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Abstract
Apractical quantum computer requires quantumbit(qubit) operationswith low error probabilities
in extensible architectures.We study a packagingmethod thatmakes it possible to address hundreds
of superconducting qubits bymeans of coaxial Pogo pins. A qubit chip is housed in a superconducting
box, where both box and chip dimensions lead to unwantedmodes that can interfere with qubit
operations.We analyze these interference effects in the context of qubit coherent leakage and qubit
decoherence induced by dampedmodes.We propose twomethods, half-wave fencing and antinode
pinning, tomitigate the resulting errors by detuning the resonance frequency of themodes from the
qubit frequency.We perform electromagnetic field simulations indicating that the resonance
frequency of themodes increases with the number of installed pins and can be engineered to be
significantly higher than the highest qubit frequency.We estimate that the error probabilities and
decoherence rates due to suitably shiftedmodes in realistic scenarios can be up to two orders of
magnitude lower than the state-of-the-art superconducting qubit error and decoherence rates. Our
methods can be extended to different types of packages that do not rely on Pogo pins. Conductive
bumpbonds, for example, can serve the same purpose in qubit architectures based onflip chip
technology.Metalized vias, instead, can be used tomitigatemodes due to the increasing size of the
dielectric substrate onwhich qubit arrays are patterned.

1. Introduction

The implementation of a practical quantum computer willmake it possible to run certain algorithmsmuch
more efficiently than any classical computer [1]. Search and optimization as well as cryptography algorithms,
such as Shor’s algorithm, will have profound implications on society at large. Quantumwalk and quantum
linear equation algorithms aswell as digital quantum simulation algorithmswill have an important impact on
scientific research.Other approaches to quantum computation, e.g., the quantum adiabatic algorithm,may also
lead to relevant short-term applications such as the solution of constraint satisfaction problems [2].

Many implementations of the quantum computer and its primary component, the quantumbit or qubit, are
currently under consideration [3]. Among these, superconducting qubits [4, 5] occupy a leading position due to
the potential for scalability [6, 7] and robustness to dissipative phenomena [8–10]. In fact, superconducting
qubits can be fabricated on a chip using standard lithography techniques and can be operatedwith available
microwave electronics. It has been shown that the error probabilities associatedwith the operation of these
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qubits can be as low as p 10 3~ -¯ [11, 12].While such error probabilities are remarkable for a quantum-
mechanical system, they are at least ten orders ofmagnitude higher than those necessary to run advanced
quantumalgorithms [13].

It is believed that reaching the required error probabilities can be accomplished bymeans of quantum error
correction(QEC) algorithms [14], where quantum information is encoded in a large array of qubits. For
example, a proof-of-concept implementation of themost forgivingQEC algorithm, the surface code [13], can be
realizedwith an ensemble of about100 qubits. A similarly sized systemmay alsomake it possible to achieve
quantum supremacy, i.e., to outperform themost advanced classical supercomputer on specific problems,
without resorting toQEC [15].

The operation of an arraywith100 ormore superconducting qubits, i.e., amedium-scale quantum
processor, requires a complex classical infrastructure for qubit wiring, packaging, control, andmeasurement [7,
16–20]. This infrastructure almost certainly leads to new sources of qubit error, such as correlated [21] and
leakage errors [22–24].

In this article, we study the detrimental effects on qubit operations due to the size of the quantumprocessor’s
package.We focus on the interaction between a qubit and an unwanted cavitymode, where this can be a box or
substratemode. The substrate is a dielectric parallelepiped on the surface of which the qubit array is fabricated;
the box is the package’s internal cavity above the surface of the substrate.We show that an unwanted cavity-qubit
interaction [16, 25, 26] can lead to coherent leakage error probabilities well above p̄.

We propose twomethods tomitigate coherent leakage errors, both based on the detuning of the cavity-qubit
frequency. This is realized by introducing an array of boundary conditions inside the cavity, causing the cavity
frequency to shift with respect to the qubit frequency. Bymeans of numerical simulationswe demonstrate that
for a cavity-qubit frequency detuning larger than∼20%of the qubit frequency, the coherent leakage error
probability is far below p̄.

The article is organized as follows. In section 2, we provide themotivation for this work. In section 3, we
introduce themethods required to obtain the results exposed in section 4. In section 5, we discuss a
generalization of ourmethods and,finally, in section 6we outline the next steps for the experimental verification
of our results. The article is completed by three appendices: qubit coherent errors and the Jaynes–Cummings
model (appendix A); estimate of box-qubit coupling rates (appendix B); nonideal-case simulations and scalable
implementation (appendix C).

2.Motivation

Aquantum computer can be described by a purely unitary generator and a purely dissipative generator
[24, 27] (see appendix A.1). The generator describes bothwanted and unwanted dynamics, where the latter
are calledcoherent errors.When such errors bring quantum information outside the computational subspace,
they are calledcoherent leakage errors. The generator, instead, describes incoherent leakage errors.

Considering the interaction between one unwanted cavitymode and one qubit, the unitary generator can be
written as Hi ,JC JC r= - [ ˆ], whereHJC

 is the Jaynes–CummingsHamiltonian [28], r̂ is the cavity-qubit
densitymatrix, and i2=−1; the generator accounts for cavity and qubit decoherence. The time evolution
of JC +( ) can lead to leakage errors. In this case, the interplay between the coherent and incoherent error
regimes is dictated by: the cavity-qubit coupling rateg; the detuning between the qubit with transition
frequencyfqand the cavitymodewith resonance frequencyfc,Δ=( fc−fq); the cavity damping rateκ and
the qubit relaxation and dephasing ratesγrand γd, respectively.

In this work, we show that unwanted cavity-qubit coupling rates can be comparable to those typically used
for qubit gate and readout operations [11, 12] andmuch larger than the state-of-the-art qubit decoherence rates
[8–10].We study the interaction between one unwantedmode and a qubit in the one excitation sector and in
absence of any damping. This allows us to characterize pure coherent leakage errors by defining an upper bound
for the error probabilityp. Additionally, we consider the case of a dampedmode by analyzing the incoherent
errors due to the Purcell rateΓc. In both cases, we demonstrate that by suitably increasingΔ and decreasingκ
results in p p ¯ andΓc= γr (see section 4). The case ofmultiplemodes is discussed in section 5. Although it
would be possible to achieve similar results by decreasingg, this is not a scalable solution for typical package and
qubit designs (see section 5).

The resonance frequencies of a cavity are determined by the electromagnetic field boundary conditions,
which can bemodified to shift these frequencies. In the case of a cavity-qubit system this results in a change ofΔ.
Although there aremany possible approaches to achieve this goal, we investigate twofrequency shiftingmethods
based on appropriately designed arrays of zero-potential boundary conditions:Half-wave fencing and antinode
pinning. Half-wave fencing, inspired by the picket fence Faraday cage, provides a straightforward analytical
solution that can be used to quickly estimate the resources required for the desired change inΔ. In the case of
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perfect conductors, antinode pinning provides the optimalmethod tomodify boundary conditions,
transforming cavitymode antinodes into nodes through an iterative procedure. As suggested by ourfindings, a
combination of thesemethods allow an optimized usage of resources for themitigation of qubit coherent
leakage errors.

The practical implementation of ourmethods requires the qubit array design to account for the package
design, and vice versa. Limitations dictated by the end user’s specifications, such as fixed circuit placement,must
be carefully taken into consideration. In an ideal process, the array of boundary conditions required for a desired
shift inΔ isfirst determined, followed by the design of the qubit array and placement of the qubit control and
measurement wires. For the greatest optimization, the design of the entire system should be performed
iteratively with the assistance of full electromagnetic field numerical simulations.

In order to test the efficacy of ourmethods, we consider themedium-scale quantumprocessor introduced in
[29], where it is shown that a10×10 array of Xmon transmon qubits [8] can be realized on a72 mm×72 mm
dielectric substrate in a boxwith similar lateral dimensions. This box leads to unwantedmodes with resonance
frequency in the region of the qubits transition frequency. Very similar architectures have been envisioned and
implemented by other research groups [17, 20]. A common feature to these architectures is themetalization of
almost the entire substrate surface, themajority of which serves as a ground plane. The area of dielectric exposed
to the box due to the required circuit components is low enough not to significantly perturb themodes of the
system, nor do the circuits themselves (see appendix C). This feature allows us to study and propose remedies for
box and substratemodes independently, as well as to ignore specific circuit designs.

We note that the packagingmethod proposed for the quantumprocessor in [29] has been defined
thequantum socket or, by other users, plane breaking package [20]. This, which is the packagingmethod used in
our laboratory, differs significantly fromother packaging solutions as it is based on coaxial Pogo pins instead of
wire bonds [25] or bump bonds [17, 18, 30, 31]. The Pogo pins used in our package are custom-made, spring-
loaded coaxialmicrowires with an outer diameter of1290 μm; themechanical and electrical properties of the
pins have been studied in detail in [29].

The pins can serve the twofold functionality of addressing the qubit array for quantumoperations and acting
as a zero-potential boundary condition for the box (see section 4.1). For themedium-scale quantumprocessor
analyzed here, the number of pins required to address the qubits is enough to sufficiently reduce leakage errors
due to boxmodeswhen applying one of our frequency shiftingmethods. Furthermore, we show that for boxes
with lateral dimensions up to1 m×1 m the number of pins required by themethods is on the same order of or
less (in some instances significantly less) than those necessary to control andmeasure the qubits, e.g., in a surface
code architecture as in [29]. This will not always be the case for all quantumprocessors, where zero-potential
boundary conditions in addition to those naturally provided by thewiring arraymay be required (see section 5).
It is worth noting that conducting elements other than coaxial Pogo pins can alternatively be used as boundary
conditions, such as bumpbonds to remove boxmodes ormetalized vias [17, 32] to remove substratemodes (see
section 5).

3.Methods

In this section, we introduce the half-wave fencing and antinode pinningmethods (see sections 3.1 and 3.2,
respectively).We then describe the setup and settings of the electromagnetic field simulations performed to
study the effects of coaxial Pogo pins on boxmodes (see section 3.3). Finally, we present a theoreticalmodel to
calculate the coherent leakage error probability and dispersive Purcell rate for a qubit coupled to an unwanted
cavitymode (see section 3.4).

3.1.Half-wave fencing
The inner space of amicrowave package can bemodeled by a boxwith square cross-section of side lengthL and
heightH. The box supports both transverse electric(TE) and transversemagnetic(TM)modes with resonance
frequencies [33]
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where c is the velocity of light in vacuumand n m, , Îℓ refer to the number of half wavelengths spanned by
the electromagnetic field in the x-, y-, and z-axis.

WhenL>H, themodewith the lowest resonance frequency or dominantmode is the TEnmℓ=TE101
mode. The corresponding resonance frequency is f c L2101 = ( ). Under these conditions, the box can be
represented by a two-dimensional squaremembranewith side L, as shown infigure 1(a). TheL2square can be
iteratively divided into smaller squares with dimensions L L L2 , 2 , , 2d1 2 2 2 2¼{( ) ( ) [ ( )] }, whered 0Î > is
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the number of iterations (except for the 0th iteration). The total number of squares after diterations
is thusn 2 d

c
2= .

The physical implementation of thismethod is realized by dividing the box in a numberncof smaller boxes
or cells, which are encapsulated by perfectly conducting groundedwalls; each cell behaves as a Faraday cage. The
walls can be replaced by a large set of coaxial Pogo pins, resulting in a Faraday picket fence. Figure 1(a) displays
the fences ford=0, 1, 2. The iterationd=1, for example, comprises one vertical and one horizontal fence. In
the simplest case, each of these two fences can be approximated by three equally separated pins, one of which is
in the center of the L2cell (with the center pin being used only once). Thismethod, whichwe name half-wave
fencing,makes it possible to shield pairs of adjacent cells. Afterd iterations, the frequency of the lowest resonant
mode for each of the nc cells and the total number of pins are given by

f f a2 , 3.2d
c 101= ( )

N b2 1 2 2 2 1 , 3.2d d d2= - + ´ -( ) ( ) ( )

respectively, whereN Î is obtained from a simple counting argument (see figure 1(a) for a schematic pin
counting representation). As expected, fc increases withd (the smaller the cell, the higher the resonance
frequency). By substituting the expression for2dobtained from(3.2a) into (3.2b), we obtain a quadratic
equation in the variablefc/f101with parameterN. By selecting the positive solution of this equation, wefind an
analytic expression forfcas a function ofN, which reads

f
f

N
3

2 1 3 . 3.3c
101= + +( ) ( )

In practice, this equation is only valid for values ofN corresponding to integer values ofd given by(3.2b), which
are associatedwith an even number of half-wave fenced cells of equal size. However, interpolating(3.3) for
arbitrary integer values ofN and,more in general, for real values ofN (this would correspond to fractional
portions of a pin and, thus, have no actual physicalmeaning) helps understand qualitatively the frequency
shifting trend offered by themethod (see examples in section 4.2).

Figure 1. First three iterations of the two proposed frequency shiftingmethods. The rectangular box of sideL is viewed along the
y-axis (i.e., top view). (a)Half-wave fencing. Numbers indicate each of thenccells for the various iterations. Gray lines represent the
geometric boundary of a cell; the thick dashed black line in the subpaneld=1 indicates one inner edge of a cell. Full blue squares
show the position of the coaxial Pogo pins on the square grid associatedwith thefirst term in(3.2b); full downpurple and right green
triangles correspond to pins on the two orthogonal rectangular grids associatedwith the second term in(3.2b). (b)Antinode pinning.
Pins are indicated by full blue circles. Crossed circles indicate the electric field distribution, with cross-circle size relating to thefield
strength (not to scale). Ford=0, theTE101mode is shown. Ford=1, one pin is placed in correspondence to the antinode of
TE101, resulting in a toroidalfield distribution. Ford=2, eight additional pins partially suppress the circular antinode. Note that, in
this case, thefield inside the eight-pin ‘circle’ is veryweak compared to the rest of thefield and, thus, is not shown.

4

QuantumSci. Technol. 3 (2018) 034004 TGMcConkey et al



Theworking principle of half-wave fencing is to introduce enough pins to shift the lowest resonance
frequency of a cell to a certain valuefc,maintaining the distanceλ between any pair of pins in a fence to be half of
thewavelength associatedwithfc,λ=c/(4fc ). This approach allows us to optimize resources while achieving a
reasonable shielding against electromagnetic fields with frequencyfc. Formodes with resonance frequency
much higher thanfc, the vacuumgaps between the picketsmake the cells practically transparent to the field.
This, however, is not amajor concern if thosemodes are alreadywell separated in frequency from the qubit
transition frequencyfq, fc?fq. In fact, if this is not the casemore steps of themethod have to be applied to
sufficiently shift the frequency of lowermodes.

In order to better understand the applicability of themethod in realistic implementations, it is worth
providing an example. Suppose the user hasN=33 pins at their disposal, corresponding exactly tod=2.
Following our protocol the entire box can be split intonc=16fully half-wave fenced cells. However, the user
may opt to formonly four cells, using eight pins on each inner edgewith one pin in the center.While this
approachwould realize a higher density picket fence on each edge (thusmimickingmore closely the case of four
fully walled cells), the numerical simulations reported in section 4.1 show that resorting to the half-wave fencing
method remains the better approach.

Once a fully half-wave fenced cell for a certain value ofd is formed, the cell volume isV=a2H,
wherea=L/2dandH ismaintained constant. The corresponding zero-point electric field for the lowest
resonantmode of the cell is obtained from(A.1) and reads

E
c

hf

H

1
, 3.4c0

c
3

0

1 2

e
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

whereε0is the electric constant and h the Planck constant. Note that this equation is valid up to a certain
frequency cutoff dictated by the smallest cell size6.

3.2. Antinode pinning
An alternativemethod to increase the resonance frequency of themodes in a rectangular box can be realized by
introducing new zero-potential boundary conditions at the antinodes of the box electric fieldE


, i.e., where E




ismaximum. Each new boundary condition suppresses the corresponding antinode, thus effectively
transforming it into a node. Even though such boundary conditions can be physically implemented in various
ways, we focus on coaxial Pogo pins the conductive nature of which forces E 0=


 . Figure 1(b) displays the

first three iterations of the algorithmused to perform thismethod, whichwe name antinode pinning.
The spatial distribution of the electric field associatedwith theTE101mode is characterized by a sinusoidal

shape; thefield antinode is located at the center of the box.When introducing a pin at this location,
iterationd=1, the dominantmode (and all othermodes) increases in frequency and the field distribution no
longer resembles that of aTEnmℓmode. In this case, E


has a toroidal structure with a continuous antinode

distribution of circular shape.
The pins, however, can only be placed at semi-discrete locations. Thus, when performing iterationd=2, it

is only possible to partially suppress the entire antinode distribution bymeans of afinite number of pins. The
performance of themethod improves with the number of pins, until reaching the limit where the pins start
touching each other.

In subsequent iterations, the specific pin placement for continuous antinode distributions significantly
impacts the overall performance of the antinode pinningmethod, as discussed in section 4.1. In addition, the
boxmodes depart from a simple geometric structure that can be describedwith analytical functions. Under
these conditions, the pin placement and corresponding electromagnetic field distributionmust be determined
through numerical simulations. These can be simplified by solving the two-dimensional wave equation, i.e.,
ignoring the y-axis, assuming the pins to be additional boundary conditions. It is possible to perform the
antinode pinningmethod efficiently by executing the algorithmoffigure 1(b) automatically until a desired
frequency ormaximumnumber of pins is reached.

3.3. Electromagnetic field simulations setup and settings
In order to study in detail the effects of the frequency shiftingmethods on unwanted boxmodes, we resort to
numerical simulations of the electromagnetic field using the high-frequency three-dimensional full-wave
electromagnetic field simulation software (also known asHFSS) byAnsys, Inc.7.

The typicalmodel used in our simulations is an ideal boxwith dimensionsL=72 mmandH=3 mm,
which is simulated bymeans of theHFSS eigenmode solution type.When considering a large number of coaxial

6
That is, fc + ¥.

7
See http://ansys.com/products/electronics/ansys-hfss for details onHFSS.
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Pogo pins inside the box, the electric field distribution is initially unknown. Thus, we do notmake use of any
mesh operation at the beginning of the simulation, instead allowing the adaptivemeshing procedure to
determine the optimalmeshing layout. Amaximumdelta frequency pass of0.01% is used, with aminimum
converged pass count of3. For large values ofd the simulations fail to converge as themesh density required
exceeds thememory capacity of our computer.

In the case of the antinode pinningmethod, we solve for the dominant eigenmode of a certainmodel that is
then overlaidwith the resulting E


. To suppress the antinode of this eigenmode, we assume perfectly

conducting coaxial pins with given diameter (see section 4.1).We note that the actual outer conductor of the
pins used in our packages ismade frombrass [29]. However, the thickness of this conductor is orders of
magnitude larger than the skin depth and, thus, the perfect conductor idealization can be safely used. After
pinning the antinode, we solve again for the dominant eigenmode and repeat the procedure by placing newpins
at each antinode of the new eigenmode.

The half-wave fencingmethod is simpler to study than the antinode pinningmethod because it can be
simulatedwithout previous knowledge of the electric field distribution at each iteration.

3.4. Coherent leakage error probability and dispersive Purcell rate
Consider a qubit interactingwith an unwanted cavitymodewith coupling rateg and damping
ratesγr=γd=κ=0. A quantum-mechanical representation of this system is provided by the Jaynes–
CummingsHamiltonian, the time evolution of which can be used to characterize coherent leakage errors.
Assuming the cavitymode to be in the energy vacuum state 0ñ∣ and the qubit in the energy excited state eñ∣ at
timet=0, the time evolution of the qubit’s excited state is a coherent oscillation for any value ofΔ,Pe (t ,Δ)
witht�0 (see appendix A.2). In this case, one possiblemeasure of coherent leakage errors is the probability
defined as

p P t1 min , 3.5e= - D( ( )) ( )
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whereθ0=arctan (g/Δ). Themin operation onPeensures that(3.6) is theworst-case scenariomeasure of
coherent leakage errors. Thismeasure purposely neglects incoherent errors due to damped cavitymodes,
allowing us to determinewhether the condition p p ¯ for pure coherent leakage errors can be reached by
means of our frequency shiftingmethods.

It is worth considering three limiting cases of(3.6). First, whenΔ=0 or resonant regime, it is easy to show
thatp=1.0, corresponding to the highest possible coherent leakage error. This occurs, for example, at the time
instantwhen one quantumof information has completely swapped from the qubit to the cavitymode and, at
that instant, the qubit was supposed to be fully excited to perform a certain algorithmic function. Second, under
large detuning conditions or dispersive regime,Δ? g, the error probability(3.6) can be approximated
asp∼(g/Δ)2. The purpose of the frequency shiftingmethods is to reach this regime in order to strongly
suppress the amplitude ofPe. Third, whenD  ¥ and for a constantg, we readilyfind that p 0 . In this
case, an ideal frequency shiftingmethod has entirely removed any coherent leakage error due to the cavitymode.

Suppose that the unwanted cavitymode is characterized by a nonzero damping rateκ.WhenΔ=0,
depending onwhether the cavity-qubit interaction is in the strong orweak coupling regime, g?κ or g=κ,
the resulting leakage errors are coherent or incoherent errors, respectively8. In theweak coupling regime, in
particular, the presence of themode results in the enhancement of the qubit spontaneous emission rate [34]. In
theweak coupling regimewithΔ?g, instead, the cavitymode inhibits spontaneous emission, resulting in the
dispersive Purcell rate [28]

g g f
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In this equation,Qc is the quality factor of the cavitymode.Wenote that(3.7) remains a valid approximation as
long asκ=Δ, i.e., for amodewith sufficiently narrow Lorentzian linewidth (high-Qccavity limit). In the
presence of qubit decoherence, the rate(3.7) should be engineered not to exceed the qubit bare relaxation rate,
i.e.,Γc<γr.

Assuming afixedg, the rate(3.7) can be reduced using two approaches: increasingΔ or decreasingκ. The
frequency shiftingmethods allow us to implement thefirst approach, whereas engineering the highest

8
The transition between the coherent and incoherent error regimes takes place forg∼κ.
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attainableQcmakes it possible to realize the second. In the limit of 0k  , purely coherent leakage errors
become the dominating error source. Notably, an unwanted high-Qccavitymode that is initially resonant with
the qubit and then shifted to a large detuning condition helps protect the qubit from spontaneous emission in
free space.

4. Results

In this section, we present electromagnetic field simulations of the frequency shiftingmethods introduced in
sections 3.1 and 3.2 for a practical application (see section 4.1).We then elucidate theworking principle of both
methods in a realistic quantum computing configuration as well as estimate an upper bound for the
corresponding coherent leakage error probability and Purcell rate (see section 4.2).

4.1. Simulations of the frequency shiftingmethods
The half-wave fencingmethod described by(3.3) is based on the assumption of fully isolated cells. In reality,
however, the cylindrical shape of the coaxial Pogo pins and their finite dimensions only allow for partial fencing.
In order tomore accurately estimate the effectiveness of thismethod as well as of antinode pinning, wemust
resort to numerical simulations of realistic configurations. This allows us to tailor the package design to actual
quantum computing applications, where it is necessary to reach a sufficiently high value ofΔ such that p p ¯.

Figure 2 displays simulations of the ideal box introduced in section 3.3 for pins of two different diameters.
The pinswith larger diameter correspond to those currently used in our packages, whereas the smaller pins are a
future version planned to enable greater extensibility.

The results of the simulations show a clear correlation between pin diameter and frequency shifting, where
larger pins cause a larger shift for bothmethods. In the case of half-wave fencing, the correlation is due to the fact
that larger pins better approximate a solidwall, where each cell ismore isolated from its neighbors. In addition,
pins with a larger diametermodify the ideal square shape of the cell, thus perturbing the corresponding electric
field that, in turn, results in a higherfc. This effect becomesmore prominent with higher values ofd as the pin is
proportionally bigger than each new cell size. This effect is also present in the case of antinode pinning, as bigger
pins create larger new zero-potential boundary conditions. As a consequence, the relative gap between(3.3) and
simulations reduces withN.

We note that the antinode pinningmethod provides a slight advantage over the half-wave fencingmethod.
However, the advantage is significant onlywhen using pinswith a smaller dimension. In fact, even an

Figure 2. Simulation results of the frequency shiftingmethods. (a) fc versusN for the box dimensions given in section 3.3,
corresponding tof101≈2.9 GHz. ‘1/2-wave’: half-wave fencing; ‘Antinode’: antinode pinning; pin dimensions indicated in the
legend. The continuous solid black line plots(3.3), providing a pseudo-upper bound for all frequency shiftingmethods; themethods,
however, are only simulated for values ofN corresponding to integer values ofd, both for half-wave fencing and antinode pinning.
(b) E


 for the first resonantmode obtainedwithN=89 and a pin diameter of500 μmusing the antinode pinningmethod;

fc≈12.3 GHz.Note that the caseN=89 is obtained by extending the procedure depicted in figure 1(b) and corresponds to
iterationd=15. This panel shows that certainmodes are characterized by distributed antinodes such that the pin placement has to be
chosen heuristically.
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infinitesimally small pinwould be sufficient to suppress an antinode, provided the perfect conductor
assumption remains fulfilled.

ConsiderN=33 pins and the box used in the simulations offigure 2. In section 3.1, we discuss the
possibility to either implement half-wave fencing ford=2 and, thus, realize16 cells, or use the33 pins to form
four cells with denser picket fences. The frequencyfc (N=33 ) obtainedwith half-wave fencing for500 μm
pins can be found infigure 2(a), fc≈7.7 GHz. Assuming the denser fences are perfect solidwalls, the lowest
resonance frequency for each of the four resulting cells is6 GHz, which is significantly less than the frequency
obtained fromhalf-wave fencing.More generally, when a number of pins corresponding to an integer value ofd
is available, resorting to half-wave fencing is the best strategy.

Figure 2(b) displays an example of E

 for a box partiallyfilledwith coaxial pins, where only the outer

conductor (the electrical ground) is accounted for. The electricfield distribution clearly shows a situationwhere
the optimal placement of the pins ismade difficult by the complicated spatial distribution of the antinode.

In real applications, the presence of superconducting circuits and their design can impact the efficacy of the
frequency shiftingmethods.However, these effects are veryweak allowing us to use the results from idealized
simulations.We support this argument bymeans of the nonideal-case simulations shown in appendix C.

4.2. Frequency shiftingmethods in a realistic quantum computing configuration
Weconsider a realistic quantum computing configuration, where a typical Xmon transmon qubit interacts with
themodes of a box. The size of the box is purposely chosen to be sufficiently large such thatf101<fq, thus
resulting in the unwanted interaction between higher boxmodes and the qubit. In order to closelymatch the
experimental scenario simulated in 4.1, we choosef101=3 GHzand afixedfq=2f101=6 GHz. In this case
and in absence of any additional zero-potential boundary conditions, the qubit is resonant with the fourthmode
of the box (see (3.1)), fq=f202. An upper bound for the coupling rate between thismode and the qubit is
obtained from the simulations shown in appendix B, g202=3MHz. This rate is comparable or larger than other
typical qubit rates, possibly leading to significant coherent leakage errors.

These errors can bemitigated using our frequency shiftingmethods. For simplicity, here we focus on half-
wave fencing as thismethod can easily be represented in analytical form. Figure 3(a) displaysfcgiven by(3.3)
and D∣ ∣as a function ofN, whereN is given by(3.2b). The discrete values offcincrease with the corresponding
values ofN and, thus, of the iteration numberd.

Figure 3.Parameters and efficacy of the frequency shiftingmethods (see section 4.2). For ease of understanding, lines are obtained
assuming continuous values ofN. The actual discrete values ofN associatedwith themethods are indicated by symbols.We
choosef101=3 GHz, fq=6 GHz, and g202=g (N=5)=3 MHz.The valueg (N=0 )≈1.1 MHz is extrapolated fromg (N=5 )
using(3.4). (a)Left y-axis: frequencyf=fcand f = D∣ ∣versusN. Right y-axis: g versusN. (b)Error probabilityp versusN for the
theoretical values shown in(a), ‘1/2-wave theory’, and for the simulated values infigure 2(a) in the case of500 μmpins.The dotted green
line overlaying the simulated values is obtained fromaquadratic polynomial interpolation of the data infigure 2(a), ‘Interpolation’. The
position of themaximumerror probabilityp=1.0 (peak) varies between the theoretical and simulated cases, since the zero-detuning
condition is reached at different values ofN. Due to the discrete nature of the frequency shiftingmethods, however, this condition is
actually never reached for the simulatedmethods.Wenote thatp is the error probability causedby themodewith the lowest resonance
frequency. In fact, leaving the box frequencyunchanged, i.e., forN=0, doesnotprotect fromall highermodes that can strongly interact
with the qubit (seefigure 4 formoredetails on the coupling tomultiple boxmodes). Hence, the only relevant values ofp to be considered
are those to the right of eachpeak, as in this case all highermodes are further shifted in frequency fromfq. The horizontal dashedblack
line indicates p̄.
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As shown infigure 1(a), iterationd=1 is realized forN=5, resulting innc=4. The qubit can be
positioned at any point of any of the four cells, where each cell is characterized byfc=fq. This corresponds to
the zero-detuning condition for any of the four cell-qubit systems,Δ=0. For higher values ofd,Δ increases
(similarly to fc) and a zero-detuning condition can never be reached again. This is due to the fact that we are
considering the lowest resonantmode of each cell.

Assuming the qubit to be positioned at the electric field antinode of one of the four cells, we can choose the
cell-qubit coupling rate to beg (N=5 )=g202. This qubit position results in the strongest cell-qubit resonant
interaction, leading to the highest coherent leakage error probabilities. As shown infigure 3(a), g increases
withN due to the functional dependence of(3.4) onfcand, thus, onN. This effect partially counteracts the
benefit of the half-wave fencingmethod, as for larger values ofN the ratiog (N)/Δ(N) decreases at a slower rate
than ifgwere independent fromN.

The coherent leakage error probabilityp given by(3.6) for the values ofΔ and g reported infigure 3(a) is
shown infigure 3(b). This panel also shows an estimate ofp for the values offcassociatedwith half-wave fencing
and antinode pinning for500 μmpins found from the simulations infigure 2(a). These values offccorrespond
to the lowestΔ for a givenN among all scenarios simulated in section 4.1, thus resulting in an upper bound ofp
for the box-qubit configuration studied here. As an example, the simulatedΔ obtainedwith half-wave fencing
whenN=33 (i.e., d= 2) is sufficient to reducep bymore than two orders ofmagnitude compared to p̄. A
similar result is found for the simulatedΔ due to antinode pinningwhenN=29.

In the case of a damped boxmode, our frequency shiftingmethods help reduce the ratioη=Γc /κ,
whereΓcis given by(3.7). The simulated values ofg andΔ atN=33 for half-wave fencing in the case
of500 μmpins, g≈8.5 MHz andΔ≈1.7 GHz, result inη≈2.5×10−5. It has been experimentally
demonstrated that superconducting boxes can reach a quality factor Q 10c

8> [35], corresponding
toκ∼1 kHz= g. Under these conditions, coherent leakage represents themain error source due the box
mode. It is not until a box damping rateκ 10g that qubit decoherence due to the dispersive Purcell effect
should be considered. In fact, even for a very low-quality boxwithκ=10 g the resulting Purcell rate for the
simulated values considered above isΓc≈2.1 kHz, which is still approximately two orders ofmagnitude lower
than themost conservative Xmon transmon qubit energy relaxation rateγr=100 kHz9.

5.Discussion

The choice of the optimal frequency shiftingmethod depends on a variety of factors: the qubits’ operation
frequency; the dominantmode frequency of the package’s box; the number of input and output lines required to
control andmeasure the qubits; the size of the coaxial Pogo pins. In addition, any constraints on the qubit circuit
layout can impact the pin placement.

For example, a surface code architecture comprising an array of10×10 qubits can be realized bymeans of
a packagewith approximately250 pins and a boxwith dimensionsL=72 mmandH=3 mm, as the one used
in the simulations offigure 2 and introduced in [29]. This architecture is based on frequency tunable Xmon
transmon qubits, assuming oneXY and oneZ control line per qubit and onemeasurement line every four
qubits. In this case, the required number of pins is sufficient to shift the dominantmode frequency far enough
from the typical qubit operation frequency of6 GHz such thatp is at least two orders ofmagnitude below p̄.
This result is achievedwith either frequency shiftingmethod and for any realistically sized pin. In appendix C,we
demonstrate that this is the case for box sizes up to1 m. For larger packages, and depending on the quantum
processor design, itmay be necessary to include ancillary pins solely devoted to frequency shifting (i.e., not used
for qubit control andmeasurement).

Naturally, the half-wave fencingmethod is well suited to grid-type architectures such as, e.g., that underlying
the surface code. For a10×10 qubit array, the number of pins calculated from(3.2b) does notmatch the
required250 pins for any value ofd. However, the half-wave fencingmethod can be generalized to amethod
where the box sideL is divided by n>1, the 1/n-wave fencingmethod. In this case, the quantity2din(3.2a)
and (3.2b) has to be substituted bynd, and n n d

c
2= . Notably, the functional dependence offconN is given

by(3.3) for any value ofn. Following this approach it is possible towire up anyn×n qubit array, while
simultaneouslymitigating coherent leakage errors.

If the available number of pins is the limiting resource, antinode pinning is the idealmethod of choice. In
fact, it typically results in the greatest return on pin count, particularly when using small pins. Additionally, this
is themost appropriatemethodwhen the constraints on the circuit layout are very restrictive. Suppose, for
example, the usermust initially place a set of pins at specific locations, ignoring any frequency shiftingmethod.

9
This corresponds to a qubit relaxation timeT1=10 μs.
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This scenario can be treated as thed=0 iteration of the antinode pinningmethod, thusmaking themethod
suitable for cavities of arbitrary shape.

It is alsoworth noting that the two frequency shiftingmethods are notmutually exclusive. Instead, they can
be combined depending on the user requirements. If the 1/n-wave fencingmethod only partiallymeets thewire
requirements of an arbitrary two-dimensional array of qubits, thewiring can be completed bymeans of antinode
pinning. This, for example, is a good strategy whenN does not correspond to any integer value ofdin(3.2b). In
this case, the available pins can be used to form asmany fully 1/n-wave fenced cells as possible, with the residual
pins implementing antinode pinning.

Wenote that the effect of the frequency shiftingmethodsonhigher cavitymodesmust alsobe taken into account.
In fact, the frequency shift relative tohighermodes is lowered relative to the shift for thedominantmode.This can
result in aqubit beingdispersively coupled to, e.g.,mmodes,withhighermodes closer to eachother in frequency. In
absenceof anydamping,we canassume thesemodes to act asmultiple independent leakage channels. In this case,
assuming the coherent leakage errorprobability for allmmodesbeing considered tobe equal to the errorprobabilityp
of thedominantmode (this is aworst-case scenario assumption since p is smaller forhighermodes), the total error
probability canbe estimated tobe∼mp. According to the results infigure3(b),we can easily tolerateup tom∼100.

In order to clearly show the effect of higher cavitymodes on the operation of one qubit, we consider a box
withf101=3 GHzand sweepfqover awide range from1 to20 GHz, which comprises60 boxmodes for a
bare box (i.e., where no frequency shiftingmethod is applied). Among these60modes, 27 are degenerate and,
thus, discarded. In fact, in our definition ofgwe assume the qubit to be positioned at amode antinode. It is
therefore physically impossible to simultaneously couple the same qubit to any pair of degeneratemodes10.
Figure 4 is generated using(3.6) for each of the resulting33 nondegeneratemodes. In the dispersive regime
regions, the total error probabilityptotis obtained by summing the error probability of allmodes assuming the
probabilities to be independent from each other; in the semi-resonant regime regions, ptot is that of the only
mode on or close to resonancewith the qubit. The plot infigure 4(a) further clarifies that the low error
probability forfc=fqin the case of a bare box, as shown in figure 3(b), is only possible when considering the
coupling to the lowest resonantmode.However, the presence of highermodes for the same box size is highly
detrimental to the qubit operation. The plot infigure 4(b) demonstrates that half-wave fencing ford=2makes
it possible to operate the qubit safely at all frequencies10 GHz, since, in this case, the resonance frequency of
the lowest and of all higher boxmodes is well above this frequency.

Figure 4.Qubit operation in presence ofmultiple nondegenerate boxmodes. The plots are obtained by sweeping continuouslyfqin
(3.6) for thefirst33modes of the bare box (panel (a)) and for thefirst twomodes of themodified box (panel (b)) (see details in the
main text about the probability summationmethod). The resonance frequencies of themodes are obtained from(3.1),
withf101=3 GHzfor the bare box. For simplicity, we chooseg=10 MHz for allmodes both in the case of the bare and in the case of
themodified box. The choice of a largerg compared to that used in figure 3(b), resulting in a largerptot, captures on average the fact
that highermodes have a larger zero-point electric field [28]. In real applications, the value ofg varies for eachmode due the qubit
being at a different frequency and possibly not being positioned at the antinode of thatmode. In fact, it is impossible to position the
qubit at the antinode of allmodes at the same time (atmost the qubit can be positioned close to the antinode of severalmodes
simultaneously). In both panels, we displayptotversusfq. (a)Bare box. (b)Boxmodified bymeans of the half-wave fencingmethod
ford=2.Note that forfq 2 GHzthe qubit has a high thermal population, even forT∼10 mK. Thus, sweeping the qubit in this
frequency range applies only at a theoretical temperatureT=0 K.

10
Modenmlis degenerate withmodelmn. Degeneratemodes have the same resonance frequency and orthogonal nodal lines.
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In presence of damped cavitymodes, the scenario differs depending on themagnitude of the damping rate of
eachmode. In case of lowdamping, i.e.,κ ismuch smaller than the frequency separation between two
consecutivemodes and up to a cutoffmodem (for highermodes the detuning is large enough that the dispersive
Purcell rate associatedwith them can be neglected), the total dispersive Purcell rate for thesemodes is given
by j

m
j1 c~å G= , whereΓcjis the Purcell rate of thejthmode [36]. For example, assuming amean dispersive

Purcell rate 1 kHzcáG ñ ~ for allmodes up tom (see estimate in section 4.2), we can tolerate up to m 100~
before the Purcell rate starts impacting qubit decoherence.Whenκ becomes large enough that themodes
strongly overlapwith each other, this set ofmodes should be treated as a continuousmode distribution.

An unwanted cavitymode can alsomediate interactions between pairs of (or evenmultiple) qubits. As
explained in appendix A.1, the corresponding dynamics can lead to correlated errors. The frequency shifting
methods introduced here allow the separation of the qubits transition frequency from the cavity resonance
frequency such that the qubit-cavity-qubit interaction gives rise only to virtual transitions. This result is similar
to the dispersive two-qubit iSWAP gate introduced in [28]. Assuming both qubits are coupledwith the same
coupling coefficientg to the cavitymode, theworst-case scenario is when the qubits are in resonancewith each
other and detuned byΔ from themode. The effective qubit–qubit coupling strength is theng2/Δ(dispersive
coupling), which is strongly suppressed for values ofΔ larger than several timesg.

Our frequency shiftingmethods are directly applicable to the problemof dielectric substratemodes, which
has been addressed qualitatively in [37]. In this case, the resonance frequency of the substratemodes is given
by(3.1) replacingcwithc re , whereεris the relative permittivity of the substrate. The pinsmust be replaced
by superconducting vias [17, 32], with all othermethodological requirements remaining unchanged. The
number of vias embedded in the substrate will need to be significantly higher than the number of pins in free
space due to the lower frequency of the dominantmode. Notably, fabricating a large array of vias is a relatively
simple process that can bemade compatible with standard qubit fabrication techniques.

Finally, it is worth commenting on the possibility to reduce leakage errors due to unwanted cavitymodes by
decreasing the cavity-qubit coupling rateg. There are threemain approaches to reduceg:first, place the qubits
only in proximity of cavityfield nodes; second, increaseH thereby decreasing(3.4); third,modify the qubit
geometry to decreaseβ=Cg/(Cg+Cp)for a constant value ofH, whereCgandCp are the capacitances
between the transmon capacitive island and the box top and bottomwalls, respectively (see also appendix B).
Thefirst approach is impractical as it severely limits the available space on the chip. In order to be useful, the
second approach can easily lead to newunwanted cavitymodes. In the case of transmon qubits, the third
approach strongly affects the qubit charging energy possibly having detrimental effects on its decoherence
properties and anharmonicity.

6. Conclusion

In this work, we study theoretically andwith simulations a category of errors, leakage errors, which becomes
increasingly important with larger quantum computing architectures.We consider large packages where coaxial
Pogo pins allow the operation of100 ormore superconducting qubits.We propose twomethods, half-wave
fencing and antinode pinning, thatmake it possible to reduce the effect of unwanted boxmodes bymeans of the
same pins used for qubit control andmeasurement. For example, the250 pins required to operate a100 qubit
processor reduce coherent leakage error to probabilities below∼10−5, which are significantly lower than the
state-of-the-art error probabilities for superconducting qubit operations. Similarly, ourmethods allow us to
reduce the effect of dampedmodes up to two orders ofmagnitude below the typical decoherence rates of
superconducting qubits.

Our simulations demonstrate that unwantedmodes for boxes as big as1 m×1 m can bemitigated using
the frequency shiftingmethods. It is worth noting that ourmethods can be combinedwith themodular
architecture proposed in [16], where boxes containing hundreds of qubits are coupled together to form systems
with thousands of qubits. The frequency shiftingmethods can also be used tomitigate the effects of substrate
modes, another important source of errors in extensible superconducting qubit architectures.

In future projects, it will be necessary to gain further insight into the effects due tomultiple discrete and
continuousmode distributions. Additionally, it will be necessary to study the detrimental effects of unwanted
box and substratemodes bymeasuring leakage errors affecting superconducting qubits. A sensitivemethod to
perform suchmeasurements is reported in [38]. Extending thismethod to larger substrates and bigger boxeswill
allowus to verify the effectiveness of the frequency shiftingmethods in a realistic quantum computing scenario.
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AppendixA.Qubit coherent errors and the Jaynes–Cummingsmodel

In this appendix, we summarize themain concepts of qubit coherent errors (see appendix A.1) and recapitulate
the Jaynes–Cummingsmodel (see appendix A.2).

A.1.Qubit coherent errors
In a quantum computer, theHilbert space of all qubits and any other internal auxiliary system required to
operate them is defined as the computational subspace; on the contrary, the space associatedwith any external
system interacting with the qubits is called the leakage subspace [24]. In general, the time evolution of a qubit
interactingwith internal and external systems is described by the combination of a purely unitary generator
and a purely dissipative generator [24, 27].

The generator accounts for the qubitHamiltonian aswell as theHamiltonian of anywanted or unwanted
internal systemor any external system, or both. External systems always lead to unwanted dynamics and, thus, to
qubit errors, whereas only unwanted internal systems generate qubit errors. The purely unitary nature of
results in coherent dynamics, implying that all the errors associatedwith it are coherent errors. In particular,
errors due to external systems are called coherent leakage errors. The generator, instead, describes external
environments acting as stochastic phenomena (e.g.,Markovian noise). Therefore, the qubit errors associated
with are defined as incoherent leakage errors; these errors are typically due to qubit decoherence, i.e.,
relaxation and dephasing [4, 5]. Note that two- ormulti-qubit correlated errors can also exist [21]. In this case,
when an error occurs on one qubit it affects one ormore different qubits in the quantum computer. Correlated
errors can stem from either coherent or incoherent dynamics.

In superconducting qubit implementations, a typical example of awanted internal system is a resonator
acting as a quantumbus between pairs of qubits [39]. The states of the bus are populated during computations,
although at the end of any computation only qubits’ states remain populated. A special class of wanted internal
systems is represented by classical driving electromagnetic fields used to control andmeasure the qubit’s state.
These systems result in unwanted dynamics when leading to stray fields that act on undesired qubits [40]. An
example of an external system, instead, is a cavitymode due to the box used to house a superconducting qubit
device. Thismode can also generate correlated errors between a pair of qubits that interact with it independently.

A.2. The Jaynes–Cummingsmodel
The system comprising an unwanted cavitymode coupled to a qubit can be represented by the Jaynes–
Cummingsmodel.We assume the cavity-qubit interactionHamiltonian to be an electric-dipole
HamiltonianHed

 with coupling rateg=E0pq / h, where [41]

E
hf

V2
A.10
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e
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⎛
⎝⎜

⎞
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is the zero-point electric field of a cavitywith volumeV and a qubit with effective electric-dipolemomentpq
[28]. In our definition ofg, the qubit is assumed to be at an antinode of the cavity electric field.

In the interaction picture with respect to the cavity and qubitHamiltonians (andwith our definition ofΔ),
the Jaynes–CummingsHamiltonian reads

H h
g

a a
2

e e , A.2t t
JC

i2 i2s s= +~ p p- + D + - D ( ˆ ˆ ˆ ˆ ) ( )†

whereâ†and â are the electromagnetic field creation and annihilation operators of the cavitymode, whereas
s-ˆ and s+ˆ are the lowering and raising operators acting on the energy groundstate gñ∣ and excitedstate eñ∣ of
the qubit.

When the cavity-qubit system is prepared in the one excitation sector, the first two energy eigenstates or
dressed states of the system are obtained from the exact diagonalization ofHJC

 ,
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The states 1, gñ∣ and 0, eñ∣ are called bright states of the Jaynes–Cummingsmodel, whereas state 0, gñ∣ is a
dark state.

The energy eigenvalues associatedwith(A.3) and (A.4) are given by

E hf h , A.50, c 0a=  ( )

where g 20
2 2a = + D . The energy eigenvalue for 0, gñ∣ isE0,g=hΔ / 2.

In the Schrödinger picture, the time evolution of a general cavity-qubit state can bewritten as
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Assuming an ideal qubitmeasurement, the time evolution of 0, eñ∣ ,P0,e (t ), is equivalent toPe (t ,Δ ),
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This is the equationwe use tofind(3.6).

Appendix B. Estimate of box-qubit coupling rates

In this appendix, we estimate a typical box-qubit coupling rate by emulating anXmon transmon qubit bymeans
of themicrowave structure depicted infigure B1(a) and simulating its interactionwith a boxmode. The
structure comprises a coplanar waveguide(CPW) cross on the xz-plane, with the center bottom attached to a
micro-coaxial half-wave resonator of lengthR that extends outside the box, along the y-axis. The cross acts as an
‘antenna’ that couples to the boxmodeswith resonance frequencies given by(3.1), which are set by the geometry
of the box. By continuously varyingR, it is possible to sweep the resonance frequency of the resonator, fR,
resulting in a tunable resonator coupled to a set offixed boxmodes. The cross lies on the same plane as the
metallic bottomwall of the box, with a dielectric substrate directly below. The center of the cross is positioned at
the antinode of the electric field of the dominantmode. The dimensions of theCPWcross are the center
conductor widthS, the gapwidthW, and the arm lengthA; the substrate is characterized by a thicknesstsand
relative permittivityεr.

We perform electromagnetic field simulations of the cross-box coupled systembymeans ofHFSS.We
sweepfR throughfcobtaining thefirst two eigenmodes. An accurate simulation of this system is
computationally intensive due to the high aspect ratio between the largest and smallest features of the system
(∼10 mm/10 μm). This issue can be overcome by scaling up the dimensions of the cross, whilemaintaining the
same box size. The dimensions of each simulated cross are determined fromS/X=W/X=100 μmand
A/X=1000 μm,whereX is a scaling factor (see figure B1(a) for numerical values).We simulate the coupled
system for progressively smaller cross dimensions until exceeding the capabilities of our computer. Values ofg
for even smaller cross sizes can be extrapolated following the trend established by the simulated systems.

Thefirst two eigenmodes of the electric field forX=3.0 are shown infigure B1(b). This diagram resembles
the energy level anti-crossing of a coupled cavity-qubit system. Thus, it can be used to estimateg by fitting the
simulated frequency eigenmodes to the frequencies associatedwith the first two energy dressed states of the
Jaynes–CummingsHamiltonianHJC

 , 0, -ñ∣ and 0, +ñ∣ , respectively, subtracted by the frequency of the ground
state energy (see appendix A.2),

f
E E

h
f

2
. B.10,

0, 0,g
c 0a=

-
= -

D
 ⎜ ⎟⎛

⎝
⎞
⎠¯ ( )

The curvefitting results are shown infigure B1(b), where the Jaynes–Cummingsmodel overlays the
simulated data.

We perform the simulation and curve fitting procedure for three different values ofX. The corresponding
values ofg are displayed infigure B1(c) that also shows a quadratic polynomial fit of the data, allowing the
estimation ofg for other values ofX. The electricfield sinusoidal distribution is taken into account in the
simulations.
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For the parameter space chosen in the simulations, our scaling argument and derived coupling values are
consistent with those in [42]. In that study, it is shown that a change in transmon qubit geometry is equivalent to
a change in the capacitance ratioβ=Cg/(Cg+Cp) for a constant box heightH. This ratio accounts for the
capacitancesCgandCp between theCPWcross (i.e., the transmon qubit capacitive island) and the box top and
bottomwalls, respectively, and directly relates to a change ing.We calculateβ fromCgandCp obtained for the
values ofX used tofindg, as well as for additional intermediate values. The capacitancesCgandCp are
simulatedwithANSYSQ3DExtractor11. The results are shown infigure B1(c). Thefigure also displays a
quadratic polynomialfit of the simulated data, allowing us to compare the relationship betweenβ and g. In spite
of a slightmismatch, the results are sufficiently accurate to provide an upper bound for the coupling coefficient
of a typical Xmon transmon qubit.

AppendixC.Nonideal-case simulations and scalable implementation

In themain text, we focus on realistic yet idealized scenarios that allow us to easily understand theworking
principles and the general efficacy of the proposed frequency shiftingmethods. In order to unveil any possible
limitations, in this appendixwe study nonideal cases where themethods are tested inmore realistic and even
extreme conditions.

Threemain cases are considered: first, we simulate very large boxes to ensure themethods are compatible
with scaled architectures; second, we analyze a package that houses a substrate patternedwith overly large
circuits to show that the perturbation to the boxmodes from exposed dielectric does not significantly reduce the
effectiveness of themethods; third, we provide the actual circuit design of an array of Xmon transmon qubits

Figure B1.Model and simulation results for the coupling between anXmon transmonqubit and a boxmode. (a)CPWcross described
in the text forX=1.0, ts=500 μm, and εr=11.45 (i.e., silicon at ≈4 K). (b) f versusfR: simulation results for thefirst two
eigenmodes of a box-cross system forX=3.0. The box dimensions areL=30.26 mmandH=3 mm, resulting infc≈7 GHz.
The downward open blue triangles and the upward open green triangles correspond to 0, -ñ∣ and 0, +ñ∣ , respectively. The solid lines
are fitting curves obtained from(B.1). (c) Left y-axis: gversusX (open blue squares) obtained from thefitting procedure in(b), with
error bars indicating the95% confidence intervals of thefitting. The solid blue line is a quadratic polynomial fit. Right y-axis:β
versusX (open green circles)with quadratic polynomialfit (dashed green line).

11
See http://ansys.com/Products/Electronics/ANSYS-Q3D-Extractor for details onQ3D.
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with all necessary circuitry for a surface code architecture and propose a frequency shiftingmethod tailored to
this implementation.

In all simulations presented in this appendix, we resort to less stringent convergence requirements in order
to reach successful completion on our computers.While this choice results in greatermargins of error, it still
allows us to draw convincing conclusions on the potential limitations of themethods.

To verify that our frequency shiftingmethods can be used for almost arbitrarily large cavities, we simulate
half-wave fencing assuming two different boxeswith dimensionsL=0.25 m and L=1 m, in both cases
withH=3 mm.The results are reported in table C1. For iterationd=5, wefindfc≈26.8 GHzand
≈4.5 GHz for the small and large box, respectively.We are not able to simulate larger values ofd for the large
box due to the computational cost of the simulation. Even though, in this case, d=5 is insufficient to
increasefcabove the typical qubit frequencies, the simulation trend shown in table C1 is very comforting. In
fact, byfitting the values in the table using(3.3)with amultiplicative reduction factor as a singlefitting
parameter (that accounts for the differences between theory and realistic simulations), wefind thatd=6 results
in at leastfc≈8.7 GHz.More generally, we conjecture that our frequency shiftingmethods are effective
regardless of the lateral dimensions of the cavity.

Consider, for example, the1 m×1 mbox and the surface code architecture in [29], which is characterized
by a distance between adjacent pairs of pins of1 mmwith a density of fourXmon transmon qubits
per8 mm×8 mmcell. In this case, the number of pins required to address the126×126 qubit array
is39 690, whereas the number of pins required for half-wave fencingwithd=6 is onlyN=12 033.

When considering a package that houses a substrate enclosed in a similarly sized box, treating box and
substratemodes separately is a suitable assumption only if the substrate surface is completelymetalized. In real
applications, typical circuit designs naturally result in regions of exposed dielectric that perturb the boxmodes.
However, the ratio between the area of exposed dielectric andmetalized ground plane is small enough not to
significantly perturb themode resonance frequencies.We confirm this argument by simulating a substrate
patternedwith abnormally large sections of exposed dielectric, as shown infigureC1(a). The results are
compared to the idealized case, with andwithout the implementation of the frequency shiftingmethods.

FigureC1. Effects of exposed dielectric and scalable implementation. (a) Square substrate and box bothwith dimensions given in the
text; the substrate thickness ists=500 μm,with a relative permittivityεr=11.45(i.e., silicon at ≈4 K). Themetalized surface (light
gray) has a thickness of100 nm. The exposed dielectric islands (blue (dark gray)) have a cross shapewith arm length of3 mmand
width of2 mm.The vias used to implement the combined frequency shiftingmethods on the substrate (see text for details) are visible
as small open circles; the yellow cylinders represent the coaxial Pogo pins used to shift the boxmodes. (b)One unit cell of an array of
Xmon transmon qubits coupled by nearest neighbor interactions and compatible with 1/10-wave fencing. The circles enclosing the
contact pads show the footprint of the1290 μmcoaxial pins. Inset: detail of the Xmon transmon qubit with capacitive couplings to
theXY, measurement, and inter-qubit coupling resonators, as well as inductive-galvanic coupling to theZline.

Table C1.Approximate value offcfor two
large boxeswith different lateral dimensionsL
applying the half-wave fencingmethod for
different iterationsd.

d fc forL=0.25 m fc forL=1 m
(GHz) (GHz)

0 0.9 0.2

1 1.2 0.3

2 2.1 0.5

3 4.5 0.9

4 10.6 2.0

5 26.8 4.5
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Whennomethods are applied, themodeswith lowest resonance frequency are those associatedwith the
substrate due to its relative permittivity. In this case, wedetermine the boxmodewith lowest resonance frequency
byplotting E


 for a fewpossiblemodes and selecting theonewith closest resemblance to aTE101boxmode.

The followingmethods are then applied: 1/5-wave fencing for the box; 1/10-wave fencing for the substrate
in combinationwith antinode pinning ford=2within each 1/10-wave fenced cell. Note that, in this case, we
cannot apply antinode pinning ford=1 because the simulated circuit is located at the field antinode. Although
this combination ofmethods is suboptimal in terms of frequency shifting, it is the easiest for the abnormal
circuits considered in these simulations. Bymeans of the combined frequency shiftingmethods, we ensure that
the lowest substratemode frequency is higher than the lowest boxmode frequency. The simulation results are
reported in table C2. The impact of the exposed dielectric onfcis≈120MHz and≈160MHzwith orwithout
frequency shiftingmethods, respectively.

In order tounderstandwhether thepresence of superconducting circuitry can impact the frequency shifting
methods significantly,we consider the quantum-mechanical interactionbetween thequbits and cavitymodes in the
dispersive regime.Assumean array of1000qubits all strongly, but (for simplicity) independently interactingwith an
unwanted cavitymodewith coupling rateg∼10MHz. Suppose a frequency shiftingmethod results inΔ∼1 GHz,
theACStarkshift of themode resonance frequencydue to eachqubit is f g z

2 sD ~ D( ) ˆ , where zŝ is the usual
Paulimatrix.Depending on the qubit state, zŝ simply changes the signof the Stark shift.Under these conditions, the
total frequency shift canbe estimatedbymultiplying the shift due to onequbit by1000, resulting in amaximum
shiftΔ f∼m100MHz (all qubits are either in the groundor excited state). This shift is similar to those generatedby
exposeddielectric reported in tableC2.Thus,we conclude that treating the box and substratemodes independently
and, to a good extent, ignoring thedesigndetails of specific circuit layouts is a reasonable idealization.

We then consider a10×10 array of Xmon transmon qubits realized on a72 mm×72 mmsubstrate that
is enclosed in a boxwith the same lateral dimensions. A frequency shiftingmethod compatible with this
configuration is1/10-wave fencing ford=1. Thismethod leads to fences of pins running along the gaps
between neighboring qubits. A simulation of this configuration givesfc≈29.7 GHz. Figure C1(b) shows one
unit cell of the array for oneXY and oneZ control line per qubit, onemeasurement line every two qubits, and
one coupling resonator between each pair of qubits (see [29] for a similar design). The unit cell can be repeated to
formmuch larger arrays whilemaintainingfc?fq. Note thatmost of themetalization of the substrate surface is
used as a ground plane, with very little exposed dielectric. Dielectric exposure is further decreased since the
contact pads are covered by the coaxial Pogo pins. Additionally, there is ample space for via placementmaking it
possible to apply a suitable frequency shiftingmethod tomitigate the effect of substratemodes.

Finally, we consider a qubit array based on transmon qubitsfixed in frequency, requiring only one Pogo pin
per qubit and a generous spacing of2 mmbetween adjacent qubits (see, e.g., the architecture of [20]). In this
architecture, an applicable frequency shiftingmethod for ann×n array of qubits is a3/n-wave fencing
ford=1 followed by antinode pinning ford=1. This results in a repeating cell that encapsulates nine qubits,
where each qubit is addressed by one single pin. Thefcfromonly applying3/n-wave fencing is already far above
any typicalfqas the resulting cell size is4 mm×4 mm.This example shows that our frequency shifting
methods are also possibly compatible with future architectures thatmake advances in control andmeasurement
electronics and, thus, require fewerwires per qubit.
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