〉 ≈ F|0〉 ∝
∫
R

dq
∑
k∈Z

e−2Δ2πk2︸ ︷︷ ︸
envelope

e
− 1

2Δ2 (q−2k
√
π)2︸ ︷︷ ︸

comb

|q〉, (16)

E|+〉 ≈ F|+〉 ∝
∫
R

dq
∑
k∈Z

e−
1
2 Δ

2πk2︸ ︷︷ ︸
envelope

e
− 1

2Δ2 (q−k
√
π)2︸ ︷︷ ︸

comb

|q〉. (17)

The state F|0〉 can be interpreted as the result of preparing a squeezed state 1
π1/4

∫
dq exp(−q2/2Δ2)|q〉 to

which one applies a Gaussian-enveloped coherent sum over stabilizer translations, enacting
ρ→

∑
k,l∈Ze−2Δ2π(k2+l2)Sk

pρS−l
p . The result is a state which is both an approximate eigenstate of Sq (and Z)

due to squeezing, as well as an approximate eigenstate of the translation Sp. Note that unlike E and D,
approximation F has an asymmetry in p and q. The three approximations D,E,F have been discussed and
shown to fit a standard form in [46]. In addition, the normalization of these approximate forms can be
computed and expressed in terms of theta functions, see e.g. appendix A for the D-approximation.

In equation (B.2) we will see a fourth, von-Mises or reverse-Villain, approximation using a cosine
function to represent the periodicity in the wave-function comb. This reverse-Villain approximation has
been used in [47, 48]. All these approximate states E|0〉 and E|1〉 (or D|0〉 and F|0〉 etc) are +1 eigenstates

of the photon parity operator eiπa†a as they are invariant under q →−q and p →−p, implying that they
only have support on even photon number states. In appendix A we show how to get exact Fock state
amplitudes for the approximation D|0〉—which for this purpose has the simplest form—and this turns out
to involve n-the order derivatives of theta functions. We show in appendix A that the photon number
distribution of these GKP states, as well as the sensor state, is following a thermal distribution [22] (see
figures A1 and A2), with interesting oscillations on top.

One can propose various measures of state quality or fidelity besides the characterization of the state in
terms of Δ. For example, when we measure q̂ to infer Z on a state, all outcomes in which q is closer to an
even multiple of

√
π are interpreted as outcome Z = 1 and vice-versa. For a state

∫
dqψ(q)|q〉, the

probability for this outcome is then

P
(
Z = (−1)b

)
=

∫
Ib

dq|ψ
(
q
)
|2, Ib =

{
q| ∃k ∈ Z, −

√
π

2
� q + (2k + b)

√
π �

√
π

2

}
. (18)

If we apply this to the form E|0〉, the error probability P(Z = −1) < 2Δ
π exp(−π/4Δ2). Since a perfect

(homodyne) measurement of q̂ is practically not possible, P(Z = −1) only provides a lower bound on the
logical error probability of an approximate state |0〉. We can also examine the expectation value for Z on the
approximate form F|0〉 (for simplicity) which equals

〈0|F†ZF|0〉
〈0|F†F|0〉 ≈

∑
k∈Ze−4Δ2πk2∫

R
dq ei

√
πq e

− 1
Δ2 (q−2k

√
π)2∑

k∈Ze−4Δ2πk2
∫
R

dq e
− 1

Δ2 (q−2k
√
π)2 = e−πΔ2/4, (19)

and similarly 〈1|F†ZF|1〉
〈1|F†F|1〉 ≈ −e−πΔ2/4, showing that the expectation decays exponentially in Δ2 towards 0. In

the approximation in equation (19) we have assumed that Δ is small enough so that the peaks at different k
do not overlap, giving an easy expression for the probability distribution over q of the approximate GKP
state. We further discuss the logical Z or X measurement of a GKP qubit in section 3.2.

It has become common to describe the quality of a GKP state in terms of an amount of squeezing

expressed in dB. For a regular squeezed state (squeezed along q) one has variances Var(q) = Δ2

2 ,
Var(p) = 1

2Δ2 as the vacuum (or coherent state) has Var(q) = Var(p) = 1
2 with Δ = e−|ξ| < 1. The
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Figure 2. Wigner function of the state F|0〉 at Δ = 0.3, and the reduced probability distributions over q and p in black. Unlike
the E- and D-approximation, the F-approximation has a clear asymmetry with respect to p and q. Since the Wigner function has
a grid-like periodic structure in phase space, the GKP states are also referred to as grid states.

convention which is used in the literature for denoting the dB of squeezing of an approximate GKP state is
#dB = −10 log10 Δ

2, see e.g. [45].
We can view a GKP state as being ‘squeezed’ in both p and q and interpret this squeezing as the extent in

which the state is an eigenstate of a unitary operator such as Sp or Sq. Since a quantum state may not fit one
of the standard GKP approximations, a measure of the effective squeezing is useful in expressing the quality
of the state. Since we are interested in modular values of q̂ and p̂, it is appropriate to use the Holevo phase
variance (or the variance of periodic variables such as phases used in circular statistics) to express this
squeezing, i.e. one can define [44, 49]:

Δp/q =

√
1

2π
ln

(
1

|Tr Sp/qρ|2

)
. (20)

Note that this measure does not express a logical error rate, e.g. the completely mixed state inside the
perfect code space has Δp = Δq = 0.

2.3.2. Logical gates
An appealing feature of the GKP code is that all logical Clifford transformations are Gaussian quantum
operations, realizable by optical elements [40, 45] which enact linear transformations on the operators p̂
and q̂ in the Heisenberg picture. Important gates such as the CNOT and S gate do however involve
two-mode, respectively single-mode squeezing: the experimental realization of such squeezing
transformations is typical through pumped optical non-linearities. Such elements are relatively
straightforward to obtain for optical fields which travel through nonlinear χ(2) or χ(3) materials, while for
superconducting devices these elements are engineered through the use of Josephson junctions. In contrast,
passive linear optical elements—beam-splitters and phase-shifters in optics language—are readily available
in circuit-QED by linear capacitive or inductive (fixed) circuit couplings.

In section 3 we will discuss the engineered non-linearities in superconducting hardware which can be
activated by microwave drives or activated by flux-drives, while here we discuss the logical gates for the GKP
code at a formal level.

As unitary displacement operators, Z and X are not self-inverse, i.e. X �= X†. On a perfect, completely
shift-invariant code state X acts identically to X†, but on a finite-photon number state, see e.g. the wave
function in figure 2, it does not: a shift to the left or right moves the envelope away from the center. The
Hadamard gate has Heisenberg action p̂ →−q̂ and q̂ → p̂ so that H†XH = Z, H†ZH = X† and H†YH = −Y.
The Hadamard gate corresponds to a phase-space rotation by an angle π/2, i.e. we can choose
Had ≡ exp(i π2 a†a), and note again that Had �= Had−1. A Had gate could be done by a quarter-cycle waiting
in the self-evolution of the oscillator (so comes for free).

A disadvantage of using such quarter-cycle waiting Hadamard gate in a GKP surface code architecture is
discussed in section 4. The alternative is to use single-qubit rotations around the logical X, Y or Z axes to
compose a Hadamard gate.

For the GKP code these rotations around logical axes, RP(φ) ≡ exp(−iφP/2) with logical Pauli
P = X, Y, Z are not natural as the logical Pauli, which is a displacement, sits in the exponent. Note also that

10
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Figure 3. Performing a single-qubit gate RP(φ) with P = X, Y, Z on a perfect GKP qubit via a regular ancilla qubit, requiring a
qubit controlled-displacement. The measurement is in the basis |φ,±〉 = 1√

2
(eiφ/2|+〉 ± e−iφ/2|−〉) and upon outcome −1, P is

applied.

this gate RP(φ) is only unitary when acting on a subspace for which P2 = I. However, one can perform
RP(φ), using a controlled-displacement coupling with a regular qubit and a regular qubit rotation, as shown
in figure 3, and realized in [42, 50]. This circuit applies RP(φ) ≡ exp(−iφP/2) on the space of states for
which P2 = I but we can examine its effect more generally. Imagine applying the circuit in figure 3 with
P = Y and φ = π/2. Upon outcome ±, the Kraus operator action on the GKP qubit equals
A+ = cos(φ/2)I − i sin(φ/2)P resp. A− = −i sin(φ/2)I + cos(φ/2)P. On the perfect code subspace where
P2 = I, A+ acts as a unitary and equals RP(φ), while A− can be converted to RP(φ) by the additional
π-rotation P. However, on a finitely-squeezed GKP state, these Kraus operators are not unitary and their
action leads to the envelope of the GKP state to be no longer centered around the vacuum. However, one
can apply a displacement P−1/2 [42] to approximately re-center the GKP state.

A single-qubit gate such as the T = RZ(π/4) gate can be done in this manner as well. The S gate with
action S†XS = −Y and S†ZS = Z can be realized by the transformation q̂ → q̂, p̂ → p̂ − q̂ corresponding to
S = exp(−iq̂2/2).9 The S gate can thus be implemented by means of pump-activated squeezing, see
section 3, or by using an ancilla qubit as in the circuit in figure 3. Alternative methods for performing a T
gate via magic state preparation or using a cubic phase gate Vγ = exp(iγq̂3) exist [40]. For example, one can
create a +1 eigenstate of the Hadamard gate Had = exp(i π2 a†a) by starting with a vacuum state, which is
already a +1 eigenstate of Had, and measuring Sp and Sq without photon-number changing
feedback [51].

When using GKP qubits as basic qubits in a surface code, see section 4, we note that T and S gates are
not needed for error correction: their only use is to prepare magic GKP ancilla qubits to be grown into the
surface code-encoded magic states using GKP CZ and CNOT gates or parity check measurements, see e.g.
[52] and references therein.

The CNOT gate can be realized by the Heisenberg action q̂c → q̂c, p̂c → p̂c − p̂t , q̂t → q̂c + q̂t and
p̂t → p̂t . This gate is also called the SUM gate in [40] and SUM(g) with g = 1 in [45]. We see that
CNOT = exp(−ip̂t q̂c) by using equation (2) with v = p̂t and u = q̂c. The inverse CNOT has action q̂c → q̂c,
p̂c → p̂c + p̂t , q̂t → q̂t − q̂c and p̂t → p̂t .

We define the action of the CZ gate as Hadt CNOT Had†
t where Hadt is a Hadamard gate on the target

mode. That is, it enacts the transformation q̂t → q̂t , p̂t → p̂t − q̂c, q̂c → q̂c, p̂c → p̂c − q̂t , or
CZ = exp(−iq̂t q̂c). If either oscillator is a state where q is an even multiple of

√
π, then CZ acts as

exp(−iπ2k) = 1. If both oscillators are in a state where q is an odd multiple of
√
π, then CZ acts as

exp(−iπ(2n + 1)(2k + 1)) = −1 for n, k ∈ Z.
Sections 3.3 and 3.4 will discuss how the GKP CZ gate between two GKP modes can be executed using a

three-wave or four-wave mixing element. There is however another circuit to perform a CNOT gate which
uses a sequence of beam-splitters and some single-mode squeezing [41, 45] which can be more useful in
some circumstances, see figure 4. For the CNOT gate the mode transformation on control (c) and target (t)
mode equals (

aout
c

aout
t

)
= A

(
ac

at

)
+ B

(
a†c
a†t

)
, (21)

with

A =

⎛⎜⎝ 1 −1

2
1

2
1

⎞⎟⎠ , B =

⎛⎜⎝ 0
1

2
1

2
0

⎞⎟⎠ . (22)

By the Bloch–Messiah decomposition [53] the singular value decompositions are A = UDAV † and
B = UDBVT with unitary matrices U and V. For the CNOT gate the singular values are degenerate:

DA = diag(
√

5
2 ,

√
5

2 ) and DB = diag( 1
2 , 1

2 ), implying that the beam-splitting transformations U and V are not

9 Perhaps the simplest way to derive this identity is to calculate exp(îq2/2)p̂ exp(−îq2/2) =
∑∞

n=0
1
n! (adîq2/2)n(p̂), with (adA)0(B) = B,

adA(B) = [A, B], (adA)2(B) = [A, [A, B]] etc. We can use that [q̂2, p̂] = 2îq and higher-order commutators are zero, leading to
exp(iq̂2/2)p̂ exp(−îq2/2) = p̂ − q̂.

11
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Figure 4. The realization of a CNOT via 50:50 beam-splitters, i.e. VBS and UBS defined in equation (23), and single-mode
squeezing Sq(ξ) with ξ ≈ −0.4812.

unique. Reference [53] notes that taking 50:50 beamsplitters with

U = UBS ≡
1√
2

(
ieiθ ie−iθ

−eiθ e−iθ

)
, V = VBS ≡

(
0 1
1 0

)
U∗, (23)

with θ = 1
2 sin−1(2/

√
5) can be chosen (while [45] makes a different choice). We see that the single-mode

squeezing represented by the diagonal matrices corresponds to a squeezer Sq(ξ) with ξ = −cosh−1(
√

5/2).
It is clear that logical gates are not unique as physical operations as they only have to perform the right

action on the code space. Reference [45] has discussed how logical gates propagate or amplify errors on the
approximate GKP code states. Keeping the (average) number of photons in an approximate GKP state low
by centering the state symmetrically around the vacuum, emerges as a good overall strategy to minimize the
propagation of errors and the effect of the inaccurate action of gates.

2.3.3. Noise on a GKP qubit
A simple numerically convenient noise channel, playing the role of depolarizing channel for an oscillator, is
the independent Gaussian displacement channel N (ρ) with standard deviation σ0:

N (ρ) =

∫ ∞

−∞
du

∫ ∞

−∞
dv Pσ0 (u)Pσ0(v)eiup̂+ivq̂ ρ e−iup̂−ivq̂. (24)

Here ρ is a single-mode density matrix and Pσ0 (x) the Gaussian probability density function with mean

zero and variance σ2
0 , i.e. Pσ0 (x) = (2πσ2

0)−1/2e−x2/2σ2
0 . This channel does not naturally correspond to

physical sources of noise, but (1) one can convert photon loss via amplification to this channel [22], (2) one
can ‘displacement twirl’ noise so that the effective channel is that of probabilistic mixture of displacements
[54]. The exact displacement twirl is not a physical operation as it requires large displacements, so this type
of modeling should be considered less justified than in the qubit Pauli case when we use a depolarizing
noise model through a Pauli twirling approximation.

It is thus of interest to study how realistic noise affects the approximate GKP states beyond this toy
model. We will explore the question of stochastic Gaussian displacement noise versus coherent
finite-squeezing error during quantum error correction in the next section 2.4. In this section we describe
the interesting effect of photon loss on a GKP qubit using Wigner function dynamics [42], and mention
some literature discussing other sources of noise.

An oscillator state undergoing photon loss at rate κ can be described, in a rotating frame at its resonant
frequency, using a Lindblad equation ρ̇ = κD(a)(ρ) using the density matrix ρ. Here we assume that the
thermal environment which induces this photon loss is at zero temperature, hence there are no photon gain
processes. Alternatively, and conveniently, one describes this dynamics through differential equations using
phase-space probability distributions such as the Wigner function. The Wigner function
W(q, p, t) ≡ 1

2π

∫
dx e−ipx〈q + x

2 |ρ(t)|q − x
2 〉 for the photon loss dynamics can be shown to obey a

two-dimensional Fokker–Planck equation, see [9, 42, 55]

∂W(q, p, t)

∂t
=

κ

2

(
∂

∂q
(qW(q, p)) +

∂

∂p
(pW(q, p, t)) +

1

2

(
∂2W(q, p, t)

∂2p
+

∂2W(q, p, t)

∂2q

))
.

This Fokker–Planck equation describes a process of diffusion—a spread in the variance of the variables p
and q to the vacuum noise variance equal to 1/2—and drift, i.e. the mean values of p and q flow towards 0.
Instead of considering the Wigner function dynamics, we can integrate over, say, p and consider the
corresponding Fokker–Planck equation for the probability distribution P(q, t)=

∫
R

dp W(q, p, t), which has
the solution:

P(q, t) =

∫
dq′Ptrans(q, t|q′, 0)P(q′, t = 0),

Ptrans(q, t|q′, 0) =

√
1

2πσ2(t)
exp

(
− (q − q′ e−κt/2)2

2σ2(t)

)
,

σ2(t) =
1

2
(1 − exp(−κt)). (25)
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Figure 5. The probability distribution P0(q) of the state F|0〉 at Δ = 0.3 undergoing photon loss. The squeezed peaks of the
initial state κt = 0 widen and drift inwards. Even though the state has partial support on regions where q is closer to an odd
multiple of

√
π, 〈Z〉0 shown on the right, is nonnegative at all times due to the large wave function peak centered at 0.

Figure 6. The probability distribution P1(q) of the state F|1〉 at Δ = 0.3 undergoing photon loss. We observe that 〈Z〉1 moves
from a negative initial value to a final positive value as the state moves to the vacuum state.

In figure 5 we plot the effect of photon loss of a normalized state F|0〉 with Δ = 0.3 for κt = 0.1, 0.5 and 1.
We can consider the expectation of a stabilizer or logical Z over time, i.e. we consider

Tr eiαq̂ρ(t) =
∫

dqP(q, t)eiαq with α =
√
π or 2

√
π. Using Gaussian integration and equation (25) this gives

Tr eiαq̂ρ(t) =

(√
1

2πσ2(t)

∫
dq e

− q2

2σ2(t) eiαq

)
Tr eiα(t)̂qρ(0) = e−

1
4 (α2(0)−α2(t)) Tr eiα(t)̂qρ(0), (26)

with α(t) = αe−κt/2. On the right-hand side, we see an exponential decrease as well as a direct dependence
on the expection value of a displacement operator with exponentially shrinking shift on the initial state.
When the initial state ρ(0) is invariant under q →−q, we can replace Tr eiα(t)̂qρ(0) by Tr cos(α(t)q̂)ρ(0).
Thus when symmetrically centering the state in phase-space the phases of the stabilizer or logical Z never
become complex. In addition, when the initial state is an approximate logical |0〉 such as F|0〉, the
expectation value 〈Z(t)〉 � 0 at all times as shown for a few points in figure 5 on the right. This is
interesting as it shows that |0〉 ‘never looks more like a |1〉 than a |0〉’ under photon loss. The state F|1〉
whose decay is plotted in figure 6 starts at Z(t = 0) < 0 and eventually, for large enough t, Z(t) > 0 as the
final state is the vacuum centered around q = 0. This asymmetry in its effect on |0〉 versus |1〉 is reminiscent
of a logical amplitude-damping channel.

Now assume that the initial state is displaced away from its centered location by, say, a stabilizer shift Sm
p

which does not affect its initial eigenvalue for Z. Using equation (26) we get

〈Z(t)〉 = e2πime−κt/2
e−

1
4 (α2(0)−α2(t)) Tr eiα(t)̂qρ(0), (27)

which shows that the expectation value can now become complex, but is not faster decaying in its absolute
value. When m is large, we see that the additional phase changes rapidly in time, so that the expectation can
rapidly change from positive to negative. However, if we know m and κ and it is the only source of noise,
this phase change can be treated as a systematic error. Note that if we had applied an arbitrary but known
displacement eiup̂ on the initial state, the effect would have been similar.

Going beyond photon loss, other sources of inaccuracy and error could also readily be described using
dynamics of the Wigner function. A Lindblad equation dynamics of an n-mode system for which the
Hamiltonian is quadratic in creation and annihilation operators (beam-splitting, squeezing etc) or linear
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(driving terms ∼ a + a† enacting displacements) while the dissipator models photon loss or photon gain,
can be mapped to a Fokker–Planck equation of a general solvable form:

∂

∂t
W(q1, p1, . . . , qn, pn) =

(
−�∇ · (A�x) +

1

2
�∇ · D�∇

)
W(q1, p1, . . . , qn, pn),

�xT =
(
q1, p1, . . . , qn, pn

)
, �∇T =

(
∂

∂q1
,
∂

∂p1
, . . . ,

∂

∂qn
,
∂

∂pn

)
, (28)

with constant 2n × 2n matrices A and D. This general behavior follows from the fact that every term in a
Lindblad equation which is linear in a or a† (e.g. aρ), gives rise to a first-order derivative in the differential
equation for the Wigner function (plus a term which is linear in p̂ and q̂) [9, 55], so that terms quadratic in
a and a† (e.g. a†aρ) gives second-order derivatives. The Gaussian Green’s function for equation (28) can be
readily given, basically forming a multi-dimensional analog of equation (25), see [9]. All these Gaussian
processes keep an initially nonnegative Wigner function nonnegative and hence are simulatable by
stochastic means.

On the other hand, nonlinear elements such as a self-Kerr nonlinearity −Ka†
2
a2 lead to third-order

derivatives in the differential equation for the Wigner function, as well as terms in which A is not constant
(corresponding to a so-called nonlinear Fokker–Plank equation): the upshot is that the Wigner function
can become negative and non-classical during the dynamics and attempts at classical stochastic simulation
will suffer from the sign problem. As an example, reference [56] discusses Wigner function dynamics for a
single oscillator in the presence of a self-Kerr nonlinearity and dissipation.

Dephasing, meaning the application of a rotation eiθa†a with unknown θ is a possible error mechanism
as it rotates the quadratures p̂ and q̂ into each other. Dephasing can come about, for example, from an
interplay of photon loss and a Kerr nonlinearity, or a fluctuating mode frequency. In a simple stochastic
model the angle θ is drawn from a distribution P(θ) with mean 〈θ〉 = 0 and some moments 〈θk〉. For small
higher-order moments 〈θk〉 	 1 for k > 2, we can expand

Ndeph, 〈θ2〉(ρ) =

∫
dθ P(θ)eiθa†aρ e−iθa†a ≈ ρ+ 〈θ2〉a†aρa†a − 1

2
〈θ2〉(a†aρ+ ρa†aρ) + O(〈θ3〉). (29)

This is a dephasing channel which corresponds to the dynamics of a Lindblad equation ρ̇ = κdephD(a†a)ρ
for a short time with κdepht = 〈θ2〉 	 1. The fixed point of this equation is any mixture of Fock states
|n〉〈n|; when the initial state is

∑
n cn|n〉 the channel maps it onto

∑
n |cn|2|n〉〈n|. In appendix A we evaluate

the photon number distribution of such fully-dephased D|0〉 and D|1〉. We prove that the photon number
distribution is asymptotically thermal, independent of the logical state. Hence complete dephasing seems to
wash out much of distinction between the two logical GKP states.

Reference [22] has discussed the detrimental effect of a Kerr nonlinearity on a variety of single-mode
bosonic codes. Numerical simulations of several sources of inaccuries on GKP state preparation using an
ancilla qubit were also discussed in e.g. [42, 44, 45, 50, 57] using Lindblad equation dynamics.

2.4. Repeated GKP error correction and decoding: finite squeezing
In this section we examine the effect of (coherent) finite-squeezing errors on repeated GKP error correction
using GKP ancilla’s. This is follow-up work from reference [48] in which a similar problem was examined
using a stochastic Gaussian displacement error model, equation (24), applied to GKP ancilla and data
qubits as a proxy for finite-squeezing errors. The goal of this section is to understand whether there are
crucial differences between finite-squeezing coherent errors and the Gaussian displacement error model and
try to develop a dedicated, computationally-efficient, decoder with good performance.

The dynamics to be analyzed is the repeated execution of the quantum circuit in figure 7 on a single
GKP input state F(Δ)|ψ〉 for m = 1, . . . , M cycles. We remark that a variant of such ‘Steane error
correction’ exists: in [58] the authors observed that applying a beam-splitter between GKP ancilla and GKP
data qubit followed by squeezing on the GKP data qubit, can also perform error correction. Reference [59]
has analyzed the repeated execution of this variant of error correction in more detail.

A clear difference between a stochastic error model and the finite-squeezing model is that in the former
entropy build-up is possible, while in the latter the state conditioned on the measurement outcomes in
figure 7 is pure at all times. One can invoke displacement twirling as a method to convert a coherent noise
model in which one applies a superposition of displacements to a stochastic mixture of displacements. For
example, displacement twirling a finitely-squeezed state E|ψ〉 with some Δ gives a perfect state |ψ〉 subject
to the Gaussian displacement channel with Δ2 = 2σ2

0 [48]. After such stochastification of the noise on a
GKP ancilla, one can then represent the feedback error (a shift in one of the quadratures) induced by the
ancilla in the circuit in figure 7 effectively as an incoming stochastic shift error on the data qubit. The
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Figure 7. A single round of fault-tolerant GKP error correction for both logical X and Z errors. Each measurement is a perfect
homodyne measurement of q̂ or p̂ with outcomes q and p respectively. The finitely-squeezed ancilla states are modeled as
approximate GKP states, using a slightly-different small-Δ approximation than E,D,F in equations (14), (15) and (17), given in
equation (B.2) and denoted as FV . We show that the optional corrective displacement (dashed box) keeps the state at low average
photon number n in figure 9.

stochastic shift of the other quadrature of the ancilla then causes a measurement error of the same strength.
On this basis, reference [48] stochastically modeled finite-squeezing errors as incoming stochastic
displacement errors on the GKP data qubit and measurement errors. Another difference in the models is
that in the finite-squeezing error model the measurement outcomes carry non-modular information about
the measured quadrature. This can be exploited to recenter the state by choosing a corrective displacement
immediately after a single round of error correction, while such corrective displacements would have no
effect in the stochastic model.

We will represent the GKP wave-function in the q-basis with ψm(q), the wavefunction after m rounds of
error correction. We will sometimes omit the normalization of states when these normalizations play no
role.

We will now analyze the time evolution without the corrective displacement in the dashed box in
figure 9. A single round of quantum error correction shown in figure 7 with measurement outcomes pm, qm

gives ψm(q) =
∫

dq′G(q ← q′|qm, pm)ψm−1(q′) with Green’s function

G(q ← q′|qm, pm) =

∫
dq′′G+(q ← q′′|qm)G0(q′′ ← q′|pm)

= ψ+(q − qm)ψ0(q − q′)e−ipm(q−q′), (30)

using G0(q′′ ← q′|pm) = ψ0(q′′ − q′)e−ipm(q′′−q′) (Z-error correction) followed by
G+(q ← q′′|qm) = δ(q′′ − q)ψ+(q − qm) (X-error correction). To understand this Green’s function, observe
that in the limit Δ→ 0, the wavefunction ψ+(q) has uniform support on q = k

√
π, with k ∈ Z, so that the

outgoing wave function is supported solely on q = qm + k
√
π, hence the code state sits in the perfect code

space with a known shift on top. However, before this, the interaction with the imperfect |0〉 ancilla for the
Z-error correction applies a convolution to the incoming wavefunction. If the ancilla is perfect (Δ→ 0), this
convolution amounts to applying superpositions of stabilizer shifts Sk

p with 2k
√
π = q − q′, each with a

phase which depends on pm, on the incoming wave-function. If we assume that all wavefunctions are of the
form F|0〉, i.e. sums of Gaussians, the convolution leads again to a sum of Gaussians and can be exactly
evaluated, that is, one has∫

dq′ψ0
(
q − q′

)
e−ipm(q−q′)ψ0

(
q′
)

∝
∑

k,k′∈Z
e−2Δ2π(k′2+k2)

∫
dq′ e−ipm(q−q′) e

− 1
2Δ2

[
(q′−2k′

√
π)2

+(q−q′−2k
√
π)2

]

=
√
πΔ2 e−Δ2p2

m/4
∑

k,k′∈Z
e−2Δ2π(k′2+k2) e−

(q−2
√
π(k+k′))2

4Δ2 e−ipm
2 (q+2

√
π(k−k′)). (31)

What we observe is that the convolution broadens the peaks and they acquire phases which depend on
the location of the peaks and the outcome pm. The convolution step, which corrects shifts in p, thus
introduces a feedback error in the form of peak broadening for the q variable.

In figure 8 we plot the effective squeezing parameters Δp,Δq of the state, equation (20), after rounds of
Z and X-error correction.

Represented as a state evolution, the stabilizer measurements of Sp and Sq with outcomes qm, pm

effectively map an incoming state |φ〉 to ψ+(p̂ + pm)|φ〉 and ψ+(q̂ − qm)|φ〉. The finite envelope of the
approximate GKP states has the effect that the outgoing states are dominantly supported around
p̂ = −pm, q̂ = qm. We understand this gain of non-modular information in one quadrature as a reflection
of the loss of modular information (i.e. in terms of the increase in Δq/p) in its conjugate. In figure 9 we
observe, that a displacement about α = −qm+ipm√

2
indeed contributes to a recentering of the state.
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Figure 8. Time-evolution of averaged effective squeezing parameters Δp and Δq in equation (20) during repeated quantum
error correction using figure 7 (without corrective displacements). We see an enhancement in Δq (resp. Δp) during Z-error
correction which lowers Δp (resp. X-error correction which lowers Δq) due to the feedback error induced by the
finitely-squeezed GKP ancilla.

Figure 9. Photon number evolution of an initial state F|0〉 state under repeated stabilizer measurement for Δ = 0.3. Here,
nfeedback denotes the photon number evolution where each EC-circuit as in figure 7 is followed by a corrective displacement
D( −q+ip√

2
). The data is obtained by averaging over N = 104 trajectories. One observes that the average photon number stays low,

corresponding to a centering of the state.

What is noteworthy about the error correcting dynamics in equations (30) and (31) is that the support
of the outgoing wavefunction lies within the support of the incoming wavefunction (ψ0(q)) plus the
support of the ancilla wavefunction (here also ψ0(q)) since Supp( f � g) ⊂ Supp( f ) + Supp(g) for a
convolution of two functions f and g. The X-error correction step multiplies the convoluted wavefunction by
ψ+(q − qm) which cannot extend its support. Within its support the outgoing wavefunction can have
changed amplitudes, depending on the outcomes pm and qm. These arguments are relevant as the GKP state
F|0〉 has support which is concentrated around even multiples of

√
π overlapping by an amount

exponentially suppressed in Δ2 with the support of F|1〉. When one uses code states ψ0(q) and ψ1(q) whose
supports have negligible overlap—which is the case for F|0〉 and F|1〉 for sufficiently small Δ—it implies
that, no matter what the measurement outcomes, 0 will largely remain a 0 and 1 will largely remain a 1 in
the error correction rounds.

It implies that the picture of stochastic error feedback by using a finite-squeezed |+〉 ancilla is
inadequate as in this picture the support of the wavefunction gets shifted around by such feedback error,
while here we observe that instead amplitudes get changed within the support. We see some of this behavior
in the performance of the maximum likelihood decoder versus a passive decoder in figure 10: a passive
decoder which decides that 0 stays a 0 does surprisingly well, which may be understandable if we consider
that the support of the ψ0(q) wavefunction can never grow by QEC (of course, in principle, the wave
functions have support everywhere albeit exponentially-suppressed with 1/Δ2).

We have formulated a classical ‘forward’ decoder, see details in appendix B, and compared its
performance with an optimal, density matrix decoding method (maximum likelihood decoding) as well as a
so-called passive decoder, see the numerical results without active displacement feedback in figure 10. The

16



Quantum Sci. Technol. 5 (2020) 043001 B M Terhal et al

Figure 10. Logical error rate P for decoding the circuit in figure 7 ( without the corrective displacement) for different decoders
and squeezing parameters Δ = 0.3 (top data) and 0.4 (bottom data) with the number of stabilizer measurement rounds
M = 1, . . , 10. For Δ = 0.3 the mean performance of the forward decoder outperforms passive decoding, while the opposite is
true for Δ = 0.4. We have observed that the single sample logical error rates strongly fluctuate at O(10−2) − O(10−1) around the
averages, suggesting rather chaotic behavior. The data are obtained by sampling over N = 5 × 104 trajectories of measurement
outcomes. Error bars denote the standard deviations of the averaged logical error rates. The memoryless decoder applies a
different corrective displacement after each QEC round described in appendix B.

Figure 11. Logical error rate P for decoding the circuit with active feedback as in figure 7. We observe an overall improvement in
the logical error rate as compared to the performance of the circuits without immediate feedback.

passive decoder functions as an important sanity check: this decoder throws away all the measurement data,
including the final measurement and simply always decides that the outcome is 0 when the input state to the
rounds of error correction is an approximate GKP 0 state. Since we do not necessarily know the input state,
we note that this decoder is of little practical value. By comparing the performance of this decoder with the
MLD decoder we learn to what extent the quantum error correction circuits are preserving quantum
information irrespective of the measurement outcomes and to what extent the measurement outcomes
provide the proper logical information for correction. This decoder is similar to the passive decoder in the
stochastic model of [48] in which none of the error information in each round is used and only the last
perfect measurement determines whether the state is identified as 0 or 1. However, in [48] this passive
decoder clearly performed worse for these values for Δ.

We compare the decoder performance in figure 11 to a ‘memoryless’ decoder using the measurement of
the current QEC round for immediate logical feedback, see appendix B, clearly showing worse performance
with this strategy. In figure 11 we show the better performance of the MLD and the (feedback-adapted)
forward decoder using active feedback which minimizes photon number. We compare their performance
with a ‘parity’ decoder which similarly applies the corrective displacement, but then applies a final logical
correction (or not) when the sum of all applied shifts is closer to an odd (or even) multiple of

√
π.

We observe that for small Δ and number of EC rounds M � 3, the passive decoder performs
comparably to the MLD decoder, consistent with the intuition given earlier in this section. At larger M it
performs worse at Δ = 0.3. Figures 10 and 11 show the average logical error rates obtained from
N = 5 × 104 samples for all decoders. We note (not shown in the figures) that there are large fluctuations of
O(10−2) − O(10−1) per run around the average logical error rate.

Last, to study the difference between coherent and stochastic errors, we plot Pstoch
MLD(σ0) and PMLD(Δ)

using the identification Δ2 = 2σ2
0 and Δ2 = σ2

0 as a function of M and Δ, see figure 12. The simulation for
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Figure 12. Logical error rate for MLD decoders for finite-squeezing (coherent) errors characterized by Δ versus the stochastic
error model characterized by σ0 in [48]. We compare the logical error rates using two different mappings from Δ to σ0, neither is
entirely satisfactory.

the MLD decoder based on a stochastic error model is implemented following [48]. We observe, that the
conversion Δ2 = 2σ2

0 underestimates the logical error, while it is overestimated for Δ2 = σ2
0 .

The simulation and data are accessible at https://github.com/JonCYeh/GKP_EC_Sim.

3. Circuit-QED realizations of GKP qubit components

In this section we review and discuss schemes for state preparation, logical gates and quantum error
correction for GKP qubits in circuit-QED. In circuit-QED a natural candidate for a bosonic GKP encoding
is a resonant mode of a 3D microwave cavity, having low loss rate. Multiple GKP qubits are then stored in
multiple low-loss 3D cavities: an engineering platform for multiple coupled cavities—multi-layer
microwave-integrated quantum circuits (MMIQC) [60]—is under development.

The coupling between cavity modes of different cavities can be mediated by dipolar ‘antenna’ couplings
between the electric field of the cavity mode and that of an inserted planar chip in the cavity wall hosting a
coupler mode. The idea is then to activate two-mode gates such as the CZ gate by applying microwave
drives or flux-modulation outside of the 3D cavities on the coupler mode. As a simple circuit example one
can take the electric circuit in figure 13 in which the two LC oscillators correspond to the cavity modes: two
superconducting islands, each protruding into one cavity and coupling to the electric field of the resonant
mode, are connected by a Josephson junction (so-called bridge configuration): such setup can generate the
Φ4-interaction for a CZ gate as will be described in section 3.4, while more involved circuits could be used
to engineer an effective Φ3-interaction for the same purpose, see section 3.3.

3.1. Coupling with regular qubits
To prepare a logical GKP state or to realize single-qubit gates, one can employ an interaction with a regular
qubit in which the state of regular qubit controls the application of a displacement on the GKP mode as in
figure 1. If the regular qubit is realized by an anharmonic oscillator such as a transmon qubit, this then
requires the engineering of a tunable qubit controlled-displacement interaction of the form b†b q̂θ with
q̂θ = cos(θ)q̂ + sin(θ)p̂ so that b†b acts as Pauli Z in the regular qubit subspace.

As mentioned earlier, a common interaction between an off-resonantly coupled transmon qubit and
cavity mode is the dispersive or cross-Kerr interaction of the form −χa†ab†b →−χa†aZ/2. This interaction
realizes a qubit controlled-rotation which can be converted, in principle, to a qubit controlled-displacement,
using additional displacements and qubit-flips as follows. Since eiθa†aZD(α)e−iθa†aZ = D(α eiθZ), choosing
θ = π/2 gives the displacement D(α) when Z = 1 and the displacement D(−α) when Z = −1. Thus this

sequence of gates does what is needed. To realize eiθa†aZ , one can simply conjugate the interaction e−iθa†aZ by
π-bit-flips on the qubit, so that we can do all 3 gates in the decomposition of D(αeiθZ).

Note that the strength of the controlled-displacement α only depends on the strength of the
uncontrolled displacement (which can easily be made very strong in O(10) ns). If the entire
controlled-displacement is to be done in, say 50 ns, it requires two rotations each with time
t = π/χ = 20 ns, or χ

2π = 25 MHz. This realization thus requires making χ tunable, i.e. when the transmon
qubit is to be measured or prepared, it is important for the cross-Kerr interaction to be ‘off ’, as it induces
rotations on the GKP grid state which dephase the state in the Fock basis. However, there is a limit to the
on–off ratio of χ obtained by flux-tuning of the transmon qubit, in particular if χ is flux-tuned to be
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Figure 13. Electric circuit representing a typical capacitive coupling between two LC oscillators, modeling cavity modes, and a
(possibly flux-tunable) transmon qubit.

stronger, then the resonator becomes more anharmonic as well, see [61] and equation (37).
Instead of needing a tunable interaction, reference [42] realized a qubit controlled-displacement in

1.2μs, using a very weak dispersive coupling χ
2π = 28 kHz between transmon qubit and cavity mode. This

weak coupling obviates the need for a tunable interaction, but would make for a very slow gate when using
the method described in the previous paragraph. The idea in [42] is to realize a qubit
controlled-displacement by temporally displacing the cavity mode to states with |β|2 = 320 photons, so that
even a small qubit-induced cavity rotation can have a large effect. The scheme is best understood by using a
displacement frame, see appendix C.1, on a cavity-driven dispersive shift Hamiltonian
H = −χ

2 a†aZ + iE(t)a† − iE∗(t)a. The displacement frame shift shows that the dynamics is due to an
effective Hamiltonian

H̃(t) = −χ

2
a†aZ − χ

2
|β(t)|2Z − χ

2
(aβ∗(t) + a†β(t))Z, (32)

where β(t)=
∫ t

0 dt′E(t′). The effect of the last term in this Hamiltonian after a time T (taking β = β∗ for

simplicity) is the qubit controlled-displacement χ√
2

∫ T
0 dt|

∫ t
0 dt′E(t′)|q̂Z. In order to cancel the qubit

controlled-rotation (first term) the qubit state is flipped midway in the interval T, requiring that the cavity
displacement direction is also inverted midway, i.e. β →−β. We see that in this realization the applied
displacement power and the dispersive shift χ together determine the strength of the qubit
controlled-displacement.

We can ask how to improve on the execution of the qubit controlled-displacement gate and the
subsequent qubit measurement, where improvement means a faster as well as more reliable execution. As
for the realization in [42] one may worry that the large displacements of the state in phase-space during the
execution of the gate lead to errors on the GKP state. Even though the cavity has a long lifetime
(single-photon life-time T = 245μs in [42]), the logical operator of a displaced GKP state takes on a
complex oscillatory value in time due to photon loss, see equation (27). It is desirable to shorten the
duration of the transmon qubit measurement (700 ns in [42]), but it is hard to make the dispersive
read-out of the qubit via a read-out resonator very fast. For example, the measurement pulse followed by
active read-out resonator depletion is O(600) ns in [62] and O(250) ns (including resonator occupancy) in
[63]. Replacing the qubit measurement by feedback and disentangling [43] requiring other
controlled-displacements can only lead to a shorter overall preparation time if the duration of such
controlled-displacement can be shortened from what was achieved in [42]. Note that the replacement of
measurement by coherent interactions could also be done for the GKP qubit rotation in
figure 3.

Instead of a transmon qubit as ancilla, one may consider a different qubit such as fluxonium [64], again
dispersively coupled to the 3D cavity mode. Advantages of a fluxonium qubit are its long coherence and
larger anharmonicity leading to lower leakage [65], equally fast-single qubit gate operations (O(10) ns) as
well as potentially very fast and powerful qubit measurement, see e.g. the GrAl-based fluxonium qubit in
[66–68]. In addition, flux-tuning fluxonium may give a strongly-tunable dispersive shift χ [64, 69], without
the unwanted side-effect of strengthening the cavity anharmonicity.

Another proposal is to use a noise-biased cat qubit to measure the stabilizer displacements of a GKP
qubit [20] using a tunable beam-splitter interaction between the two cavity modes of the form
H = g(t)ab† + g∗(t)a†b, as argued in section 2.2. To use the interaction, we thus imagine first preparing the
cat qubit in |C+

α 〉 (by starting in the vacuum state |0〉 and turning on the pump), then activate the tunable
beam-splitter, and measure the noise-biased cat in the |C±

α 〉 basis or employ feedback and disentangling via
qubit controlled-displacements [43].
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3.2. Logical GKP measurement
How does one determine whether a GKP state is |0〉 or |1〉, that is, realize a logical Z-measurement? Such
logical measurement may be completely destructive, but is desired to have high-fidelity, hence be
fault-tolerant in its implementation, meaning that the outcome is insensitive to imperfections in the state.
Even though one can measure a logical displacement, i.e. X, Z or Y , using a single ancilla qubit as was done
in references [42, 50], such measurement has an intrinsic probability of error on an approximate GKP state.
For example, measuring Z on |0〉 does not give outcome 1, since the state is not a perfect eigenstate of Z but
obeys equation (19). If we assume that this measurement circuit is otherwise perfect and is applied to F|b〉
with b = 0, 1, the probability for the ancilla qubit to be measured as ± equals

P(±|b) = 1
4
〈b|F†(I±Z†)(I±Z)F|b〉

〈b|F†F|b〉 ≈ 1
2 (1 ± (−1)be−πΔ2/4)), using equation (19). The upshot is that the ancilla

measurement is flipped with symmetric error probability q = 1
2 (1 − e−πΔ2/4)) which goes to 0 when

Δ→ 0. At, say, Δ = 0.3, this readout error probability q is about 3.4% and much larger than the
probability for an incorrect Z-outcome through the ideal homodyne measurement given in equation (18).
Some repetition of the controlled-displacement circuit with the ancilla qubit and taking a majority vote of
the answers could bring down the error probability q at the price of more time and possibly additional
feedback error.

A target for future work could be to achieve an improved logical GKP qubit measurement by releasing
the GKP state from a superconducting cavity via a switch-release mechanism [70] (taking O(1)μs in time in
[70]) into a transmission line and then enact phase-sensitive amplification (e.g. squeezing) so as to measure
one quadrature, say q̂, with no further added noise. After calibration of the measurement using Δ-squeezed
displaced states and their targeted measurement outcomes, the measurement could proceed by determining
whether the amplified signal corresponds to a q̂ which is closer to an even (→outcome 0) or odd multiple
(→outcome 1) of

√
π. Photon loss in this process may be expected to be a dominant source of noise. To get

an estimate of the error rate in the presence of photon loss, we can compute equation (18) for a state at
Δ = 0.3 undergoing photon loss as in equation (25) with κt = 0.1 (so that a coherent state loses
1 − exp(−κt) ≈ 10% of its intensity), giving P(Z = 1|F|0〉,κt = 0.1) = 99.5%. For κt = 0.5 this
measurement success probability is already down to 80%.

3.3. GKP CZ gate via three-wave mixing
In this section we describe how one could realize the CZ interaction between two GKP modes via a
three-wave mixing element which is activated by applying a (strong) microwave pump tone to a coupler
mode, see e.g. [71]. An example of pure three-wave mixing used for broadband parametric amplification is
the Josephson-ring modulator circuit [72, 73].

An example of the use of parametrically-activated three-wave mixing is the experiment in [74]:
flux-modulation through a coupling Josephson junction (instead of microwave driving) is used to activate a

a†
2
b coupling between a logical (co-planar microwave) resonator whose state is to be manipulated and an

ancilla (co-planar microwave) resonator.
For simplicity, we here assume that the following non-degenerate three-wave mixing Hamiltonian is

available:

Hχ(2) = ωa

(
a†a +

1

2

)
+ ωb

(
b†b +

1

2

)
+ ωc

(
c†c +

1

2

)
+ χ(2)

(
a + a†

) (
b + b†

) (
c + c†

)
. (33)

Here a, b are annihilation operators for two GKP oscillators while c is the annhilation of the pump
oscillator. We assume that all frequencies ωa,ωb and ωc are sufficiently detuned, so that the χ(2) interaction
between the modes will approximately time-average away in the rotating wave approximation (RWA) in the
absence of any active driving, see the discussion in appendix C. Moving to the rotating frame of the GKP
oscillators we have

H̃χ(2) = ωc

(
c†c +

1

2

)
+ χ(2)

(
ab e−i(ωa+ωb)t + ab† e−i(ωa−ωb)t + h.c.

)
(c + c†). (34)

Since there are two time-dependencies involved, we can make all χ(2)-interactions resonant by driving the
pump mode c with a two-tone drive, namely at ωp = ωa + ωb and ωp = ωa − ωb. Both pump tones will
need to be of equal amplitude to get equal contributions from beam-splitting (a†b + ab†) as well as
two-mode squeezing (ab + a†b†). Assuming that the pump mode is a (fairly) harmonic mode which can be
strongly driven, we replace the operator c by its classical time-dependent expectation value
〈c(t)〉 = E

(
e−i(ωa+ωb)t + e−i(ωa−ωb)t

)
with, say, E ∈ R. Making a rotating-wave-approximation, appendix C,

gives the generating interaction of the CZ gate between modes a and b:

HCZ = 2χ(2)E q̂aq̂b. (35)
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Changing the phase of the pump tone (E) allows one to realize CZ−1. If we want to do a GKP CNOT gate
via two-tone pump, we cannot start with the interaction in equation (33), but a Hadamard or single-qubit
RY(π/2) would be required to convert q̂ → p̂.

Instead of applying two simultaneous pump tones to get a CZ (and with extra rotations, a CNOT), we
could also decompose the CNOT circuit as in figure 4, i.e. a sequence of beam-splitters and single-mode
squeezers. When we drive the pump mode at the difference frequency of the modes, ωp = ωa − ωb in the
nondegenerate three-wave mixing Hamiltonian in equation (33), we realize a beam-splitter interaction as
the pump photon assists in converting one mode-a photon to a mode-b photon.

Single-mode squeezing can be activated by using a degenerate version of the three-wave mixing element
q̂aq̂bq̂c in equation (33) with a Hamiltonian proportional to q̂2

aq̂c (or similarly q̂2
bq̂c). By applying a pump

tone at frequency ωp = 2ωa, one activates a squeezing Hamiltonian Hsq on mode a: we down-convert one
pump photon into two mode-a photons and vice-versa.

For superconducting devices the only native non-linear circuit element that we have at our disposal are
Josephson junctions which—in their simplest use, without externally applied fluxes—realize a
U(Φ) = −EJ cos(2πΦ/Φ0) potential interaction. Here the flux variable Φ can be expanded as a linear
combination of the q quadratures of the bosonic modes which participate in the junction10. Usually, if EJ is
large (� EC), we expand this cosine potential around its potential minimum Φ = 0, obtaining only
interactions which are symmetric under Φ→−Φ such as Φ4 (while absorbing the Φ2-terms in the
quadratic part of the Hamiltonian).

It is clear from the discussion above that it would be desirable to engineer a Φ3-interaction where
2πΦ/Φ0 = αqa + βqb + γqc. When the three modes have sufficiently different frequencies, we can observe
that all terms in this Φ3-interaction, except those proportional to a†a, b†b or c†c, average out in time, hence
the interaction is ‘off ’ in the absence of active driving of one of the modes, not inducing any nonlinearity
on the modes in this off-state. At the same time, by choosing the pump mode drive frequencies
appropriately, we can activate, with the same interaction element, either a squeezer for mode a, a squeezer
for mode b, a beam-splitter between modes a and b or/and a two-mode squeezer between modes
a and b.

Besides the Josephson ring modulator, another three-wave mixing element, called an SNAIL, has been
proposed in [77]: it uses a superconducting (SQUID-like) loop containing an asymmetric array of a few
Josephson junctions and external flux is applied through the loop. The effective potential induced by this
SNAIL is of the form U(Φ) = c2Φ

2 + c3Φ
3 + c4Φ

4 with c3 � c4 �= 0 where Φ is the flux variable expanded
around its potential minimum, determined by the external flux Φext.

A recent paper [78] discusses the circuit-QED engineering required to realize a universal set of gates for
continuous-variable computation using GKP states. By flux-modulating the SNAIL, one can activate some
of the terms in the three-wave mixing Hamiltonian in equation (33), mimicking the effect of microwave
driving of the pump mode. The authors in [78] then use this activation to show for example how to realize
an interaction q̂3, required to enact the cubic phase gate Vγ = eiγq̂3

.
Another use of a Φ3-coupling for GKP state preparation has been proposed in [49]. In this paper the

aim is to produce a tunable opto-mechanical coupling of the form b†b q̂GKP between a GKP mode and
(harmonic) ancilla mode (b) which is initially prepared in a coherent state. Such coupling can be used to
prepare the GKP mode into a logical state starting from a vacuum state, similar as the preparation via
regular qubits discussed in section 3.1. The idea here is that the frequency of the ancilla oscillator is shifted
depending on the value for q̂ of the GKP mode, leading to a q̂-dependent rotation of the coherent state of
the ancilla mode. When the interaction time is chosen so that all q = k

√
π for k ∈ Z lead to the same

rotation of the coherent state, measuring the coherent amplitude realizes an approximate modular
measurement of q̂, resolving the value of q mod

√
π. Such modular measurement of q̂ is equivalent to

measuring the eigenvalue phases of Sq = exp(i2
√
πq̂). A possible advantage of this method over the

coupling with regular qubits is that one gets more information per ancilla mode measurement than 1 bit. In
this proposal an externally-applied flux is modulated around a value for which there is an effective
third-order Φ3-coupling between the two oscillators while the Φ4-coupling vanishes at this flux setting.
Choosing the GKP oscillator at much lower frequency (∼0.5 GHz) than the ancilla oscillator (∼10 GHz)

10 A side comment: in circuit-QED we cannot passively get interactions where some cosine potential depends on the q̂s of some subset
of modes and another cosine potential depends on the p̂s of a subset of modes, since all the variables in the circuit Lagrangian which
enter the potential energy—such as the Josephson junction cosine potential energy—commute when promoted to quantum operators,
i.e. they will never be conjugated variables. The upshot of this is that it is very hard (see an attempt at [75]) to entirely passively Hamil-
tonian engineer, say, the toric code checks on a collection of bosonic modes as the essential property of such stabilizer checks is that they
either act as q̂ and p̂ on a single mode. An exception would be the simultaneous use of Josephson junctions elements (cos(2πΦ/Φ0))
and so-called phase-slip elements (cos(πQ/e)) for conjugate variables flux Φ and charge Q. Reference [76] shows that one can passively
engineer an effective GKP Hamiltonian using a gyrator element G/2(Φ1 . . .Φ2 −Φ2 . . .Φ1) in the Lagrangian of the circuit.
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creates an asymmetry so that a term like b†b q̂GKP dominates in the Φ3-interaction and the term is made
resonant via flux modulation.

3.4. Use of four-wave mixing?
We comment on the use of a Φ4-interaction for realizing the GKP CZ gate. The set-up we have in mind is
modeled by the electric circuit in figure 13. Applying circuit-quantization to this circuit leads to a
Hamiltonian with three active modes. Due to the coupling between the LC oscillators, each described as a
single mode, some hybridization will happen between the bare cavity modes and the transmon coupler
mode, and so we will associate annihilation operators a, b and c with these dressed modes. Due to this
hybridization the three dressed modes with annihilation operators a, b and c will partake in the Josephson
junction. This means that for the flux-variable operator Φ̂ across the Josephson-junction branch, we can
write 2πΦ̂/Φ0 = αq̂a + βq̂b + γq̂c with dimensionless α,β, γ modeling the participation of the effective
modes in the Josephson junction [61]. Expanding the cosine potential up to fourth-order, and diagonalizing
the linear interactions of the Hamiltonian (quadratic in creation and annihilation operators) thus gives rise
to three dressed eigenmodes at frequencies ω̃a, ω̃b and ω̃c, and we have the Hamiltonian:

H = ω̃a

(
a†a +

1

2

)
+ ω̃b

(
b†b +

1

2

)
+ ω̃c

(
c†c +

1

2

)
− EJ

4!

(
αq̂a + βq̂b + γq̂c

)4
. (36)

As in the discussion on three-wave mixing we assume that all frequencies ω̃a, ω̃b, ω̃c are sufficiently
different (detuned). If there is no active driving (or flux-modulation), a full RWA approximation, whose
accuracy depends on the amount of detuning, will leave only energy-conserving self-Kerr and cross-Kerr
terms. In other words, in the off-state, the Hamiltonian is approximately

Hoff ≈ ωa

(
a†a +

1

2

)
+ ωb

(
b†b +

1

2

)
+ ωc

(
c†c +

1

2

)
+−1

2
(χaa(a†a)2 + χbb(b†b)2 + χcc(c†c)2)

− χaba†ab†b − χaca
†ac†c − χbcb

†bc†c, (37)

where χii′ = 2
√
χiiχi′i′ [61]. Here ωa = ω̃a − EJα

4

24 (and similarly for ωb and ωc) due to rewriting the

excitation-conserving terms in q̂4
a as a quadratic term ∝ a†a and the self-Kerr term ∝ (a†a)2 and χaa =

EJα
4

12 .
Here we clearly see the advantage of a pure three-wave mixing element over a four-wave mixing element: in
the off-state the four-wave mixing element induces unwanted Kerr and cross-Kerr anharmoniticies on the
GKP storage modes a and b.

In the off-state, mode c is (ideally) in its vacuum state, hence the cross-Kerr interaction with this mode
does not contribute. However, if this mode were driven these corrections are relevant and they induce
additional cavity rotations. Let us now indeed discuss the effect of applying a drive on mode c. For this, we
expand the fourth-order term in equation (36) which becomes

Hχ(3) = −EJ

4!

[(
4

2

)
× 2αβγ2q̂aq̂bq̂2

c +

(
4

2

)
α2γ2q̂2

aq̂2
c + · · ·

]
. (38)

We can apply a two-tone drive on mode c at frequency ωa+ωb
2 and ωa−ωb

2 with equal amplitudes E . Replacing

q̂c by its time-dependent expectation 〈q̂c(t)〉 = E√
2
(eit

ωa+ωb
2 + eit

ωa−ωb
2 + h.c.) in equation (38) and going to

the rotating frame of all modes a and b, we find that a term like q̂aq̂bq̂2
c leads to a time-independent

resonant term proportional to q̂aq̂b. This can be seen as follows. First, note that the signal 〈qc(t)〉2 only
contains frequencies ωa,ωb,ωa + ωb and ωa − ωb, all of equal strength. The frequency ωa + ωb matches
two-mode squeezing (ab + h.c.), while ωa − ωb matches beamsplitting (ab† + h.c.). Besides this, we throw
out all time-dependent terms (RWA). In particular we have

• Terms without any q̂c are only leading to self-Kerr and cross-Kerr for modes a and b.

• Terms with a single q̂c or q̂3
c are not frequency-matched to become time-independent (as ωa and ωb

are sufficiently different).

• Terms q̂4
c leads to self-Kerr for mode c.

• Terms with q̂2
c lead to cross-Kerr between modes c and a or c and b. Note that from a term such as

q̂2
aq̂2

c there is a contribution proportional to E2a†a (and similarly q̂2
bq̂2

c gives E2b†b).

We could also realize the CNOT gate using the beam-splitter and squeezer sequence in figure 4, i.e. we
chose a single-tone pump at ωp = (ωa − ωb)/2 for the beam-splitter to let two pump photons assist in
converting one mode-a photon to one mode-b photon. Single-mode squeezing can be realized by using the
interaction q̂2

aq̂2
c in equation (38), i.e. we should take ωp = ωa so that two pump photons are converted into
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two mode-a photons. However, note that this also make the unwanted interaction b†b(a†c + ac†) (which
comes from the q̂2

bq̂aq̂c term) resonant, which makes this scheme unattractive.
An important parameter measuring the quality of the CZ gate via this Φ4-interaction is the relative

strength of the unwanted Kerr and cross-Kerr terms versus the strength of the two-tone pump-activated
wanted interactions q̂aq̂b. In part, this relies on the error contributions due to the rotating wave
approximation which should be better quantified theoretically (appendix C). Another contributing factor is
the relative strength of the participation parameters α,β, γ and the pump strength, namely, without error
contribution from the RWA, one has

‖HCZ(a, b)‖
‖Hcross−Kerr(a, b)‖ ∝ E2γ2

αβ
; (39)

Hence, a large γ2/αβ is desirable but a large γ also makes mode c more anharmonic as χcc ∝ γ4 and this
again severley restricts the pump power E . These conflicting constraints may make this scheme less suitable
in practice.

4. Prospects for a GKP-surface code architecture

In this section we would like to provide a perspective of what it would take to build a surface code
architecture based on GKP qubits, point out the challenges in this approach, as well as contrast it with
existing efforts to engineer a similar architecture using transmon qubits [79], see section 4.1.

We can partially use the results in reference [48] as a starting point for such GKP-surface code
architecture. In this code architecture, there are two layers of protection. On the one hand, each GKP qubit
is either stabilized or error corrected individually, reducing a continuous set of (displacement) errors to a
mostly discrete set of GKP qubit Pauli errors. On the other hand, the surface code layer is there to suppress
the logical error rate of a GKP qubit to values which decrease exponentially with the side length of the
surface code lattice.

In reference [48] GKP error correction takes place with ancilla GKP modes using the circuits in figure 7.
Note that these circuits can also be implemented via CZ gates, but will then require Hadamard or RY(π/2)
rotations on the GKP data mode. Interspersed with this GKP error correction, parity checks of the surface
code, shown in figure 15, are to be measured in QEC cycles. These circuits are similar as for a regular
surface code, except that the underlying qubits are GKP qubits encoded in oscillators, see figure 14 for a
Z-check. We use the fact that GKP logical operators are not self-inverse as displacements—and as
displacements they obey [X1X2, Z−1

1 Z2] = 0—to measure checks which mutually commute on the entire
oscillator space11. In this figure the measurement of the GKP ancilla is shown as the release and
amplification of the cavity state, followed by a quadrature measurement, as discussed in section 3.2. Such
measurement would give useful analog information, but the usefulness of this analog information is
challenged by losing photons in the step, nor has it been experimentally realized.

We call this GKP-surface code architecture Only-SurfaceCode-GKP-Ancilla and
All-Regular-Qubit-Ancilla. This set-up would require each GKP qubit oscillator to have CZ capability with
5 other GKP oscillators, namely 4 GKP ancilla oscillators for the surface code and 1 GKP ancilla oscillator
for its own error correction.

Reference [48] used a model of Gaussian stochastic displacement noise, equation (24), as an effective,
numerically-simulatable, error model for this architecture. The noise channel acts in the different locations:
(1) on each GKP qubit prior to GKP error correction and a round of surface-code parity check
measurements, (2) prior to the homodyne measurement in figure 7 and (3) prior to the homodyne
measurement of the ancilla GKP in the surface code check. Taking the standard deviations from these
Gaussian channels to be equal, a threshold standard deviation σ0c ≈ 0.243 for the toric code was found.
Note that this model includes all sources of errors, including finite squeezing and feedback errors, albeit
stochastically. Using the conversion Δ2 = 2σ2

0 , this gives a threshold of Δ = 0.34 or 9.3 dB, but the data in
figure 12 show this conversion is somewhat too optimistic: using squeezed states with Δ gives an error rate
which is somewhat worse than a stochastic model with σ0 = Δ/

√
2, so a worst-case threshold estimate

using Δ2 = σ2
0 would be 12.3 dB. Reference [81] considered a variation on this stochastic noise

model—explictly including error feedback—and applied this noise to a concatenation of the GKP qubit
with the surface code. Both [48, 81] used minimum weight matching decoders to find thresholds. Reference
[48] identified the defects and the distance function between them following the associated compact-QED

11 One expects worse error behavior when one measures non-commuting checks outside the ideal code space; for example, this also
happens when regular qubits leak [80]. In addition, the maximum likelihood decoding analysis in [48] relies on this choice to map onto
a compact-QED model with proper lattice versions of rotations and divergences.
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Figure 14. A Z-check parity measurement for the surface-GKP code in figure 15, on oscillators labelled NE–SW (northeast to
southwest of ancilla qubit) using CZ and CZ−1 gates as defined in section 2.3.2. |+〉 is an approximate +1 eigenstate of X and the
GKP stabilizers. Release and amplification (Amp) followed by measurement of the quadrature p̂ is a way to do a logical X
measurement and reprep is a unit standing for the repreparation of the GKP ancilla state.

Figure 15. Distance-3 rotated surface code in its standard surface-17 layout with green Z-checks and red X-checks: black filled
circles are data qubits, open circles are ancilla qubits, dashed lines are two-qubit interactions. The ±1 patterns on each check
denotes the use of inverses as in equation (40), so that all checks commute as displacements.

model closely in order to approach exact minimum-weight decoding. Different from this, reference [81]
identified the positions where the surface code check outcomes change as defects, but altered the distance
function between these defects based on GKP error information.

We add two more observations about this scheme. First, when we use stabilizer error correction, such as
surface code error correction, on bosonic codes, we need to implement parity check operators which
sometimes act like a logical X on a bosonic qubit, and sometimes like a logical Z. For GKP qubits this
translates into the ability to perform CZ gates as well as CNOT gates. For standard (transmon) qubits, the
switch between CZ and CNOT is easily achieved by applying a layer of Hadamard gates between a parity
X-cycle and a parity Z-cycle. For a GKP qubit encoded into an oscillator with frequency f, such Hadamard
gate seems simple: it constitutes waiting for time t = 1/(4f ). But since all data qubits have to undergo this
Hadamard gate, it implies that the resonant frequencies of the data qubit oscillators (resonant modes of
identical 3D cavities) should all be identical, which seems like a narrow target to aim at (although the
difference between a simulation-based predicted 3D cavity frequency and the measured frequency can be
less than 0.1% [3]).

As alternative to the Hadamard gate one can use RY(π/2) gate and RY(−π/2) gate, using a regular qubit
as in figure 3, to toggle back and forth between Z and X error corrrection, but it costs a lot more hassle and
time than doing a RY(π/2) on a transmon qubit in O(10) ns. A second observation is that the use of
parametrically-driven three-wave or four-wave mixing as discussed in sections 3.3 and 3.4 could allow for
the simultaneous execution of the CZ and CZ−1 gates needed to do a surface-code parity check
measurement, as the activation of the CZ or (CZ−1) gate only requires the application of a pump tone to
the coupler between each data oscillator and ancilla oscillator (4 couplers in total). The coupling strength of
these CZ couplers may not be equally strong, hence the duration of these four pump drives can vary, but an
advantage of only driving the coupler mode (instead of the GKP mode) is to enable the simultaneous
execution of these commuting gates. Another way of looking at the simultaneously-executed parity check is
to observe that a green Z-check in figure 15 on oscillator NE, SE, NW, SW corresponds to

Ĝ = q̂NE + q̂SE − q̂NW − q̂SW. (40)

An interaction Hamiltonian HG = −q̂AĜ applied for time t has the effect that p̂A → p̂A − Ĝt, using
equation (2) (while for all data oscillators i = NE, SE, NW, SW participating in the check, we have
p̂i → p̂i ± tq̂A). Taking t = 1, we see that by measuring the ancilla quadrature p̂A, we measure Ĝ modulo
even multiples of

√
π (as |+〉 has sharp peaks at pA being even multiples of

√
π). Thus, if one of the

oscillators undergoes a
√
π shift in q, the measurement will detect this.

Besides the Steane error correction in figure 7, one can also imagine a more hardware-efficient form of
GKP error correction via stabilization using a regular qubit as discussed in section 3.1, regularly
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Figure 16. A single round of error correction for an X-check (left) and a Z-check (right) on the GKP data oscillators using
regular qubit ancillas. The interactions between ancilla qubit and GKP oscillators are all tunable qubit controlled-displacement
interactions.

interspersed with parity check measurements for the surface code which, for example, do use a GKP ancilla.
The advantage here is that one does not need to prepare and couple the ancillary GKP qubit as in figure 7
(which again requires a regular qubit). In particular, (ancilla) GKP state preparation is time-consuming
(60μs in [42]) due to requiring slow controlled-displacement gates and slow qubit measurement, and
during this process photon loss is affecting the GKP qubit. At the same time, we keep the GKP ancilla for
the possibly-less frequent surface code QEC cycle in order to get still analog error information. We refer to
this intermediate scheme as Only-SurfaceCode-GKP-Ancilla.

Another choice is to use regular qubits to extract both GKP and surface code error information, see the
circuits in figure 16. We refer to this scheme as All-Regular-Qubit-Ancilla. An advantage of this scheme is
that no Hadamards or RY(π/2) rotations are needed on GKP modes and tunable controlled-displacement
gates are used throughout.

The All-Regular-Qubit-Ancilla architecture can however be less tolerant towards errors: it might be
hard to get below threshold for the surface code, when all error information is obtained through qubits,
giving 1 bit of information at the time. We can provide arguments for this by using a simple error model in
which we assume that GKP error correction generates an effective phenomenological error model in each
surface code QEC cycle and we assume that the surface code QEC cycle is otherwise perfect. We model the
effect of GKP error correction as stabilizing an approximate GKP qubit of the form, say, F|b〉 at some Δ,
besides having a logical error b →¬b on top with probability p. Effectively then, the approximate GKP code
states coming into a perfect surface-code parity check circuit as in figure 16 will flip the regular qubit ancilla
with some effective error probability q which depends on Δ. We thus map our error model onto a known
(phenonomenological) surface code error model in which there is an incoming error with probability p in
each QEC round and a measurement error with probability q(Δ). For this model, figure 3 in reference [82]
shows the numerically-found below-threshold region and for q = p the threshold is optimally 3.3% [83].
Reference [82] does not investigate the below-threshold region and its shape for low p, but it certainly lies
within the below-threshold region for the repetition code which is conjectured to have a below-threshold
region given by H2(p) + H2(q) � 1 with H2(p) the binary entropy [84].

To estimate q(Δ) we can write the probability to measure the ancilla qubit in the X-basis as

P(±) = 1
2

(〈0|F†F|0〉)4± 1
2 [(〈0|F†ZF|0〉)4+(〈0|F†Z†F|0〉)4]

(〈0|F†F|0〉)4 , which, using equation (19), approximately gives

P(±) ≈ 1
2 (1 ± e−πΔ2

) and thus q(Δ) = 1
2 (1 − e−πΔ2

). At Δ = 0.3, we already have q(Δ) = 12% while
Δ = 0.15 just suffices to get q(Δ) = 3.4%.

The frequency of doing the surface code error correction could also be adapted to the logical decay rate
of the stabilized GKP state, e.g. 275μs in [42], so that the logical qubit error rate between surface code QEC
cycles is at least less than 3.3%. It is an open question how to analyze the noise threshold for the
All-Regular-Qubit-Ancilla architecture for a more elaborate error model.

In this All-Regular-Qubit-Ancilla architecture the workhorse is the controlled-displacement gate with
the regular qubit and the regular qubit preparation and measurement. The desiderata for these regular
qubits are clearly (1) ability to enact a fast and accurate tunable controlled-displacement with a 3D cavity
mode, (2) low leakage to higher excited states, (3) long T1 and T2, beyond 100μs, and (4) fast measurement
below O(100) ns, (5) fast preparation of |+〉 and single-qubit gates (O(10) ns). At first sight, this seems like
a wishlist for any good qubit, however it is not necessary to have a high-quality two-qubit gate between
these qubits, which is a nontrivial component for the surface code with transmon qubits. Furthermore, the
frequency of the 3D cavity GKP modes can be taken to be far different than those of the ancillary qubits and
their coupled read-out resonators, possibly leading to easier frequency control and less frequency crowding
than in an architecture with only one type of device qubit such as the surface code with transmon qubits
[79, 85].
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4.1. Comparison: Fock qubit surface code and transmon qubit surface code
Given that we imagine using high-Q 3D cavities for qubit storage, we can ask how to compare a GKP
encoding with a simple Fock encoding in a surface code architecture, omitting any additional error
correction. CZ gates between a 3D-cavity encoded Fock qubit (mode a) and an ancilla transmon qubit can
be realized by a dispersive coupling −χa†aZ/2, allowing for the execution of the Z-check measurement.
Similar as for the controlled-displacement in the GKP encoding, tunability of this interaction, for example,
by using an intermediate frequency-tunable resonator to vary the coupling strength, is important. This type
of parity check, using 1 transmon qubit to read out 4 Fock qubits, is the reverse of using one bosonic mode
to read out the parity of four coupled transmon qubits as realized in reference [86]. For the X-check
measurement one requires a CNOT gate with transmon qubit as target, which can be realized by
performing a CZ followed and preceded by Hadamard or RY(π/2). Again, similar as in the GKP encoding,
these simple single-qubit gates require the use of an ancillary qubit, but arbitrary cavity manipulations
through such coupled transmon qubit have been demonstrated in [87], albeit of rather long, O(1) μs,
duration, and having some, inevitable, leakage towards the state |2〉 or higher.

An engineering effort for making a surface code architecture using 2D transmon qubits is underway at
e.g. Google, IBM, TU Delft and ETH Zürich. Besides using an optimized decoder [88], the crucial numbers
which determine whether such architecture will be ‘below threshold’ are the quality, leakage [80],
time-duration and cross-talk of the two-qubit gate and the duration (and cross-talk) of the qubit
measurement versus the dephasing and relaxation time of the qubits. Flux-tunable transmon qubits have
recently achieved very good numbers for their two-qubit gates: reference [89] reports on a 99.1% CZ
fidelity of 40 ns duration and low leakage 0.1%, while Google’s supremacy experiments [90] have shown the
performance of ISWAP-like two-qubit gates on a 54-qubit Sycamore chip with an average error rate of
0.62% and duration O(10) ns. It is an open question how much further transmon performance numbers,
including measurement duration, can be pushed beyond their current values. The use of different
superconducting materials [91] can provide new opportunities to lengthen T2 and T1 times. Note however
that an enhanced T1 also leads to an enhanced duration of leakage. Frequency crowding and limits on
highly-accurate frequency targeting, in particular for non-flux tunable transmons, leading to spurious
cross-talk couplings is another challenge in realizing the surface code.

We thus believe that there is plenty of room and, in fact, necessity for developing an alternative surface
code architecture in which a data qubit, such as a Fock or GKP qubit, is encoded in a very harmonic mode
of high-Q (3D) cavity, while transmon qubits or their next-generation versions such as fluxonium or
noise-biased cat qubits, are used as ancilla qubits. If a pump-activated CZ or controlled-displacement gate
has high on/off ratio, one expects that spurious couplings between the 3D cavity data modes, due to
common coupling to the ancilla qubits, would be well suppressed.
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Appendix A. Fock state representation of GKP grid states

In this appendix we examine the Fock coefficients of approximate GKP states, using the D-approximation,
and the sensor grid state [44]. We study the asymptotic behavior of these Fock coefficients, showing that the
photon number distribution trends along a geometric or thermal distribution. It turns out that these Fock
coefficients relate to some interesting nontrivial mathematics.

The theta function with rational parameters (a, b) ∈ Q2, adopting the notations of [46, 92], is given by

ϑ

[
a
b

]
(z, τ) =

∑
k∈Z

exp
(
πiτ(k + a)2 + 2πi (k + a) (z + b)

)
, (A.1)
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where (z, τ) ∈ C and Im(τ) > 0 ensuring absolute convergence of the series. Some common shorthands are
the following

ϑ

[
0
0

]
(0, ix) = θ3 (x) =

∑
k∈Z

exp(−πxk2), (A.2)

ϑ

[1

2
0

]
(0, ix) = θ2 (x) =

∑
k∈Z

exp(−πx(k + 1/2)2), (A.3)

ϑ

[
0
1

2

]
(0, ix) = θ4 (x) =

∑
k∈Z

exp(−πxk2 + πik). (A.4)

The multidimensional generalization with rational vectors (�a,�b) ∈ (Qm)2 is given by

ϑ

[
�a
�b

]
(�z,Ω) =

∑
�k∈Zm

exp

[
πi
(
�k +�a

)T
Ω
(
�k +�a

)
+ 2πi

(
�k +�a

)T (
�z +�b

)]
, (A.5)

where�z ∈ Cm is a complex vector, Ω ∈ Cm×m is a complex matrix and Im (Ω) is positive definite which
ensures the absolute convergence of the series.

First, it is important to note that one can properly normalize the approximate GKP state |japprox〉, using
the D-approximation defined in equation (15), for the two logical states j = 0, 1:

|japprox〉 =
1√

N(Δ, j)
D|jideal〉 (A.6)

=
1√

N(Δ, j)
exp

(
−Δ2n̂

)∑
k∈Z

|q = (2k + j)
√
π〉 (A.7)

with

N(Δ, j) =
1√

π(1 − u2)
ϑ

⎡⎣ j

2
�1

�0

⎤⎦(�0,Ω
)

, (A.8)

where

u = exp(−2Δ2), (A.9)

Ω =
2i

1 − u2

(
1 + u2 −2u
−2u 1 + u2

)
, (A.10)

and �0 and �1 are the all-zeros and all-ones vectors respectively. Note that there is a bijection between
Δ ∈ (0,∞) and u ∈ [0, 1) so we write either N(Δ, j) or N(u, j) depending on convenience.

In order to obtain this expression one can use the position representation of Fock states in terms of
Hermite functions Ψn(q) (or Hermite polynomials Hn(q)),

〈n|q〉 = Ψn(q) =
1√

2n
√
πn!

exp

(
−q2

2

)
Hn(q), (A.11)

and the so-called Mehler’s Hermite polynomial formula:∑
n∈N

unΨn(x)Ψn(y) =
1√

π(1 − u2)
exp

(
(1 + u2)(x2 + y2) − 4uxy

2(1 − u2)

)
. (A.12)

It is possible to rewrite equation (A.8) in the form given in reference [46]

N(u, j) =
1

2
√
π(1 + u)

(
ϑ

[ j

2
0

] (
0, i8σ2

)
ϑ

[
0
0

] (
0, iσ2/2

)
+ ϑ

[ j + 1

2
0

] (
0, i8σ2

)
ϑ

[
0
1

2

] (
0, iσ2/2

))
.

(A.13)
This expression can be recovered using

Ω = i

(
1 1
1 −1

)(
2σ2 0

0
1

2σ2

)(
1 1
1 −1

)
(A.14)

2σ2 = tanh
(
Δ2

)
=

1 − u

1 + u
, (A.15)
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Figure A1. Fock coefficients of the D-approximate GKP state |japprox〉 for Δ ∈ {0.3, 0.4, 0.5}. Equations (A.17) and (A.13) are
used to numerically compute the coefficients. The photon distributions of a thermal distribution with an average photon number

n = u
1−u = e−2Δ2

1−e−2Δ2 are shown for comparison.

and the modular transformation

ϑ

[ j

2
0

] (
0, i/x

)
=

√
x ϑ

[
0
j

2

]
(0, ix) . (A.16)

We can turn to the Fock coefficients

cn(j) = 〈n|japprox〉 =
1√

N(Δ, j)
e−Δ2n

∑
k∈Z

Ψn((2k + j)
√
π). (A.17)

As the parity of the Hermite function Ψn(q) is that of the parity of n, the coefficients cn(j) vanish for odd n.
We can use that for q � 0, see [93],

Ψ2n(q) =

√
4n

√
π(2n)!

dn

dzn

(
1√

1 + z
exp

(
−q2

2
· 1 − z

1 + z

)) ∣∣∣∣∣
z=0

, (A.18)

with q = (2k + j)
√
π. This implies that we have

c2n(j) =

√
4n

N(u, j)
√
π(2n)!

un dn

dzn

[
1√

1 + z
θ3−j

(
2

1 − z

1 + z

)] ∣∣∣∣∣
z=0

. (A.19)

This gives a somewhat concise expression although it is not directly useful. In order to numerically
evaluate the coefficients for example, equation (A.17) is more convenient as the Hermite functions, Ψn(q),
have support essentially within

[
−2

√
n, 2

√
n
]

and are easily computed recursively using

Ψ0(q) = π−1/4 e−
q2

2 , (A.20)

Ψn(q) = q

√
2

n
Ψn−1(q) −

√
n − 1

n
Ψn−2(q). (A.21)

This is used together with equation (A.13) to plot the coefficients in figure A1.
The case of the Fock representation of the so-called sensor state [44] which is an approximate eigenstate

of ei
√

2πq̂ and ei
√

2πp̂ is very similar. For the perfect sensor state |ψideal〉 the wavefunction in q is a sum over
δ-functions at integer multiples of

√
2π, and similarly the wavefunction in p is a sum over δ-functions at

integer multiples of
√

2π.
The approximate state is |ψapprox〉 = 1√

N(Δ)
D|ψideal〉 with normalization

N(Δ) =
1√

π(1 − u2)
ϑ

[
�0
�0

](
�0,

1

2
Ω

)
, (A.22)

where u and Ω are the same as defined in equations (A.9) and (A.10). This can be obtained in a similar way
and we can also write N(u) instead of N(Δ) when convenient. The sensor state |ψapprox〉 is an eigenstate of
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Figure A2. Fock coefficients of the D-approximate sensor state |ψapprox〉 for Δ ∈ {0.3, 0.4, 0.5}. Equations (A.23) and (A.22) are

used to numerically compute the coefficients. The thermal distributions with average photon number n = u
1−u = e−2Δ2

1−e−2Δ2 are

shown for comparison.

exp(iπa†a/2), hence the photon number is 0 mod 4 for this state [44]. We now have cn = 〈n|ψapprox〉 with
c2n+1 = 0 and

c2n =
1√

N(Δ)
e−2Δ2n

∑
k∈Z

Ψ2n(k
√

2π). (A.23)

Reference [93] derives an expression analogous to equation (A.19) for the sum on the right-hand side:

∑
k∈Z

Ψ2n(k
√

2π) = θ3(1)

√
4nΦn

√
π(2n)!

d(n/2), n even (A.24)

∑
k∈Z

Ψ2n(k
√

2π) = 0, n odd,

with Φ =
Γ( 1

4 )8

128π4 , with Γ() the Euler gamma function, and {d(n)}∞n=0 is a particular integer sequence studied
in [93] which is directly related to the derivatives of θ3(x) at x = 1 by

1√
1 + z

θ3

(
1 − z

1 + z

)
= θ3(1)

∞∑
n=0

d(n)

(2n)!
Φnz2n. (A.25)

We show the Fock coefficients for the sensor state in figure A2. Note that the sign of the integers d(n) is the
same as the sign of c4n through equations (A.23) and (A.24). We can write the sensor state
|ψideal〉 ∝

∑
t,s∈Ze−i

√
2πp̂t ei

√
2πq̂s|0〉 where |0〉 is the vacuum state. Using that ei

√
2πq̂ = D(i

√
π),

e−i
√

2πp̂ = D(
√
π) and D(α)|β〉 = eiIm(αβ∗)|α+ β〉, 〈n|α〉 = e−

|α|2
2 αn√

n!
, we have

sign(d(n)) = sign(c4n) = sign

( ∑
t∈Z,s∈Z: z=t+is

e−
1
2 π|z|2 z4n(−1)ts

)
. (A.26)

We want now to derive the asymptotic behavior of the coefficients. This can be done by expressing the
normalization of the states by an equality which has to hold for all Δ ∈ (0,∞) or equivalently all u ∈ [0, 1).
In the case of the sensor state,

∑
n∈N|c4n|2 = 1 implies:

N(Δ) =
θ3(1)2

√
π

∑
n∈N

(
2
√
Φu

)4n

(4n)!
d2(n), (A.27)

which is of the form:

N(u) =
A√
π

∑
n∈N

a4nu4n, (A.28)

where the constant A and the sequence a4n, both independent of u, are defined by equation (A.27). Similarly
for the approximate GKP states we have:

N(u, j) =
1√
π

∑
n∈N

(2u)2n

(2n)!

(
dn

dzn

[
1√

1 + z
θ3−j

(
2

1 − z

1 + z

)] ∣∣∣∣∣
z=0

)2

, (A.29)
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which is of the same form:

N(u, j) =
B(j)√
π

∑
n∈N

b2n(j)u2n, (A.30)

for some other constant B(j) and sequence b2n(j), also both independent of u, defined by equation (A.29).
Seen as complex functions of u ∈ C, N(u, j) and N(u) are both analytic and have a convergence radius

of 1. Their behavior for u → 1 can be obtained (see also [46]) using equation (A.13) and the fact that

θ3−j(x) ∼
x→0

1√
x

, θ4(x) ∼
x→0

2 e−π/4x

√
x

. (A.31)

This gives

A√
π

∑
n∈N

a4nu4n = N(u) ∼
u→1

1

2
√
π(1 − u)

, (A.32)

B(j)√
π

∑
n∈N

b2n(j)u2n = N(u, j) ∼
u→1

1

2
√
π(1 − u)

. (A.33)

We then apply a transfer theorem, see [94], to deduce the asymptotic behavior of the a4n and b2n(j)
sequences. More precisely they both converge to some finite value

a4n ∼
n→∞

1

2A
, b2n(j) ∼

n→∞

1

2B(j)
. (A.34)

In turn this gives the asymptotic behavior of the Fock coefficients:

|〈4n|ψapprox〉|2 ∼
n→∞

u4n

2
√
πN(u)

, |〈2n|japprox〉|2 ∼
n→∞

u2n

2
√
πN(u, j)

. (A.35)

In both cases the coefficients are asymptotically equivalent to a geometric or thermal distribution which
is usually parametrized by the average photon number n as follows

pthermal
n =

1

n + 1

(
n

n + 1

)n

. (A.36)

We can therefore deduce the average photon number of the equivalent asymptotic thermal distribution to
the approximate GKP and sensor states using

u =
n

n + 1
⇒ n =

u

1 − u
=

e−2Δ2

1 − e−2Δ2 . (A.37)

These thermal distributions for the different Δ’s considered are also shown in figures A1 and A2. One can
see a good agreement of the general trend although oscillations of the order of the probabilities themselves
persist. Note also that for small Δ, n ∼ 1

2Δ2 , consistent with approximate expressions derived in other
literature (see main text).

Appendix B. Decoders for repeated GKP error correction with finite squeezing

For computational, simulation efficiency (as well as our formulation of a classical decoder) we use the
approximation FV for the GKP ancillas. This form of the states can be viewed as applying a reverse Villain
approximation to the approximate F-states in equation (17). The reverse Villain approximation, which is
tight for a � 4π2, reads ∑

n∈Z
e−an2+bn ≈ e−

a
2π2 e

b2
4a +

a
2π2 cos( πa b)

. (B.1)

Using equation (B.1) and Δ2

Δ4+1
≈ Δ2, we then have

FV |0〉 =
∫
R

dq ψ0(q)|q〉, ψ0(q) ∝ e−
Δ2

2 q2
e

1
πΔ2 cos(

√
πq),

FV |+〉 =
∫
R

dq ψ+(q)|q〉, ψ+(q) ∝ e−
Δ2

2 q2
e

1
4πΔ2 cos(2

√
πq)

. (B.2)
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Using these ancillas, the Green’s function for M rounds of error correction (without active feedback
between rounds), with outcomes denoted as M-dimensional vectors �p and �q, can be written as

GM(qout ← qin|�q,�p) =

∫
RM+1

d�q exp(−S[�q|�q,�p])δ(qout − qM)δ(qin − q0), (B.3)

with one-dimensional ‘action’ S[�q|�q,�p]:

S[�q|�q,�p] =
M∑

m=1

Δ2

2
(qm − qm−1)2 − 1

Δ2π
cos

√
π(qm − qm−1) −

M∑
m=1

1

4πΔ2 cos 2
√
π(qm − qm)

+
Δ2

2
(qm − qm)2 + i

M∑
m=1

pm(qm − qm−1). (B.4)

We can readily interpret the first line in the last equation as a kinetic energy term T, generating dynamics in
the position variable, while the second line is a potential energy term −U, pinning the position variable to
the measured values qm. We note that in the potential energy, the cos 2

√
π(qm − qm) term is dominant

when Δ is small and hence we can omit the wide parabolic potential proportional to Δ2. Similarly, for the
kinetic energy, when Δ is small, expanding cos

√
π(qm − qm−1) gives heavy-mass terms with mass ∼ 1

Δ2

and the light-mass quadratic term ∼ Δ2 contributes little. We see that aside from the imaginary term on the
last line, the action in this approximation is the same as in the Hamiltonian developed for stochastic noise
in the reverse Villain approximation in reference [48] identifying σ2

0 = Δ2 with σ0 the standard deviation in
the Gaussian displacement model in equation (24). Note however that here the dynamics occurs at the level
of wave functions, whereas the description in reference [48] took place at the level of the probabilities (for
shift errors). The interesting difference lies in the pure imaginary term making the action S complex. If the
path integral is approximated by taking a single ‘classical’ path which minimized Re(S) then this phase
factor only gives an additional phase to this path. However, the pure imaginary term contributes a phase to
each path so that the total sum of paths qin → qout can be different, due ito interference, than the case in
which these phases are absent. Note that these terms comes from the Z-error correction step with outcome
pm which puts a feedback error on the data oscillator.

We formulate a decoder which will provide an approximate tracking of the dynamics of the wave
function in q and p of the encoded state which is classical. This approximation can be viewed, to some
extent, as making a classical approximation, i.e. selecting a single optimal classical path of a quantum path
integral. We believe that similar ideas could be applied to simplified tracking of the Wigner function for the
purpose of decoding: this may be of interest when we want to study the effects of a fuller noise model,
which includes, say, photon loss on the cavity mode during ancilla GKP state preparation and photon loss
on the ancilla prior to measurement.

The use of a classical approximation12 to this path-integral is to determine the outgoing wave function
without fully calculating the entire evolution by executing the M − 1-dimensional integral. In this classical
approximation we would have

ψout(qout) ≈
∫

dqin exp(−S[�qopt|�q,�p])ψin(qin). (B.5)

We imagine doing a final measurement of q̂ on the outgoing wave function ψout and will be interested in
evaluating equation (18). For the classical approximation we have

P(Z = (−1)b) =

∫
Ib

dq|ψout(q)|2 =
∫

Ib

dq

∫
dqin

∫
q′in e−S[�qopt(q←qin)|�q,�p]−S∗[�qopt(q←q′in)|�q,�p]ψin(qin)ψ∗

in(q′in),

(B.6)
where we have explicitly indicated how the optimal path depends on the initial position qin and the final
position q. We note that the action in equation (B.4) has the property
S∗[q0, . . . , qM|�q,�p] = S[qM , . . . , q0|�q,�p], i.e. it is the action of the time-reversed path. Thus when q′in = qin,
we have e−S[�qopt(q←qin)|�q,�p]−S∗[�qopt(q←qin)] = e−2Re(S[�qopt(q←qin)|�q,�p]). In words: when we take a path along a closed
loop from qin → q → qin, there is no phase accumulation. However, in equation (B.6) there are certainly
contributions when qin �= q′in. For the purpose of developing an efficient classical decoder, we apply a
stochastic approximation to equation (B.6), keeping only the diagonal terms i.e.

Pclass(b|ψin,�q,�p) = N

∫
Ib

dq

∫
dqin e−2Re(S[�qopt(q←qin)|�q,�p])|ψin(qin)|2, (B.7)

12 One can also define a semi-classical approximation by expanding around the classical path and performing the Gaussian integral, but
we have not numerically explored these variations on decoding.
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where N is a normalization to make Pclass() a probability. Since this normalization does not play a role in
the use of this expression in decoding, we do not need to determine it. To evaluate equation (B.7), one can
generate a q uniformly at random in the interval Ib and qin is generated according to |ψin|2. Given q and qin,
if we can evaluate the classical path �qopt between these points and hence compute the weight
e−2Re(S[�qopt(q←qin)|�q,�p]) corresponding to this path, then we can stochastically estimate equation (B.7).
However, as was observed in reference [48] this classical-path approach is not computationally simple as the
dynamics of the q-variable can be chaotic due to it taking place in a random potential induced by the
measurement outcomes �q,�p. Hence, instead of sampling qin and the endpoint q, we will sample qin from
|ψin(qin)|2 and then apply a forward minimization technique, similar as in reference [48], on the function
Re(S)[.] to find an approximately optimal path �qopt given qin, leading to a final value for qout. We then
determine whether qout lies in Ib and repeat to gather statistics. In fact, we observe numerically that this
strategy shows the same performance as fixing an initial qin = argmax

q
|ψin(q)|2 to which we apply the

forward minimization. The probability to land in the Ib interval is denoted as Pforward(b|ψin,�q,�p).
To adapt this forward decoder to the corrective displacement in each round as shown in figure 7, the

action in equation (B.4) is modified by substituting qm → qm + qm for each round (and the addition of a
term iqmpm which is irrelevant for this decoder).

The memoryless decoder presented in figure 10 in the main text is implemented by decomposing each

measurement outcome qm = l
q
m
√
π + n

q
m2

√
π + e

q
m and pm = l

p
m
√
π + n

p
m2

√
π + e

p
m with l

q/p
m ∈ Z2 (yes/no

logical shift) nq/p
m ∈ Z (number of stabilizer shifts), |eq/p

m | <
√
π

2 (minimal shift error) and applying a

corrective shift of αm =
−δq,m+iδp,m√

2
with δq/p,m = n

q/p
m 2

√
π + e

q/p
m after the QEC round. Note that this is not

the same correction as in figure 7. This correction is motivated by a stochastic-shift error model and ensures
that we keep the photon number low by applying an appropiate number of stabilizer displacements while
correcting the perceived error.

Let us now further discuss how we test and evaluate our decoders.
Decoding of repeated GKP error correction. The experimentalist implementing the repeated rounds of

error correction learns the value of �p,�q and the outcome of the final perfect homodyne measurement of q̂,
but in general she should make decoding decisions without knowing the input state13. However, she can play
the game in which she assumes that the input wave state is either ψ0

in(q) (or ψ1
in(q)) and then determine

whether the dynamics—given her measurement data �q,�p—would lead to a read-out of Z = 1 or Z = −1.
Naturally this may not a deterministic process, so she can calculate the probabilities P(0|ψ0

in,�q,�p) (Z = 1)
and P(1|ψ0

in,�q,�p) (Z = −1). This defines a maximum-likelihood full-density matrix decoder. When using
this decoder, the experimentalist evaluates the (normalized) Green’s function in equation (B.3), given her
measurement data. She then flips the final experimentally measured logical outcome bit (modeled as a
perfect homodyne measurement of q̂) whenever P(1|ψ0

in,�q,�p) > P(0|ψ0
in,�q,�p). As logical error rate estimate

for this decoder we take

PMLD =

∫
d�q

∫
d�p P(�q,�p) min

(
P(0|ψ0

in,�q,�p),P(1|ψ0
in,�q,�p)

)
. (B.8)

This estimate assumes that the error rate is (roughly) the same when the input wavefunction is ψ1
in(q) and

that a superposition of such inputs behaves similarly, without logical interference.
For systems of many modes, this decoding method will not typically be efficient (even for a single mode

it comes down to a sizable computational effort), hence the goal of decoding is to infer errors without
tracking the entire wavefunction. As we argued before, it turns out to be most computationally efficient to
use a forward strategy and estimate Pforward(0|ψ0

in,�q,�p). With this probability in hand, let
f (�q,�p) = argmin

b
(Pforward(b|ψ0

in,�q,�p)) be the indicator bit whether to flip. The logical error estimate that we

consider is then

Pforward =

∫
d�q

∫
d�p P(�q,�p)

[
δf (�q,�p),0P(1|ψ0

in,�q,�p) + δf (�q,�p),1P(0|ψ0
in,�q,�p)

]
. (B.9)

Again, in using only this estimate, it is assumed (and not a priori given) that the evolution of the input state
ψ1

in(q) or an arbitrary superposition will have the same logical error rate, and that assuming a different
input state would not lead the decoder to different conclusions. The logical error probability for the passive
decoder which does not use any syndrome measurement data, but declares that output state is the same as
input, is defined as

Ppassive =

∫
d�q

∫
d�p P(�q,�p)P(1|ψ0

in,�q,�p). (B.10)

13 The reason is that this state may be part of a complicated quantum computation and we assume that we cannot simulate this
quantum computation.
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Thus, similar as in equation (B.10), the logical error is determined by the probability to get outcome 1 in
the final q measurement. We have numerically estimated the logical errors rates of these three decoders,
given in equations (B.8)–(B.10), as a function of M for Δ = 0.3 and Δ = 0.4, see figure 10 in the main text.
The logical error rates for adapted versions of these decoders including corrective displacements after each
round are displayed in figure 11.

Appendix C. Hamiltonian engineering via rotating wave approximations

The goal of this appendix is to discuss the underpinnings and the ‘beyond’ of the commonly-invoked
rotating wave approximation of a Hamiltonian of the form H = H0 + V with

H0 = ωa

(
a†a +

1

2

)
+ ωb

(
b†b +

1

2

)
+ ωc

(
c†c +

1

2

)
, V =

∑
k

λkΦ
k, Φ = αq̂a + βq̂b + γq̂c. (C.1)

First, in the absence of applying time-dependent drives, the physical basis for an RWA approximation of a
Φk-term can be motivated in at least two ways. One is to move to a rotating frame in which the
Hamiltonian remains time-independent, but is a form amenable to Schrieffer–Wolff degenerate
perturbation theory so that terms which either (1) contain an unequal number of creation and annihilation
operators, and/or (2) contain an equal number of creation and annihilation operators of modes which are
sufficiently far detuned, are seen as perturbations to detuned Fock energy levels. For example, in
equation (C.1), to argue about the perturbative effect of terms which contain an unequal number of
creation and annihilation operators, we observe that they act as off-diagonal elements in the Fock basis of
H0, changing the number of total excitations. Hence if we view H0 as block-diagonal with blocks formed by
a given total number of excitations in either mode a, b or c, separated by a gap min(ωa,ωb,ωc), then the
effect of such excitation-number changing terms can by examined by Schrieffer–Wolff perturbation theory.
In lowest-order perturbation theory, one projects V onto these blocks labeled by the number of excitations,
so that off-diagonal terms have no effect, Kerr and cross-Kerr terms remain, as well as excitation-number
preserving terms (e.g. a†b†c2). Given the GHz frequencies of the ωi’s versus the relative strength of
Josephson-induced coupling, keeping things to this lowest-order is a good approximation and we replace V
by Veff which omits these terms which do not preserve the number of excitations. This strictly speaking is
the rotating-wave-approximation.

As a next approximation, to handle terms which do not preserve excitation number in any of the
particular modes, we go to the rotating frame at ωc for all three modes so that
H̃0 = Δac(a†a + 1

2 ) +Δbc(b†b + 1
2 ) with Δic = ωi − ωc and Ṽeff = Veff . We imagine that Ṽeff is expanded

in terms which are products of creation and annihilation operators of the modes. The Hamiltonian H̃0 has
energy eigenspaces |x〉a ⊗ |y〉b ⊗ |ψ〉c with Fock states x, y = 0, 1, . . . , each of which has the degeneracy of
the oscillator (c) space, and each space is at least min(|Δba|, |Δca|, |Δbc|) away from another space. The
perturbation Ṽeff has both diagonal parts with respect to these eigenspaces (e.g. Kerr and cross-Kerr) as well
as off-diagonal terms which map between the spaces. In lowest-order perturbation theory, one again
projects Ṽeff onto these eigenspaces, so that off-diagonal terms have no effect and Kerr and cross-Kerr terms
remain. This is then the full (RWA) approximation. To go beyond this, the effect of the off-diagonal terms
can be estimated in second or higher-order perturbation theory to obtain an effective Hamiltonian Heff

which is diagonal in the Fock basis using Schrieffer–Wolff perturbation theory (see e.g. [95–98]). The
spectrum of Heff approximates that of H when we are in the perturbative regime with min(Δij) 	 ‖Veff‖/2.
In second and higher-order perturbation theory, i.e. beyond RWA, UHeff U † provides an approximation for
H̃ where the unitary U is the perturbatively expanded Schrieffer–Wolff transformation which provides a
correction to the Fock eigenbasis. To get an approximation to the original Hamiltonian, one would finally
rotate back to the original frame.

An alternative analysis could be based on the Magnus expansion: to apply this, we move to a rotating
frame for each mode at its own frequency for the Hamiltonian in equation (C.1) such that the previously
mentioned off-diagonal terms become rapidly time-dependent: as a consequence their effect averages out
over sufficiently long times. To observe the dynamics in this rotating frame, we consider the Schrödinger
equation for the state |ψ̃(t)〉 = U†

0 (t)|ψ(t)〉 with U0 = exp(−i H0t), while |ψ(t)〉 obeys the Schrödinger
equation with H. The state |ψ̃(t)〉 will evolve according to the rotating-frame (or interaction-frame)

Hamiltonian H̃ = U†
0HU0 + i

dU†
0

dt U0. For example, when V = λ[a2b†c† + h.c.], one has

H̃ = λ[a2b†c† ei(2ωa−ωb−ωc)t + h.c.]. (C.2)

For time-dependent Hamiltonians, the Magnus expansion [99] or Magnus–Taylor expansion [100] then
forms a convenient representation of the effective dynamics. For the time-evolution (in the rotating frame)
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from an initial time t = 0 to a final time T, the Magnus expansion reads

U (T, 0) = T exp

(
−i

∫ T

0
dtH̃ (t)

)
= exp

(
−iH (T)

)
, (C.3)

with H(T) =
∑∞

k=1 H(k)(T) and the first two terms equal

H(1) (T) =

∫ T

0
dtH̃ (t) , H(2) (T) = −1

2

∫ T

0
dt′
∫ t′

0
dt[H̃

(
t′
)

, H̃ (t)],

while for k � 2 one gets increasingly higher-order commutators [99]. For the Hamiltonian in
equation (C.1), clearly terms diagonal in the Fock basis, are time-independent and will be present in
H(1)(T). As an example of a rotating term, consider a simple time-dependent Hamiltonian
Ṽ(t) = A exp(iΔt) + h.c. where A is some product of creation and annihilation of some modes and Δ is a
detuning. For this Hamiltonian, the strength of this lowest-order term decays inversely with Δ, i.e.

‖V (1)(T)‖ � 2

Δ
(‖A‖+ ‖A†‖) sin(ΔT/2) � 4

Δ
‖A‖, (C.4)

scaling with the perturbative parameter ‖A‖/Δ.

In general, a sufficient condition for the convergence of the Magnus expansion is that
∫ T

0 dt‖H̃(t)‖ < π,
but, similar as in degenerate perturbation theory, it can still serve as useful asymptotic series expansion.

We thus see that both methods give us perturbative expansions whose validity depends on the strength
of the perturbative parameter.

Let us now discuss the case when we actively drive one of the modes, say mode c. As before one can
apply an RWA, dropping terms which do not preserve total excitation number to obtain an effective Veff . If
we assume that the only effect of the drive term is to create a coherent state with 〈c(t)〉 = E e−iωpt in
oscillator c, we can remove ωcc†c from H and replace c by 〈c(t)〉 everywhere. Given this time-dependence it
then seems more convenient to use a Magnus expansion to analyze the effect of the higher-order effects of
the non-resonant terms. For this we move to a rotating frame for the oscillators a and b at their own
frequency, such that depending on the choice of the drive frequency ωp some terms become
time-independent. For example, a term like a†bc is time-independent for the choice ωp = ωa − ωb.

A more thorough quantitative analysis of the error induced by the RWA approximation through
perturbative or Magnus expansions would be desirable, as it plays into the accuracy of the CZ gate and is
influenced by the number of photons in a GKP mode (as the latter influences the strength of the
perturbation).

C.1. Time-dependent displacement frame
Imagine a Hamiltonian (in a rotating frame of the mode a) of the form H = H1(a, a†) + iE(t)a† − iE∗(t)a
where E(t) is some time-dependent envelope of the drive and H1(a, a†) has some functional form on a and
a†. We consider the time-evolution of the vector |ψ̃(t)〉 = U†

0 (0, t)|ψ(t)〉 with
U0(0, t) = T exp(−i

∫ t
0 dt′[iE(t′)a† − iE∗(t′)a]) which evolves with the Hamiltonian

H̃(t) = U†
0 HU0 + i

∂U†
0

∂t U0. In words, we consider the evolution in the time-dependent displacement frame
given by the time-dependent drive. When after some final time T, the total frame evolution is U0(0, T) = I,
the time-independent Hamiltonian H̃(t) will describe the time-evolution of the actual Schrödinger state
|ψ(t)〉 over the entire period of time T. We can write U0(0, t) = D(β(t)) where β(t)=

∫ t
0 dt′E(t′), so that we

evaluate H̃(t) = H1(a + β, a† + β∗) + iE(t)β∗ − iE∗(t)β and the last term can be omitted as it give rise to
an irrevelant phase.
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