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Abstract
We showhow to realise quantum state transfer between distant qubits using the chiral edge states of a
two-dimensional topological spin system.Our implementation based onRydberg atoms allows to
realise the quantum state transfer protocol in state-of-the-art experimental setups. In particular, we
showhow to adapt the standard state transfer protocol tomake it robust against dispersive and
disorder effects.

1. Introduction

Quantumstate transfer aims at transferring the state of afirst qubit to a secondqubit,
i.e. ñ + ñ Ä ñ  ñ Ä ñ + ñ( ∣ ∣ ) ∣ ∣ ( ∣ ∣ )A B A B0 1 0 0 0 11 1 2 1 2 2 , and represents a basic building block of quantum
communication andquantum informationprocessing in a quantumnetwork [1, 2]. Such aquantumnetwork
consists of nodes representing qubits as quantummemory, or in a broader context quantumcomputers, which are
connected byquantumchannels.Quantumnetworks are discussed both as local quantumnetworks connecting and
thus scaling up small-scalequantumcomputers [3–5], or in quantumcommunicationbetweendistant nodes [1, 6].

The goal in a physical implementation of quantum state transfer is to achieve the transmission of a qubit with
highfidelity through the quantum channel, i.e.avoiding decoherence. In awide area quantumnetwork, the
natural carrier of quantum informationwill be photons as ‘flying qubits’ propagating infibres or in free space as
a physical realisation of the quantum channel, where a quantumoptical interface allows storage in ‘stationary
qubits’ represented by two-level atoms as quantummemory [7, 8]. Quantum state transfer between atoms
stored in high-Q cavities connected by a photonic channel was reported in seminal experiments [9, 10] following
the protocol described in [1]. A remarkable recent experimental development has been chiral quantum interfaces
[11–14] in the context of chiral quantumoptics [15], where two-level systems coupled to one-dimensional (1D)
photonic nanostructures or nanofibers control the direction of propagation of emitted photonswith a chiral
light-matter coupling. This is illustrated infigure 1(a) as a two-level atom representing afirst qubit (a = 1)
ñ º ñ∣ ∣g0 , ñ º ñ∣ ∣e1 , which decays from the excited state ñ∣e to the ground state ñ∣g , emitting a photon into a 1D

waveguide travelling unidirectionally to the right, which can then be restored into the second atomor qubit
(b = 2) achieving quantum state transfer. In nanophotonics, this chiral coupling occurs naturally due to spin–
orbit coupling of light [15]. In local area or ‘on-chip’ chiral quantumnetworks, quantum state transfer can also
be achieved via 1Dphonon and spin channels [16]. In the latter case,magnons as spin excitations take the role of
the ‘flying qubit’ [17], and a physical implementation of a chiral quantum interfaces between spins has been
recently given in [18] for setups of Rydberg atoms arranged as 1D strings and ion chains.

In chiral quantumoptics, the chiral light-matter interface selects the propagation direction of the travelling
photon (or spin)wave packet (c.f. figure 1(a)), while the 1Dwaveguide supports both right and left goingmodes.
Such a setupwill thus not be protected against back-scattering from imperfections in thewaveguide, as
illustrated in figure 1(b). Instead, we concern ourselves with chiral quantum channels arising as chiral edge
channels in two-dimensional (2D) topological quantummaterials [19, 20] (c.f. figure 1(c)). Such topological
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quantummaterials can be realised in condensedmatter [21, 22] and be engineered as synthetic quantummatter
with atomic systems [23–27], or in photonic setups [28, 29]. The distinguishing property of chiral edge channels
is that they allow only unidirectional propagation around the edge of the topological quantummaterial. In the
context of quantum state transfer, coupling a qubit to a chiral edge channel will thus not only provide uswith an
a priori chiral qubit-channel interface, but chiral edge channels are by their very nature immune against back-
scattering fromdefects [21, 22].

It is the purpose of the present work to study quantum state transfer of qubits via chiral quantum edge
channels in a physical setting provided by dipolar arrays of Rydberg atoms.Motivated by recent experiments
demonstrating dipolar Rydberg [30–34] and polarmolecules [35] arrays, and building on recent proposals to
engineer topological phases in spin systems realised by Rydberg atoms or polarmolecules [36–38], we propose
an implementationwhere the dipolar interactions are realised byweakly admixing Rydberg states to ground-
state atoms via laser fields [39–41]. A key property of such aRydberg-dressing implementation is that—with an
appropriate spatial laser addressing—we can rearrange the edge of our engineered topologicalmaterial, i.e.we
can dynamically shape the edge channels to connect arbitrary pairs of qubits (c.f. figure 1(d)). Furthermore, our
implementation provides a framework for illustrating in an experimentally realistic setup various features of
quantum state transfer via topologically protected, and thus robust quantum channels, but also for realising a
spectroscopy of chiral edge channels per se. Thus, we showhow themeasurement, by the qubits, of edge-state
wave packets allows to realise high-fidelity quantum state transfer, robust against disorder and dispersive
effects [16, 42].

Ourmanuscript is organised as follows. First, in section 2, we introduce ourmodel of a quantumnetwork
with qubits connected via topological quantum channels. In section 3, we present an implementation of this
model based onRydberg-dressed atoms. In section 4, we numerically study the robustness of the quantum state
transfer protocol and the role of disorder and dispersive effects. Finally, in section 5, we propose and assess the
performance of a protocol, which exploits the chiral properties of the edge states, to achieve a perfect quantum
state transfer, robust against static imperfections.

2.Model of a topological network and quantum state transfer using chiral edge states

In this section, we present ourmodel of qubits, represented by a set of two-level atoms or spin- 1

2
, which can be

coupled to an engineered 2D topological spin system [21, 22]. The setupwe have inmind is illustrated in
figure 2(a): the qubits are arranged on a quantummemory layer above the topological spin system (TSS)where
chiral edge states play the role of the quantum channel.While in the present sectionwewill define thismodel on

Figure 1.Quantum state transfer between two distant qubits. (a)Using a bidirectional waveguide as a quantum channel, the process is
achieved by chiral emission of a right-propagating photon from the qubitα, which is then absorbed by the second qubitβ. (b)The
presence of defects in thewaveguide can distort the shape of the photonwave packet and induce back-scattering, affecting thefidelity
of the quantum state transfer. (c)The chiral edge states of a topological spin system are protected against back-scattering. In this case,
the chiral edge states act as a unidirectional quantum channel and quantum state transfer between the two qubits ismediated by a spin
excitation propagating along the edge of thematerial. (d) In our Rydberg-dressing implementation, interactions between the atoms of
the topological spin system can be switched on and off dynamically via time-dependent addressing laser beams, allowing reshaping of
the edges of thematerial ‘on-demand’ to connect arbitrary qubits.
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an abstract level, wewill discuss a physical implementation of both qubits and the topological spin systemwith
Rydberg atoms in section 3.

Quantum state transfer between a chosen pair of qubits a = 1and b = 2 on the quantummemory layer
can be achieved byfirst arranging the dynamical chiral edge channels to connect the qubit pair and— again
using lasers and dipolar interactions— swapping the state of the first qubit to awave packet propagating in the
edge channel, where it can be restored in the second qubit. This is illustrated infigures 1(c) and 2(a) for a pair of
qubits at the edge of a square topological spin system.

We emphasise that in this workwe consider the limit of zero temperature where the precise control of the
state of the quantum channel, which is not affected by the presence of thermal excitations, allows to achieve the
quantum state transfer. This assumption is valid in particular for the Rydberg-dressing implementation
presented in the next section, where the spin state of the TSS atoms are controlledwith excellent precision
[34, 43]. In contrast, for other platforms using for instancemicrowavewaveguides ormechanical resonator
arrays as quantum channel, temperature effects have to be included for a realistic description of the quantum
state transfer [44].

TheHamiltonian associatedwith ourmodel consists of three parts,

= + + ( )H H H H , 1q T qT

corresponding, respectively, to the qubits, the topological spin system and the coupling between them. In the
following, wefirst present theHamiltonian of the qubits and the topological spin system (section 2.1) and then
we showhow to describe the coupling of the qubits to the chiral edge states of the topological spin system
(section 2.2). Finally, we present the quantum state transfer protocol in our setting (section 2.3).

2.1. Two-level systems and topological spin systemHamiltonian
The qubits a = N1 ,.., q forming the quantummemory layer, with ground state ñ∣g and excited state ñ∣e , are
located at positions a a a( )x y z, , . The qubitHamiltonian is given by

ås s= D
a

a a
=

+ - ( )H , 2
N

q q
1

q

with s = ñ áa a
- ∣ ∣g e , s s=a a

+ -( )† and energy offsetsDq.We note that in thismodel the qubits are not directly
coupled, i.e. they can only interact via the topological spin system.

The topological spin system is represented byV-type three-level systems = ( )j jj ,x y with

= =j N j N1 ,.., , 1 ,..,x yX Y, where ñ∣0 j denotes the ground state and ñ ñ∣ ∣1 2j j the two excitation states of atom j,
which are placed atfixed positions =( )x y z, , 0j j j in the X Y, plane according to a square lattice of lattice

spacing a. Similar to theHarperHofstadterHamiltonian [45, 46], which has been recently realised in cold atom
experiments [23–26], a topological band structure is obtained by allowing the spin excitations ( ñ∣1 , ñ∣2 ), also
known asmagnons, to acquire a phasewhen hopping around a closed loop in the lattice. The corresponding
Hamiltonian is given by

å å åd= +
n

n n n
= ¹

( ) ( )† †H b b hb r b . 3
j

j j
j l

j j l lT
1,2

, , ,

Here, wemap the spin excitations to hard-core boson particles where the two-element vector = [ ]b bb ,j j j,1 ,2 ,
with n= ñ án ∣ ∣b 0j j, , represents the two (hard-core boson) annihilation operators of the excitations at site j and dn

Figure 2.Model of qubits coupled to a topological spin system. (a)The qubits are coupled to three-level systems. (b)Typical dispersion
relation w ( )km of a topological spin system. The edgemode (blue line) propagates with positive (negative) velocity along the left (right)
edge.
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is the corresponding energy offset. Thematrix ( )h rj l, , with = - + -( ) ( )x x y yr X Yj l j l j l, , describes the

transfer of an excitation between sites j and l and can bewritten as

=
f

f

-

( )
( ) ( )

( ) ( )
( )

( )

( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥h

t w e

w e t
r

r r

r r
, 4

i

ij l
j l j l

r

j l
r

j l
,

1 , ,

, 2 ,

j l

j l

,

,

where the phases f ( )rj l, are responsible for the existence ofQuantumHall topological bands characterised by
non-vanishing Chern numbers [37, 38] and thus chiral edge states [21, 22, 38] (c.f. figure 2(a)).

By considering for convenience the limit of an infinite number of atoms in one direction,  ¥NY , we
obtain the dispersion relation of bulk and edgemodes by Fourier transforming along theY axis and
diagonalising the TSSHamiltonian (c.f. appendix A),

òå w=
p

p

-
( ) ( )†H k k b bd , 5

m a

a

m k m k mT , ,

where w ( )km denotes the dispersion relation corresponding to the TSS eigenmode bk m,
4. Figure 2(b) shows a

typical example of dispersion relation curves w ( )km . The edge-state dispersion relation corresponding to
w= ( )m ka a (blue line) represents localisedmodes propagating with group velocity wº ¶ ¶( ) ( )v k k ka a . Their

chirality originates from the fact that themodes propagatingwith positive velocity are located on the left edge,
while themodesmoving in the other direction are located on the right edge (c.f. figure 2). At this point, wewant
to emphasise that the absence of counter-propagatingmodes (for examplewith a negative velocity on the left
edge) guarantees the absence of reflections originated from local defects.We analyse inmore detail the
robustness of the edge-state channels in sections 4 and 5.

2.2. Coupling between qubits and topological spin system
The last part of theHamiltonianH of ourmodel corresponds to the coupling between the qubits and the
topological spin system. To achieve the quantum state transfer, we are interested in coupling the qubits
predominantly to the edgemodes. This is achieved by positioning the qubits in the vicinity of the edge of the
topological spin system5 and choosing the qubit transition frequencyDq tomatchwith the energy of an edge

state ¯bk ,aa
, where the resonant wave vector k̄a is defined via w = D( ¯ )ka a q. The couplingHamiltonian is written

as

å s= +
a n

n a n a
-( ) ( )†H g t br , h.c ., 6

j
j jqT

, ,
, ,

where n a( )g tr ,j, represents the coupling of an excitation ña∣e of the qubitα to a TSS excitation at site j, encoded
in one of the two levels n = 1, 2 and depends on the relative vector = - + - -a a a a( ) ( )x x y y zr X Y Zj j j, .
Moreover, we consider the coupling terms n a( )g tr ,j, to be time-dependent, which allows to formwave packets
of edgemodes propagatingwith awell-defined shape [1, 47]. In the basis of the eigenmodes bk m, , the coupling
Hamiltonian takes the form

òå s= +
a

a
a

- -a( ) ( )( ) †H k g t e bd h.c ., 7
m

k m
iky

k mqT
,

, ,

with the coupling strength p= åa
n n a n

- - a( ) ( ) ( )( ) ( ) ( )g t e g t cr1 2 ,jk m
ik y y

x
k m

j, , , ,
,

j
j

, where the coefficients n
( )cx
k m
,
,

j

describe the spatial properties of the eigenmodes and are given in appendix A.

2.3.Quantum state transfer
Let us now apply ourmodel to realise a quantum state transfer protocol [1] using chiral edge states [19]. The
formal process wewant to achieve is the transfer of any superposition state ñ = ñ + ñ∣ ∣ ∣s A g B e of a qubit a = 1
to a second qubit b = 2mediated by awave packet propagating in the quantum channel (c.f. figures 1(a), (c))

ò
ñ + ñ ñ ñ

 ñ ñ + ñ ñ

 ñ ñ ñ + ñ

w-

[ ∣ ∣ ]∣ ∣

∣ ∣ ( ) ∣ ∣

∣ ∣ [ ∣ ∣ ] ( )

( ) †⎡
⎣⎢

⎤
⎦⎥

A g B e g

g A B k c t e b g

g A g B e

0

0 d 0

0 , 8

k
i k t

k

1 1 T 2

1 T ,a ,a T 2

1 T 2 2

m

with ñ =  ñ∣ ∣0 0j jT the excitation vacuumof the topological spin system. To derive the formof the coupling
a ( )( )g t

k m,
, which achieves the quantum state transfer, wewrite the general wave function

4
This dispersion relation is only valid in the case of a single TSS excitation, wherewe can neglect the hard-core character of the boson

operators bj.
5
The precise position of the qubits we consider in the numerical examples is given in section 4.2.
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òå åy sñ = + ñ
a

a a
w- D + -∣ ( ) ( ) ( ) ∣ ( )( ) †

⎛
⎝⎜

⎞
⎠⎟t c t e k c t e b Vd , 9e

i t

m
k m

i k t
k m, , ,

mq

describing the propagation of a single excitation in the total system, with ñ º ñ Ä  ña a∣ ∣ ∣V g0 T . As presented
in appendix B, theWigner-Weisskopf treatment, valid in theweak coupling regime n a( ) ( )h gr rj l j, , , eliminates
the contribution of the TSS, resulting in the following set of equations for the qubit amplitudes:

g=-˙ ( ) ( ) ( ) ( )c t t c t
1

2
10e e,1 a,1 ,1

g

g t g t

= -

- - -h h- -

˙ ( ) ( ) ( )

( ) ( ) ( ) ( )( ¯ ( ))

c t t c t

t t e c t

1

2

, 11

e e

i k d
e

,2 a,2 ,2

a,1 a a,2 ,1 a
a 2 1

where

g p=a

a

( )
∣ ( )∣

∣ ( ¯ )∣
( )

¯
( )

t
g t

v k
2 12k

a,
,a

2

a a

a

denotes the coupling of the qubitα to the edgemode =m a, =a a ha( ) ∣ ( )∣( ) ( )g t g t e
k k

i
,a ,a

, = -d y y2 1 is the distance

between the two qubits along theY axis and t = ∣ ( ¯ )∣d v ka a a represents the time delay between the qubits.We
emphasise that equations (10) and (11) illustrate the unidirectional coupling between the two qubits. Similar to
the original proposal [1], the quantum state transfer protocol can be then realisedwith the time-dependent
coupling [47, 48]

g
g

pg
=

- -

- -
( )

( ( ))
( )

( )
t

c e

c c t t

2

2 erf
, 13

c t t

a,1
0

0 0

0
2

which generates aGaussian edge-state wave packet of temporal width c . This symmetric pulse can be then
reabsorbed by the second qubit via a time-reversed pulse g g t= -( ) ( )t ta,2 a,1 a .

3. ImplementationwithRydberg atoms

Having introduced ourmodel, we present an implementation using Rydberg-dressed ground-state atoms.Our
proposal is based on the spin–orbit properties of the dipole-dipole interactions [36–38].We show schematically
the different constituents of our implementation infigure 3(a)while the full level structure and laser excitation
scheme are detailed in appendix C. The atoms that formour 2D topological spin system, denoted as TSS atoms,
are trapped in a square lattice along the X Y, plane as realised in optical lattices [32, 33], optical tweezers [31, 49–
51] ormagnetic lattices [52, 53].We encode the states ñ∣0 , ñ∣1 , ñ∣2 in different hyperfine ground states, for
instance F=1, 2 in the case of Rubidium atoms, where amagnetic field z with direction
= Q + Qz X Zsin cos defines the quantisation axis. The qubit atoms (red spheres) are placed in the vicinity of

the topological spin system, using the same level structure as for the TSS atomswith ñ º ñ∣ ∣g 0 and ñ º ñ∣ ∣e 1 .We
note that infigure 3, we consider the same bi-layer configuration as infigure 2.However, for experimental

Figure 3. Implementation of ourmodel via Rydberg dressing. (a)The qubits are placed in the vicinity of the TSS atoms, which are
placed in a square lattice. (b)The three-level structure of the topological spin system atoms is encoded in Zeeman states ñ∣0 , ñ∣1 , ñ∣2 of
the hyperfine-structure ( F=1, 2 in the case of Rubidium atoms), so as the two levels ñ∣e , ñ∣g of the qubits.We obtain an effective
interaction between ground-state levels by exciting themoff-resonantly toRydberg states where they interact via dipolar exchange
interactions.
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reasons, it is also possible to realise themodel presented in section 2 in the case where the qubits are placed in the
same plane as the TSS atoms, along the edges of the square lattice. As depicted infigure 3(b) andwritten in detail
in appendix C in the case of Rubidium atoms, TSS and qubit atoms areweakly excited by far-detuned laser fields
to Rydberg states ñ{∣ ∣ }3 , 4 , ñ ñ{∣ ∣ ∣ }5 , 6 , 7 , which aremagnetic Zeeman states of the nS1 2 and nP1 2 fine-
structuremanifolds, respectively.

Wefirst present the effectiveHamiltonian governing the dynamics of TSS ground-state atoms obtained by
eliminating the Rydberg states in perturbation theory (section 3.1) and then apply the same approach to the
qubits (section 3.2). Finally, we check the validity of our implementation by assessing the relevant time scales and
the sources of imperfections (section 3.3).

3.1. Topological spin system
TheTSSHamiltonian = +H H HT,imp at int has two contributions. Thefirst termHat, representing the energies
of the levels and the laser excitation, can bewritten in a rotating frame determined by the laser frequencies

å å

å

=- D ñ á

+ W ñ á + W ñ á + W ñ á + ñ á +

∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

 

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭

H i i

3 0 6 1 5 2
3

2
7 1 h.c. , 14

i
i

j
j

j
j j j j

at
3 7

0 1 2

with the Rabi frequencies W W W{ }, ,0 1 2 , the laser detuningsDi and ñ∣i j the state i of atom j. For simplicity, we
consider in the followingD = Di .

As shown in appendix C, the second part of theHamiltonianHint representing the dipole-dipole interactions
betweenRydberg-excited states can bewritten as

å q f=
¹

( ) ( )†H
C

r
c h c, 15

j l j l
j j l j l lint

3

,
3 dd , ,

with the shorthand notation = ñ á ñ á ñ á ñ á[∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣]c 5 3 , 6 3 , 5 4 , 6 4j j j j j and q f( )h ,j l j ldd , , , a dimensionless 4×4
matrix that depends on the spherical angles qj l, , and fj l, of the relative vector rj l, with respect to z. The radial

coefficient ò= ( )( ) ( )C drR r r R rS P3
3 2

is a function ofRS (RP), the radial wave function associatedwith the S1 2

(P1 2)Rydberg states [43].We emphasise that we consider the large distance limit DC rj l3 ,
3  where only the

resonant flip-flop processes of the type P S S P1 2 1 2 1 2 1 2 contribute.
In the perturbative (or dressing) regime, W D0,1,2  , the Rydberg states can be eliminated in perturbation

theory, leading to an effectiveHamiltonian governing the dynamics of the ground-state levels [39–41]. To do so,
we apply theVanVleck formalism [54] reducing the TSSHamiltonian HT,imp to the formof (3)with

q= -
W W
D

-n
n n

= ( ) ( ) ( ) ( )t
C

r
r 1

9
1 3 cos 16j l

j l
j l1,2 ,

3

,
3

0
2 2

4
2

,

q=
W W W

D
( ) ( ) ( )w

C

r
r

6
sin 2 , 17j l

j l
j l,

3

,
3

0
2

1 2

4 ,

and the second and fourth-order AC-Stark shifts

d

d

=
W
D

-
W
D

+
W
D

-
W
D

-
W W
D

-
W
D

+
W
D

=
W
D

-
W
D

-
W
D

+
W
D

( )

3

4

9

16

3

2

, 18

1
2
2

2
4

3
1
2

1
4

3
1
2

2
2

3
0
2

0
4

3

2
2
2

2
4

3
0
2

0
4

3

wherewe set d = 00 . To obtain a topological phase [38], it is important that the energy-splitting d d-1 2 does not
dominate over the flip-flop term (17). This condition can be achieved for example by choosing the ratio W W2 0,
W W1 0 according to (18) in order to obtain d d= = 01 2 .

Finally, we emphasise that in our dressing implementation, the local and time-dependent control of the laser
intensities W0,1,2 allows to effectively disconnect atoms from the rest of the topological spin system and therefore
to dynamically reshape the edges (c.f. figure 1(d)).

3.2.Qubits and coupling to the topological spin system
The implementation of the qubits is similar to the one of the TSS atoms, with the difference that the level ñ∣2 is
energetically excluded from the dynamics (for instance via the second-order AC-Stark shifts). Following the
same procedure as for the derivation of the TSSHamiltonian, we obtain the couplingHamiltonian in the formof
(6)with
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where W Wa a˜ ( ) ˜ ( )t t,0, 1, denote the local Rabi frequencies addressing the qubits. Finally, considering as in the case
of the TSS atoms, that the AC-Stark shifts can be compensated, for simplicity we set the qubitHamiltonian (2) to
zero.Moreover, we consider the distance between the qubits to be sufficiently large to neglect the direct dipole-
dipole interactions between them.Consequently, the interactions between the qubits are exclusivelymediated
by the TSS atoms, as presented in section 2.

3.3. Time scales
Weconclude this section by assessing the regime of validity of our implementation calculating the relevant time
scales. For a lattice spacing m=a 15 m andTSSRabi frequencies pW = W = ´2 8 MHz0 2 ,

pW = ´2 4 MHz1 , detuning pD = ´2 25 MHz exciting the TSS atoms toRydberg states with principal
quantumnumber n=65, the value of the dipole-dipole coefficient p= ´ C 2 193 GHz mm3 leads toflip-
flop interactions of the order of 1 kHz, which is larger than the effective decoherence rate

pG ~ W D G ~ ´( ) 2 0.3 kHz2
r , induced by the Rydberg state admixture [39–41] of the ground-state atoms

(Gr is the typical decay rate of the S andPRydberg states [55]). Note that for these specific parameters, the
quantum state transfer cannot be realised for very large distances d a as the time needed to realise the
experiment, which should be smaller than the decoherence time G1 , increases linearly with the distance d.
However, this limitation can be simply overcome by reducing the lattice spacing, leading tomuch faster time
scales6. Finally, we emphasise that we consider ground-state atoms, which in contrast to Rydberg atoms, remain
trappedwhile experiencing the dipole-dipole interactions and therefore decoherence effects arising from the
motion of the atoms are negligible [56].

4. Application to quantum state transfer

In the following, we utilise our implementation to achieve quantum state transfer between two distant qubits
a = 1, b = 2. To do so, we numerically calculate the edge-state properties of the topological spin system, solve
the quantum state transfer protocol dynamics governed by the totalHamiltonianH (c.f. (1)) and compare our
numerical results to the ideal predictions [(10)–(11)].

4.1. Couplings to the edge-state channel
As shown inPeter et al [38] in the context of polarmolecules, the TSSHamiltonian exhibits a quantumHall
topological band structure phase associatedwith the existence of two edgemodes =m a, b. Infigure 4we show
the dispersion relation w ( )km and the edge states localisation and spin properties, obtained by numerically
diagonalising the TSSHamiltonian using the dimension reduction analysis along theY axis (c.f. appendix A) and
for the numbers given in section 3.3. The two edge-state channels have the same chirality, i.e.they propagate in
the same direction along each edge. The existence of two edgemodes offers in principle the advantage of

Figure 4.Properties of the edgemodes of the topological spin system. (a)Dispersion relation w ( )km obtained using the parameters
given in section 3.3, pQ = 3 4, and =N 15X . The two edgemodes =m a, b are indicated as blue and red lines. (b) Localisation

= å - +n n n= = -( ) ( (∣ ∣ ∣ ∣ ) )( )
( )

( )x k c c 1 2x
k

x a N
k

a 0,
,a 2

1 ,
,a 2

X
and spin s = å( ) ∣ ∣( )k cx x

k
1,a ,1

,a 2 of the two edge states which share the same chirality.

6
In this situation, however, wewould need to calculate the dressing interactions numerically as the condition DC a3

3  used to derive
analytical expression is not satisfied.
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performingmultiplexing protocols but also gate operations based on spin-spin collisions (see [16] in the context
of spin chains). However, in the followingwe consider that one edge-statemode =m a is predominantly
excited, which can be achieved by exploiting the spin and localisation properties of the edge states (c.f.
figure 4(b)).

4.2.Quantum state transfer
The quantum state transfer protocol relies on effective time-dependent couplings of the formof (13), which in
the context of our implementation can be achieved by dynamically varying the qubit Rabi frequencies
W Wa a˜ ( ) ˜ ( )t t,0, 1, according to (12), (19) and (20).We study the performance of the protocol by numerically
calculating the corresponding dynamics governed by (1)with the initial condition sY = ñ = ñ+∣ ( ) ∣t V0 1 . As an
example, we choose the two qubits to be separated by a distance = -d y y2 1 and position themwith respect to
the closest TSS atom a[ ]j (with =a[ ]x 0j ) via = -a a ( )[ ] br Z Xj , , with m=b 8.1 m. For this geometric
configuration, we obtain a dominant coupling ga to the edge state indicated in red infigure 4.

The results of the quantum state transfer protocol are shown infigure 5, wherewe represent the fidelity of the
quantum state transfer = ∣ ( )∣ c te f,2

2 for afinal time tf=8ms. In panel (a), we study the effect of the finite size
of the topological spin systemby representing thefidelity  for different TSS sizes ( )N N,X Y , a distance =d a6
and g p= ´2 0.64 kHz0 . For large TSS sizes >N N, 10X Y , thefidelity converges towards a constant value

» 0.95, showing that the dispersion relation that we derived under the assumption of a semi-infinite
topological spin system is relevant to describe the quantum state transfer in large butfinite systems. To explain
the cause of the deviation from the ideal fidelity = 1, we represent  as a function of d and g0 in panel (b). At
short distances and small coupling strengths, we observe state transfer with a small error thatwe attribute to the
influence of the second edge-state channel =m b and to the off-resonant contribution of the bulkmodes

¹m a, b. At large distances, the fidelity is a decreasing function of d and of the coupling strength g0 indicating
the onset of dispersion effects [16] that distort the edge-state wave packet while propagating.

Furthermore, we study the influence of disorder, which in cold atom experiments typicallymanifests by an
on-site probability  for TSS atom vacancies. Thefidelity  as a function of  is shown infigure 5(c) for afixed
distance =d a26 and coupling g p= ´2 0.64 kHz0 . Despite the absence of back-scattering in our topological
quantum channel, the presence of disorder distorts wave packets of edge states, affecting the fidelity of the
quantum state transfer.Moreover, considering the individual disorder realisations shown as red circles, we
notice that the robustness of the protocol crucially depends on the position of the vacancies.

To summarise this section, we demonstrated the potential of using a Rydberg-dressing implementation of
chiral channels for quantum state transfer.We studied the role of dispersion and disorder as sources of

Figure 5.Quantum state transfer fidelities  with pQ = 3 4. The pulse parameters are g =t 60 0 and p g=c 1.01 4 0
2. (a) Influence

of the size of the topological spin systemwith =d a6 and g p= ´2 0.64 kHz0 . (b) Fidelity as a function of d for coupling strengths
g p= ´2 0.64 kHz0 (blue), g p= ´2 0.8 kHz0 (green), g p= ´2 1.11 kHz0 (red) and g p= ´2 1.60 kHz0 (cyan), showing the
importance of dispersive effects at large distances. The TSS extension is set by =N 15X , =N 61Y (c) Fidelity as a function of the
probability of site vacancies showing the destructive impact of disorder on the efficiency of the quantum state transfer, for d= 26a,
g p= ´2 0.64 kHz0 ,NX= 15 andNY= 41.
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imperfection, the latter having a crucial influence on thefidelity despite the topological character of the edge
modes. In the next section, we show that these limitations can be overcome by performing a protocol based on
the spectroscopy of the transmission channel.

5. A robust state transfer protocol for the effects of dispersion anddisorder

The goal of this section is to present a state transfer protocol that is robust against dispersive and disorder effects.
In contrast to the standard protocol that assumes that thewave packet propagates without deformation
according to a linear dispersion relation, herewe simply treat the quantum channel as a ‘black box’ that conveys
the information from the first to the second qubit. This section is organised as follows. In section 5.1, we show
how to realise spectroscopy of the quantum channel via the qubits, i.e.tomeasure the phase and amplitude of
the distortedwave packet.We then use this information in section 5.2 to derive the protocol which achieves the
quantum state transfer. Finally, in section 5.3, we illustrate the efficiency of ourmethod using two toymodels.

We emphasise that our protocol is based on the assumption of perfect chirality of the quantum channel, i.e.
it relies on the fact that all the emission of the first qubit is transmitted toward the second qubit. It thus applies in
the context of the topological spin systempresented in this previous sections but also in the context of chiral 1D
waveguides [16] subject to dispersive effects7. Finally, our protocol is only robust against static imperfections, i.e.
we assume that theHamiltonian describing the quantum channel is time-independent and can thus be
characterised beforewe realise the quantum state transfer.

5.1.Quantum channel spectroscopy using the qubits
Wenowpresent the different steps of the spectroscopy of the quantum channel. As depicted infigure 6, we
consider thefirst qubit a = 1 to be initially excited and to emit for times <t 0 awave packet with awell-defined
shapewhich is then distortedwhile propagating. At time t=0, thewave packet reaches the second qubit, whose
dynamics, following appendix B, are given by

g
d g= - + +˙ ( ) ( ) ( ) ( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥c t

t
i t c t f t

2
, 21e e,2

a,2
,2 a,2

with = - h-
-( ) ( ¯ ) ( )¯ ( ¯ )

( ¯ )f t iv k e c 0ik v k t i
y v k ta a

a a a 2
2 a a

where ò=( ) ( )c t k e c tdy
iky

k,a represents thewave packet
amplitude in real space andwe assume »( )c 0 0e,1 . In contrast to the standard state transfer protocol that
supposes that awave packet propagates without deformation [1], we assume here that the second qubit receives
an unknownwave packet f (t)whose amplitude ∣ ( )∣f t and phase F º( ) ( ( ))t f targ 8 are both unknown9. The
time-dependent quantity d ( )t (c.f. figure 6) allows to change the transition frequency of the second qubit
dynamically, which is assumed not tomodify the coupling g ( )ta,2 . As explained in section 5.2 the chirp d ( )t is a
crucial ingredient to realise the quantum state transfer.

We now showhow tomeasure thewave packet f (t). Using the ansatz = g( ) ( )d t e c tt
e

2
,2a,2 , (21) becomes

d g= - + g˙ ( ) ( )d i d e f t . 22t
a,2

2a,2

In a typical experimental setup, we only have access to the population of the qubit, and thus to themodulus
º ∣ ∣r d , while the phase q º ( )darg cannot be directlymeasured. Therefore, it is not possible to extract the

Figure 6.Robust state transfer with static imperfections: thefirst qubit emits a symmetric wave packet towards the second qubit. Its
unknown final shape can bemeasured by the second qubit using a chirped transition frequency dD + ( )tq .We use this information
to derive the pulse shape g ( )ta,2 and chirp δ(t) realising the quantum state transfer.

7
In this case, however, the channel is not protected against back-scattering.

8
Originated for instance fromdispersion effects.

9
Note that the assumption of perfect chirality of the quantum channel implies ò =∣ ( )∣t f td 12 .
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function f (t) via (22)with a singlemeasurement of the qubit population.However, themeasurement can be
repeated for different (time-independent) δ leading to the response d(t) and consequently f (t). A simple option is
to realise twomeasurements of the qubit population: (i) thefirstmeasurement gives the function r0 for d = 0
and (ii) the secondmeasurement, performed at a small constant value d d=( )t , leads to the knowledge of

d¢ º ¶ ¶ d=( )r r0 0 via finite differentiation.We can then eliminate f (t) using (22) and obtain

q¢ - =˙ ˙ ( )r u 0 230 0

q ¢ + + =˙ ˙ ( )r u r 0, 240 0 0

with q q d¢ º ¶ ¶ d=( )0 0, q= ¢u r0 0. Knowing r0 and ¢r0, (23), (24) can be integrated tofind q0 andfinally f (t) using
(22). Aswe are interested here in studying deviations from the ideal case where the function f (t) is real, we solve
the differential equations (23), (24) iteratively in q̇0, the zeroth order òq = - ¢ ¢ ¢˙ ( ) ˙ ( ) ( )t r t t r td0 0 0 in the examples
belowwill be a good approximation. This concludes the spectroscopy of the quantum channel: comparing f (t)
with the initial pulse sent by the first qubit indicates how awave packet is transmitted towards the second qubit
including the effects of dispersion and disorder.We nowuse this information to realise a robust state transfer
protocol.

5.2. Pulse shapes
Under the assumption of static quantum channel imperfections, the knowledge of thewave packet f (t), which
reaches the second qubit, can be used to realise a robust state transfer protocol. To do so, we realise, after thefirst
twomeasurements related to the quantum channel spectroscopy, a third experiment with time-dependent
couplings g ( )ta,2 and chirp d ( )t . For a perfect absorption of the entire wave packet f (t)with the evolution

ò= ¢ ¢F( ) ∣ ( )∣( )c t e t f tde
i t t

,2 0
2 , we obtain the conditions

òg = ¢ ¢( ) ∣ ( )∣ ∣ ( )∣ ( )t f t t f td 25
t

a,2
2

0

2

d = -F( ) ˙ ( ) ( )t t , 26

wherewe used (21). Thefirst condition (25) resembles the typical pulse shape obtained in the standard state
transfer protocol [1, 47, 48]with a real envelop f (t) (c.f. (11) in theGaussian case). The second ‘phase-matching’
condition allows to compensate for the existence of the phaseΦ by a ‘chirped’ frequency d ( )t . In this way, the
frequency of the second qubit is dynamically synchronisedwith the evolution of the phase F( )t .

5.3. Results
Wenow apply our protocol based on the spectroscopy of the channel, using two toymodels. First, in
section 5.3.1, we consider a 1Dquantum channel subject to dispersive effects while we present in section 5.3.2
the results obtained in the case of a disordered topological spin system. In bothmodels, we assess the efficiency of
the protocol by numerically simulating the dynamics of the combined system formed by the qubits and the
quantum channel, similar to the study presented in section 4.

5.3.1. Compensation of dispersion effects in structured 1Dwaveguides
Weconsider a unidimensional waveguide ( =N 1X ), where the excitations are encoded in a single excited state
ñ∣1 . Thematrix ( )h rj l, (c.f. (3)) is a simple scalar with nearest neighbour interactions d= - ( )h Jr j lj l, , 1y y

. This

model was studied in detail in [16], showing dispersive effects similar to the ones presented here in section 4. In
this case, the dispersion relation has an analytical expression w d= - + n( ) ( )k J ka2 cosa wherewe choose
d =n J0.5 ,D = 0q . Thefidelity of the quantum state transfer protocol is shown in figure 7(a). The blue curve
corresponds to the standard state transfer protocol, showing howdispersion affects the quantum state transfer at
large distances d/a. The green curve represents the case where the coupling of the second qubit has been adapted
according to (25), whereas the red curve also includes the ‘chirp’ condition (26). The second condition is the
crucial requirement to obtain a robust state transfer protocol. For a distance =d a400 , we obtain afidelity of
96%, corresponding to a reduction of the error of 90% comparedwith the standard state transfer protocol. The
robustness of the protocol simply comes from the fact that the chirp compensates for the phases accumulated by
the Fourier components of the propagating wave packet.

5.3.2. Robustness against disorder in a topological spin system
Finally, we study the robustness of the protocol in the case of a disordered topological spin system. For
simplicity, we consider amodel which, in contrast to the Rydberg implementation in section 3, includes a single
edge-state channel [57]. TheHamiltonian is commonlywritten in terms of Paulimatrices
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wherewefix in the following = -m 1.Moreover, the two qubits are coupled to a single TSS atom a[ ]j (with
=a[ ]y 0j ) according to (6)with d= - -n a

n
a( ) ˜( )( ) [ ]g t J tr , 1 2j j j, , .

The results of the protocol are shown infigure 7(b)with the same graphical conventions as infigure 7(a). The
comparison between the different curves shows that adapting the coupling pulse according to (25) increases
substantially the fidelity  of the quantum state transfer, while adding a chirp term (c.f. (26)) is in this case not
required. Our interpretation is that in contrast to dispersion effects, the effect ofmissing atomsmainly leads to a
time-delayed absorption of thewave packet, corresponding to the time needed by thewave packet to ‘avoid’ the
defects. Finally, we note that our protocol is not robust when the coupling between the qubits and the edge-state
channel is affected by the disorder, which in this example occurs if one site a[ ]j is vacant. This is illustrated in
figure 7(b) by the orange line, which represents the averaged fidelity for disorder realisationswhere the two sites
[ ] [ ]j j1 , 2 are both occupied and corresponds to amuch higher fidelity compared to the red curve.

6. Conclusion

In summary, we have studied amodel of a quantumnetworkwhere qubits can interact via chiral edge states. Our
implementation based onRydberg-dressed ground-state atoms allows to demonstrate the different ingredients
of quantum state transfer using a topologically protected spin system in state-of-the-art experimental setups,
and can be easily adapted to other dipolar systems such as polarmolecules. Furthermore, after having
numerically studied the role of static imperfections in the standard protocol [(10), (11)], we have presented an
original approach, based on the spectroscopy of the quantum channel, achieving high-fidelity quantum state
transfer even in the presence of dispersive and disorder effects.

In a broader context, ourmodel of chiral quantumnetwork in dipolar arrays can be applied to realise various
robust quantumoperations using the chiral edge states as topologically protected quantum channels.With
directional spin chains, the hard-core nature of spin excitationsmakes it possible to implement entangling gates
between distant qubits [16, 58]. In the case of dipolar topological spin systems, where the equilibriumphase
diagram includes a Fractional Chern insulator [19], the role of topology in the collision dynamics ofmultiple
edge-state excitations and the opportunities for realising entangling gates represent fundamental questions for
quantum information processing in quantumnetworks, whichwe plan to address in a futurework.
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not needed. Finally, the orange curve representing the averaged fidelity where the coupling sites a[ ]j are not affected by the disorder
shows that the protocol only applies when the disorder does not affect the couplings g aa, of the qubits to the waveguide.
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AppendixA.Diagonalisation of the TSSHamiltonian

In this section, we showhow to obtain the dispersion relation describing the topological spin system. To do so,
we consider the system to be infinite in theYdirection, while remainingfinite in theX direction and diagonalise
the TSSHamiltonian (3). The presence of atmost one excitation in the TSS, å á ñn n n

† b b 1j j j, , , , allows us to

treat the hard-core boson operators nbj, as genuine bosonic operators. Using the transformation

òp=n p

p
n-

( )b k e b1 2 d
a

a iky
x kj, , ,j

j
, we obtain

òå= -˜( ) ( )†H k h x x kb bd , A.1
x x

x k x kj lT
,

, ,

j l

j l

where = [ ]b bb ,x k x k x k, , ,0 , ,1l l l
, k is thewave vector associatedwith a plane-wavemoving along theY direction and

å- = - +-˜( ) (( ) ) ( )h x x k e h x x yX Y, , A.2
y

iky
j l j l

with =( )h 0 0. Finally, the TSSHamiltonian (A.1) can bewritten in the quadratic formof (5)using the
operators = å n n n

( )b c bk m x x
k m

x k, , ,
,

, , representing the eigenmodes of theHamiltonian and w ( )km the corresp-
onding dispersion relation.

Appendix B.Wigner-Weisskopf treatment of qubits coupled to edgemodes

In this section, we consider themodel introduced in section 2 to derive general expressions for the dynamics of
the qubits (c.f. (10), (11)). Starting from theWigner-Weisskopf ansatz(9) and plugging it into the Schrödinger
equation y yñ = - + + ñ∣ ( ) ( )∣ ( )d t dt i H H H tq T qT leads to a set of coupled differential equations for the
amplitudes

òå= -a
a w- -Da˙ ( ) ( ( )) ( ) ( )( ) ( ( ) )*c t i k g t c t e ed B.1e

m
k m k m

iky i k t
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Formal integration of (B.2)
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and (B.3) plugging into (B.1) gives with º -a b a by y y,
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If we assume that the qubit timescales are slow comparedwith the bath timescales (weak coupling regime

n a( ) ( )h gr rjj l, , ), we can linearise the dispersion relation for a particular edgemode w ( )ka around the qubit
resonance w = D( ¯ )ka a q

w » D + -( ) ( ¯ ) ( ¯ ) ( )k k k v k . B.5a q a a a

Furthermore, theweak coupling approximation allows us to assume that a ( )( )g t
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is independent of k around the

resonant wave vector k̄a, such that »a a( ) ( )( )
¯
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. This leads to the following expressions for the qubit
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/g g´ - -a b a b b a b( ) ( ( ¯ )) ( ( ¯ )) ( )t t y v k c t y v k B.7ea, a, , a a , , a a

with g p=a
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a
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,a ,a
, h h hº -a b a b, and theHeaviside function

Q( )x defined asQ =( )x 1 for >x 0 andQ =( )x 0 for x 0.

AppendixC.Dressing schemedetails

In this section, we present the details of our dressing scheme. The atomic levels we are interested in are
represented infigureC1 (a) in the context of Rubidium atoms. In particular the Rubidiumhyperfine ground
states ñ º = = ñ∣ ∣ S F m0 5 , 1, 1F1 2 and ñ º = = ñ∣ ∣ S F m1 5 , 2, 1F1 2 , ñ º = = ñ∣ ∣ S F m2 5 , 2, 2F1 2

represent the vacuum state and the two excited states of ourmodel.
They are excited off-resonantly to the Rydberg states ñ º = - ñ Ä = ñ∣ ∣ ∣nS m m3 , 1 2 3 2j I1 2 ,

ñ º = ñ Ä = ñ∣ ∣ ∣nS m m4 , 1 2 3 2j I1 2 , ñ º = - ñ Ä = ñ∣ ∣ ∣nP m m5 , 1 2 3 2j I1 2 ,

ñ º = ñ Ä = ñ∣ ∣ ∣nP m m6 , 1 2 3 2j I1 2 and ñ º = - ñ Ä = ñ∣ ∣ ∣nP m m7 , 1 2 1 2j I1 2
10, whichwill be used to

generate the hoppingHamiltonian (3) using three laser beams propagating along the z directionwith optical
frequencies w w w, ,0 1 2 (where the laser frequency w0 is associatedwith a two-photon process), with,
respectively, linear s+ and s-polarisation.We emphasise that the state ñ∣7 has a different nuclearmoment and
will only lead to anAC-Stark shift contribution. The frequencies whfs, wr and wm (c.f. figure C1(a)) denote
respectively the hyperfine splitting in the ground state, the energy separation between ground andRydberg states
and the energy difference between the twoRydbergmanifolds nS1 2 and nP1 2. According to the Landé factor
and the strength  of themagnetic field, we further obtain the Zeeman shifts m= - 1 2 B0 , m= 1 2 B1 ,

m= B2 , m= - B3 , m= B4 , m= - = 1 3 B5 7, m= 1 3 B6 (mB is the bohrMagneton). At this
point it is important to note, that one needs to fulfil the condition w w+ = + 1 1 2 2 in order to keep the
interactionHamiltonian(15) time-independent. In the frame rotatingwith the laser frequencies the detunings
appearing in (14) are given by w w wD = - - - + i r i0 hfs 0 (i=3, 4) and w w wD = - - - +m  r5 2 5 2,

w w wD = - - - +m  r6 1 6 1, w w wD = - - - +m  r7 2 5 1. For simplicity it is assumed that the Zeeman

shifts are negligible compared to the laser detunings. Finally, the quantity W¢ W = 3 22 2 is given by the ratio
of the dipolematrix elements between the involved hyperfine ground states and the Rydberg levels.

The second part of theHamiltonian(15) represents the dipole-dipole interaction between two atoms in
Rydberg states. Two atoms j, l interact at long distances via the dipole-dipole potential [43]

FigureC1. ( )a Dressing scheme used to implement the interaction terms of ourmodel (c.f. section 2) ( )b Example for an excitation
transfer process within the topological spin system and between qubit andTSS using the dressing scheme.

10
It is important to note that for the timescales of our implementation, the hyperfine interaction betweenRydberg states is negligible so that

the nuclear spinmI behaves as a spectator in the dynamics.
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=
-ˆ ˆ ( ˆ ˆ )( ˆ ˆ ) ( )( )

( ) ( ) ( ) ( )

V
r

d d 3 d n d n
, C.1j l

j l j l

j l
dd

,

,
3

where ˆ ( )
d

j
is the dipole operator of atom j. The projection of the dipole-dipole potential onto the Rydberg states

manifold can bewritten as

å=
¹

( )( )H PV P
1

2
, C.2

j l

j l
int dd

,

with the projection operator = å ñáÎ ∣ ∣{ }P i i i i, ,i i j l j l, 3,4,5,6,7j l
. Neglecting non-resonant processes (of the type

S S P P1 2 1 2 1 2 1 2), theHamiltonian reduces to

å q f=
¹

( ) ( )†H
C

r
c h c, , C.3

j l j l
j j l j l lint

3

,
3 dd , ,

with the shorthand notation = ñ á ñ á ñ á ñ á[∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣]c 5 3 , 6 3 , 5 4 , 6 4j j j j j and the 4×4matrix q f( )h ,j l j ldd , , given by

q f

q q f q f q

q f q q f q f

q f q f q q f

q q f q f q

=

-

- - -

- - -

- - -

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

*

* * *

* *

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
h

f f f f

f f f f

f f f f

f f f f

,

, ,

, , ,

, , ,

, ,

, C.4j l j l

j l j l j l j l j l j l

j l j l j l j l j l j l j l

j l j l j l j l j l j l j l

j l j l j l j l j l j l

dd , ,

1 , 2 , , 2 , , 1 ,

2 , , 1 , 3 , , 2 , ,

2 , , 3 , , 1 , 2 , ,

1 , 2 , , 2 , , 1 ,

with q q= -( ) ( )f 1 3 cos 9j l j l1 ,
2

, , q f q= f( )f e, sin 2 6i
j l j l j l2 , , ,j l, , q f q= f( )f e, sin 3i

j l j l j l3 , ,
2 2

,j l, .
Finally, an example for an excitation transfer process according to our dressing scheme is depicted in

figureC1(b).
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