All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials

To cite this article: Bernd Bachmann et al 2017 Flex. Print. Electron. 2 035003

View the article online for updates and enhancements.

Related content

- Nanostructured gold microelectrodes for extracellular recording from electrogenticells
 D Brüggemann, B Wolfrum, V Maybeck et al.

- A nanoporous alumina microelectrode array for functional cell-chip coupling
 Manuel Wescje, Martin Häuske, Alexey Yakushenko et al.

- Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high-resolution patterning using intense pulsed light treatment
 Pritesh Gokhale, Dana Mitra, Enrico Sowade et al.
Flexible and Printed Electronics

PAPER

All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials

Bernd Bachmann 1,2, Nouran Y Adly 1, Jan Schnitker 1, Alexey Yakushenko 1, Philipp Rinklin 1, Andreas Offenhäusser 1 and Bernhard Wolfrum 1,2

1 Peter Grünberg Institute (PGI-8, Bioelectronics), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
2 Neuroelectronics, Munich School of Bioengineering, Department of Electrical and Computer Engineering, Technical University of Munich (TUM) & BCCN Munich, D-85748 Garching, Germany

E-mail: bernhard.wolfrum@tum.de

Keywords: inkjet printing, gold ink, microelectrode array, bioelectronics, extracellular recording of action potentials

Supplementary material for this article is available online

Abstract

Inkjet printing is an attractive method for cost-effective additive manufacturing of electronic devices. Especially for applications where disposable sensor systems are of interest, it is a promising tool since it enables the production of low-cost and flexible devices. In this work, we report the fabrication of a disposable microelectrode array (MEA) using solely inkjet printing technology. The MEAs were fabricated with two different functional inks, a self-made gold ink to print conductive feedlines and electrodes and a polymer-based ink to add a dielectric layer for insulation of the feedlines. We printed different MEA designs of up to 64 electrodes with a minimum lateral spacing of 200 μm and a minimum electrode diameter of ~31 μm. As a proof-of-concept, extracellular recordings of action potentials from cardiomyocyte-like HL-1 cells were performed using the all-printed devices. Furthermore, we stimulated the cells during the recordings with noradrenaline, which led to an increase in the recorded beating frequency of the cells. The results demonstrate the feasibility of inkjet printing gold MEAs for cell-based bioelectronics.

1. Introduction

The extracellular recording of neuronal and muscle cells using electrode arrays is a powerful method to investigate and understand bioelectronic systems. While large electrodes are usually applied for bioelectronic systems such as electrocardiography or electromyography, microelectrode arrays (MEAs) can be used to study effects on the single-cell or cell-network level. This includes, for example, the examination of pharmaceutical or toxicological effects of drugs and chemicals on neuronal networks [1–5], studies on neurotransmitter release [6, 7], or the investigation of the communication pathway of individual neurons [8, 9]. MEAs also allow to stimulate nervous or muscle tissue [10–12], and can be used as electrochemical sensors to detect, for instance, low concentrations of silver nanoparticles [13]. Over the past decades, a lot of effort has been directed towards improving the interface between MEAs and cells. Recent approaches for MEA optimization range from 3D-architectures and surface modifications to improve the cell-chip coupling [14–19] to CMOS-based MEAs in order to increase the spatial resolution of recording electrode arrays [8, 9]. For example, Müller et al fabricated a MEA that comprises 26 400 electrodes, being capable of recording 1024 channels in parallel [9]. Recent research focused on the development of soft and flexible MEAs [20–26] including injectable electronic meshes for in vivo studies to access information from, e.g., the cerebral cortex or the hippocampus [27].

Clean-room-fabricated MEAs have been demonstrated to be powerful tools for extracellular recording of action potentials. However, major disadvantages of clean-room technology are the high cost and often time-consuming and complex fabrication processes. For example, a limiting factor in optical lithography is the requirement of masks for each lithographic step. As a consequence, changes in the design are difficult to implement, rendering adaptive fabrication and prototyping time-consuming and expensive. Moreover, fabricating MEAs on flexible low-cost substrates is
often not compatible with standard clean-room processing, which is inconvenient for the development of disposable sensor systems.

Considering these disadvantages, printing methods have moved into the focus as an alternative promising fabrication method. In particular, inkjet printing allows the simple, cost-effective and contactless, additive manufacturing of electronic devices [28]. The manufacturer can easily change the desired design. The possibility of using a broad range of materials as inks enables printing a variety of devices. Examples for materials include conductive polymers, nanotubes, semiconducting materials, dielectric inks, proteins or even living cells [29–35]. These advantages allow printing a wide range of sensor types such as mechanical sensors or biosensors [36–39]. A very recent example was reported by Vuorinen et al who used a graphene/PEDOT:PSS ink to fabricate an inkjet-printed skin-conformable temperature sensor [40]. These examples as well as the simple, fast, and cheap fabrication process make inkjet printing a promising tool for the fabrication of disposable MEAs.

Several groups have already reported inkjet-printed gold electrodes, sensors, and printed MEAs [41–46]. However, previous examples either suffer from a relatively low resolution or involve additional clean-room fabrication steps. Roberts et al fabricated inkjet-printed PEDOT:PSS conductive-polymer electrode arrays with 28 4 x 4 mm^2 electrodes, which they used for in vivo electromyography and electrocardiography measurements [47]. Khan et al recently presented an inkjet-printed MEA fabricated using a gold nanoparticle ink [48]. In their work, inkjet-printed gold lines were covered by a spin-coated polymer. Subsequent etching steps yielded 31 flexible electrodes with a minimum feature size of 62 μm and an electrode pitch of 2–7 mm. The same groups developed a MEA comprising 55 electrodes with a diameter of 500 μm and an electrode spacing of 2.54 mm, which was applied for impedance measurements to detect pressure ulcers in a rat model in vivo [49].

In this report, we present the fabrication of low-temperature sintered gold MEAs for cell recordings using solely inkjet technology. In figure 1, the printing process of the MEA and the cell recording are illustrated. Two different MEA designs were printed using a self-made gold ink. The first layout contains 28 electrodes with an electrode pitch of 400 μm. The second layout exhibits an improved resolution of the MEA containing 64 electrodes with an electrode pitch of 200 μm.

The MEAs were fabricated in two main steps. First, the conductive feedlines were printed on a thin polymeric substrate using a gold nanoparticle-based ink. Subsequently, an insulating layer was printed using a dielectric polymer-based ink. Gold was chosen for the electrode material since it provides good conductivity, chemical stability, and biocompatibility. The latter is essential for performing extracellular recordings in an electrolytic environment.

As a proof-of-concept, spontaneous, as well as chemically stimulated, action potentials of cardiomyocyte-like HL-1 cells were recorded using the printed MEA. With this, we demonstrate the feasibility of inkjet-printed microelectrodes for bioelectronic investigations at the cellular level.

2. Experimental section

2.1. Printing methods and ink development

All structures presented herein were fabricated using a drop-on-demand inkjet printer (Unijet™ OJ300) with a piezo-driven printhead. The printer features a positioning accuracy of ±5 μm and a position...
repeatability of ±1 μm. For the conductive feedlines, a self-made gold nanoparticle-based ink was developed. The gold nanoparticles were synthesized according to the Brust–Schiffrin method (see supplementary information, available online at stacks.iop.org/FPE/2/035003/mmedia).

For the dielectric layer, a polyimide-based (PI) ink was purchased (PIN 6400-001, Chisso Coorporation). Both inks were loaded into a 10 pl cartridge (DMC-11610, Dimatix™) or a 1 pl cartridge (DMC-11601, Dimatix™) via a hydrophobic PTFE filter (0.1 μm pore size). Jetting behavior was observed using the printer’s software tools.

2.2. Printing of test patterns

Prior to printing the MEAs, substrate-ink interactions were evaluated by printing test patterns on two substrates: (1) flexible polyimide-based (PI) Kapton® (DuPont™) and (2) polyethylene naphthalate-based substrate Optfine® PQA1M (DuPont Teijin Films). The test patterns were printed using both inks. The structures were optically analyzed using differential interference contrast microscopy. The dimensions were analyzed using the image analysis tool ‘ImageJ’. Additional analysis of the morphology of the printed gold layers was carried out using scanning electron microscopy (SEM).

2.3. Printing of MEAs

Two layouts of MEAs were printed for evaluation. The first one was a low-resolution layout with an array comprising 28 electrodes within an area of 25.4 × 25.4 mm². This layout was printed on a polyimide-based substrate (125 μm thickness, Kapton®, DuPont™). First, the feedlines were printed with one layer of gold and a drop spacing of 36.5 μm. Subsequently, the gold layer was thermally sintered by heating the Kapton® substrate to 200 °C at a rate of 3.3 °C min⁻¹ and tempering at this temperature for 1 h. In a second printing step, the feedlines were passivated with the PI at a drop spacing of 36.5 μm. Here, up to three layers were printed subsequently one after the other to sufficiently cover the conductive feedlines of the MEA. Printing a single layer for a MEA of 25.4 × 25.4 mm² lasts approx. 30 min providing sufficient drying time in between successive layers. Above the end of the feedlines, an opening with an approximate diameter of 180 μm was left for the electroactive area. After printing, the insulating polyimide was cross-linked at 200 °C for 1 h. The second layout was based on a typical clean-room fabricated MEA with a higher electrode density (64 electrodes, 200 μm electrode spacing [6]) within an area of 10.6 × 10.6 mm². Due to the increased resolution of the layout, devices were printed on a PQA1M substrate. The conductive lines were deposited with one layer of gold and a drop spacing of 20 μm. The gold layer was heated up to 125 °C and sintered for 60 min at this temperature. Prior to depositing the insulating layer, the sample was activated using oxygen plasma. The operational parameters were a pressure of 0.8 mbar and a power of 120 W for 30 s (Zepto, Diener Electronics). Three layers of PI ink were printed at a drop spacing of 25–30 μm until a continuous insulating film was obtained. Table S1 in the supplementary information provides detailed information on the fabrication process and the printing parameters for both layouts.

2.4. Electrical and electrochemical characterization

Four-point resistance measurements were performed on gold structures printed on a PQA1M substrate sintered at different temperatures ranging from 107 °C to 201 °C. In an additional experiment, the resistance of 21.7 mm long tracks printed on Kapton® was measured. The lines were printed with one, two, and three layers using a drop spacing of 36.5 μm. Two different line widths (1 and 3 pixels) were investigated. To calculate the specific resistivity, the thickness of the sintered lines was obtained by profilometric measurements.

In order to determine basic electrode characteristics, printed gold structures were electrochemically analyzed in terms of their specific capacitance by means of impedance spectroscopy using a multiple channel potentiostat (VSP-300, Bio-Logic Science Instruments, France) controlled by the software ‘EC-Lab v10.19’. To determine the specific capacitance, a 10 × 10 mm² square of gold was printed on the PI substrate. A glass ring with an inner diameter of 7 mm was glued onto the gold surface with polydimethylsiloxane (Sylgard 184, Dow Corning, Midland, USA). Phosphate buffered saline (PBS) was pipetted into the glass ring covering an area of 0.385 cm². To determine the specific capacitance, the impedance was measured in a three-electrode configuration. The working electrode was connected to the printed gold and the impedance was measured against an Ag/AgCl quasi-reference electrode dipped in the PBS solution. The impedance was recorded from 100 kHz to 10 Hz with a sinusoidal excitation potential of 10 mV. The specific capacitance was then extracted by fitting the impedance data against a Randles circuit without a Warburg impedance [50].

For the characterization of the MEAs, impedance measurements were performed as stated above, but with a combined reference and counter-electrode. To this end, the MEAs were mounted onto a substrate carrier connected to a socket via the contact pads, which allowed addressing each of the electrodes individually. To analyze the electrochemical performance, the capacitance of each electrode was determined. If the capacitance of the electrodes of the second layout
was in between 20 and 400 pF, the electrodes were considered suitable for further measurements.

2.5. Recording of action potentials of cardiomyocytes

Before plating cells on the MEAs (layout 1), the MEAs were rinsed with deionized water and sterilized with UV light for 30 min under a sterile bench. A protein coating for the adhesion of HL-1 cells was performed by incubating the sensor array using 50 μl of a solution of 0.2% (v/v) gelatin together with 5 μg ml⁻¹ fibronectin in bi-distilled water for 1 h. Afterwards, the protein solution was removed and the MEA was rinsed with PBS. Cardiomyocyte-like cells (HL-1) [51] were cultured on the printed MEAs following the protocol of [16] until they reached a confluent layer after several days, in this case after 3–4 d in vitro (DIV) [11]. Electrical recordings were performed using an in-house built recording and amplifying system (‘BioMAS’) customized for recording and stimulation of cells via 64 electrodes. The encapsulated MEA was connected to the head stage socket of the amplifier system, which is able to record 64 electrodes in parallel with a sampling rate of 10 kHz. The measurement system was grounded and shielded by a Faraday cage. The recording electrode voltages were measured against a Ag/AgCl quasi-reference electrode and amplified by a factor of ten in the headstage and further amplified by a factor of 100 in the main amp. The measurements were performed AC coupled and had an effective bandwidth of 1 Hz–3 kHz. The electrical measurements were performed for two MEAs at DIV 3 and 4. First, spontaneous action potentials were measured. To test whether an externally induced stimulus can be recorded, the cells were chemically stimulated. We subsequently applied 20 and 40 μl of 1 mM noradrenaline solution to the cell culture medium (1 ml). The measurements were performed for a time period of approximately 1 min. After the application, the beating of the cells was stopped by adding 200 μl of 1 M of sodium dodecyl sulphate. The recordings were performed with an AC coupling at a cut-off frequency 1 Hz. The signal was imported into Matlab and a low order polynomial fit was subtracted from the data in order to remove baseline fluctuations in the lower frequency regime above the cut-off frequency. Data analysis of the signal was performed with a custom Matlab code to determine firing rate and peak-to-peak (P2P) amplitudes of the recorded spikes. The signal-to-noise ratio (SNR) was obtained by relating the average P2P amplitude of the action potential traces to the root-mean-square (RMS) noise of the traces.

3. Results and discussion

3.1. Characterization of inkjet-printed patterns

Prior to printing, the drop formation of both inks, the gold ink and the polymer ink was characterized. In figure 2, stroboscopic image series of an ejected drop of the gold nanoparticle-based (a) and polyimide (PI)-based (b) ink are shown. For both inks, stable drops could be generated.

Whereas the ejection of the gold ink exhibits small single droplets, the ejection of the PI ink results in small droplets that are followed by long ligaments, which increase the overall drop volume. The resolution of printed structures mainly depends on the amount of deposited material as well as on the substrate-ink interactions. In particular, the choice of substrate can significantly alter the resolution of printed structures. Test patterns were printed on the two substrates PI (Kapton®) and PQA1M, which differ in the surface texture and surface energy (37.5 mN m⁻¹ and 31.5 mN m⁻¹, respectively). Figure 3 shows images of the wetting behavior and structures printed on...
Kapton® (left column) and PQA1M (right column). As can be seen from figure 3(a), the contact angle of the gold ink on Kapton® is significantly lower than the contact angle on PQA1M (figure 3(b)) and no exact values could be measured due to complete wetting of the ink on the substrate. Using a 10 pl cartridge, the width of a printed single-droplet line on Kapton® was about 90 μm, which was significantly higher than the width of a line printed on PQA1M (~40 μm, compare figures 3(c) and (d)). Using a 1 pl cartridge the width of a single droplet on PQA1M could be further reduced to approximately 27 μm. Whereas the larger feature size of gold structures on Kapton® enables printing MEAs with the low-resolution design (layout 1), the small structures on PQA1M facilitate printing of small-scaled MEAs with a higher electrode density (layout 2). This significant reduction of the pattern’s dimensions on PQA1M in contrast to PI is assigned to the lower surface energy as well as to the more planar surface and a better pinning of the ink on the PQA1M substrate. Since only small amounts of ink were prepared for each printing session, batch-to-batch variations may induce slight differences in the printed structures.

After printing conductive tracks, the feedlines of the MEA have to be insulated to prevent leakage currents during cell measurements. Figures 3(e) and (f) show images of test squares printed on Kapton® (1 layer) and PQA1M (3 layers), respectively. In both cases the squares exhibited a smooth outline. However, a small elevation could be seen at the rim of the squares, which increased for a decreased drop spacing and for a higher number of printed layers. We attribute this to the so-called coffee-ring effect. This effect originates from a flow driven by surface tension from the center to the edge upon evaporation of the ink solvent. The nature of the coffee-ring effect has been extensively described elsewhere [52, 53]. The coffee-ring effect is not assumed to significantly affect the MEA performance as long as the central parts of the insulation layer are fully covered with dielectric material.

3.2. Electrical and electrochemical characterization of the inks
The printed gold was electrically and electrochemically characterized. Here, the benefits of using gold as an electrode material become obvious, as gold is chemically inert and provides good electrochemical and
conductive properties. These properties are essential for electrochemical and especially for bioelectronic investigations such as the recording of cardiomyocyte or neuronal action potentials. Moreover, gold can be used in the form of nanoparticles as an ink. This is beneficial since the sintering temperature of conductive particles reduces drastically with decreasing particle size [54]. This allows to print and sinter the gold film on thin flexible polymer substrates that usually exhibit a low melting temperature and a low heat shrinkage. The PQA1M substrate used in our studies has a glass transition temperature of as low as 121 °C and a melting point of as low as 269 °C. Despite this low thermal stability, we were able to successfully print and sinter gold structures on this substrate as described below.

Hence, after characterizing the basic printing behavior as described above, the electrical behavior of the custom low temperature-sintering gold nanoparticle ink was evaluated in terms of the resistivity. In figure 4(a), the sheet resistance of printed gold lines on a PQA1M substrate is plotted as a function of the sintering temperature ranging from 107 °C to 201 °C. As can be seen, the samples already exhibited acceptable conducting properties at low sintering temperatures. Increasing the sintering temperature reduced the resistance significantly from 138 ± 17 Ω □⁻¹ at 107 °C down to approx. 75 ± 18 Ω □⁻¹ at 201 °C. This demonstrates the polymer-compatible low sintering temperature of the gold ink.

However, due to the low heat stability, large sheets (approx. 10 × 15 cm²) of the PQA1M substrate started deforming and became rigid, when sintered at a temperature of 200 °C. Although the small area on the spreadsheet occupied by the MEA was negligibly affected by the heat instability issues, further gold lines for the resistance experiments were printed on Kapton® substrate since it exhibits a better heat stability.

In figure 4(b) the sheet resistance of electrode feedlines (one and three pixels in width) depending on the number of printed layers is shown. As expected, the sheet resistance can be significantly reduced by adding successively printed gold layers. This is in accordance with the assumption that printing several layers leads to more gold nanoparticles being deposited per area, which in turn results in a denser and thicker gold film. This can be validated by the corresponding SEM images in figure 5. Here, the porous structure (the dark area contributes to the pores in the upper layer of the conductive material) of the sintered gold can be seen for one (a) and three (b) printed layers. Analysis of the two images revealed a coverage of
88% for a single layer and 95% for three layers. The gold porosity is mainly affected by the amount of gold deposited on the substrate. Whereas different surface energies of the substrates might influence the height and the diameter of a single drop, the amount of gold can be appropriately adjusted by the drop spacing. In case of the printed lines (length of ~22 mm), the sheet resistance is in the range of 0.69 Ω Ω−1–2.63 Ω Ω−1. The thickness of the printed lines for one, two and three printed gold layers was (112 ± 10) nm, (313 ± 32) nm and (777 ± 25) nm, respectively. The thickness was used to calculate the specific resistivity. In total, a resistivity of (18–76) × 10−8 Ω m was obtained, which is in accordance with values obtained by other studies [55–58].

During the cell recording, the gold microelectrode is exposed to an electrolytic environment. The impedance formed by the electrode/electrolyte interface is a dominating factor in the quality of electrical or electrochemical measurements. Hence, the specific capacitance of the printed gold was measured by impedance spectroscopy. Here, the specific capacitance was (45 ± 21) × 10−2 F m−2. This is comparable to values obtained for bulk gold, which are typically in the range of (10–100) × 10−2 F m−2 [59]. Thus, it is assumed that the printed gold shows appropriate properties for electrochemical measurements. The deviation to bulk gold might be explained by the porous structure of the sintered gold (compare figure 5) and the associated larger area of the effective gold surface.

3.3. Development and characterization of the inkjet-printed MEA

We subsequently printed the conductive gold ink and insulating PI ink to fabricate two types of MEAs. The lower-resolution layout was printed on a Kapton® substrate for the demonstration of electrophysiological recordings. The second layout printed on PQA1M exhibits a higher electrode density with a better resolution of printed structures. This layout was used to demonstrate that devices comparable to conventional clean-room fabricated MEAs can be produced using solely inkjet printing technology. The overall success rate of printing microelectrodes obtained for three chips for layout 1 and layout 2 was 94% (n = 84 electrodes) and 72% (n = 192), respectively. In figures 6(a) and (b), the first layout with 28 feedlines was printed on the Kapton® foil. The final MEA mounted to a substrate carrier can be seen in figure 6(a). Figure 6(b) shows a microscopic image of the central electrode area.

Optical measurements revealed an electrode area of (8.4 ± 2.2) × 10−9 m2 (n = 22). Assuming a circular opening, this corresponds to an electrode diameter of 103 ± 27 μm. The electrode pitch is approximately 400 μm, which is a factor of 2–4 larger than the pitch typically seen in conventional MEAs for in vitro cell recordings [60]. Nevertheless, both, the pitch and the size of the electrodes could be reduced by optimizing the printing parameters as described above. Figure 6(c) shows the second layout with a printed array of 64 microelectrodes with a pitch of 200 μm and an electrode diameter of (31 ± 7) μm (n = 102). To fabricate these MEAs, PQA1M was used as a substrate due to its low surface energy and printing was performed with a 1 pl cartridge to obtain smaller drop diameters. However, the electrode openings exhibited deviations in the dimensions and shape, which is attributed to different surface chemistry of the printed gold and the substrate and an associated local uncontrollable flow of ink. In figure 6(d) an example of an individual microelectrode is shown. After printing, the impedances of individual micro-electrodes were investigated. Figure 7(a) shows the fitted impedance spectra of 22 microelectrodes of a single chip (MEA layout 1) that have been used for cell measurements. For the remaining six electrodes no connection was measured, which might have been caused by broken contacts at the interface of the bond pad and substrate carrier. The impedance spectra of the microelectrodes exhibited a plateau at high frequencies, which was caused by the electrolyte resistance. At low frequencies the capacitive impedance of...
the microelectrodes dominates. Extracting the double layer capacitance using a simple Randles circuit from the fitted data resulted in a value of $(8.1 \pm 4.3) \text{nF}$ ($n = 22$). The corresponding specific capacitance of the gold electrodes was $(97 \pm 57) \times 10^{-2} \text{ F m}^{-2}$, which is near the upper limit of the expected range for macroscopic printed gold films rendering them suitable to measure low potentials during cell investigations [11, 59, 61]. The fitted charge transfer resistance and electrolyte resistance for all fits were in the range of $(1.18 \pm 0.72) \times 10^5 \Omega$ and $(6.4 \pm 2.4) \text{k} \Omega$, respectively. Figure 7(b) shows the impedance of the high-resolution electrodes from layout 2. As expected, due to the smaller electrode size, the impedance is significantly higher compared to the larger electrodes of layout 1. We obtained a capacitance of $(308 \pm 230) \text{pF}$ ($n = 115$), corresponding to a specific capacitance of $(24 \pm 21) \times 10^{-2} \text{ F m}^{-2}$. The variation in the impedance spectra may be partially caused by a variation in the active electrode area, which scales inversely with the double layer capacitance at the electrode/electrolyte interface. While we observe a rather large variation between individual electrodes, the average impedance comparing different MEAs is rather constant (see figure S1 in the supplementary information). The device properties of the two layouts are summarized in the table S1 (see supplementary information).

3.4. Extracellular voltage recordings

For the extracellular detection of action potentials, a confluent monolayer of cardiomyocyte-like HL-1 cells was cultured on the printed MEAs (layout 1). The cells showed spontaneous beating behavior indicating cell viability. Action potentials were recorded after 3–4 DIV and exemplary traces are shown in figure 8(a). The action potentials occurred periodically at a frequency of 0.5 Hz, which is in the typical physiological range of 0.1–2 Hz. The P2P amplitude of the signals recorded on different electrodes varied strongly between 27 and 49 μV resulting in an average amplitude of $\text{P2P}_{\text{mean}} = (36 \pm 7) \mu \text{V}$ ($n = 11$). To evaluate the noise of the recorded signal, the RMS value was determined for the recording microelectrodes. The averaged RMS value was $\text{RMS} = (2.1 \pm 0.4) \mu \text{V}$, indicating a low noise level. The average signal-to-noise value is $\text{SNR} = 17$. The signal amplitudes are somewhat lower compared to recordings obtained with clean-room fabricated gold MEAs, which also exhibit significant variation but typically lie in the range of several 100 μV or mV [18].

The variations in the signals’ amplitudes can have several reasons. Heterogeneity of the cell layer and a possible change in the cell-electrode coupling, depending on the cell-substrate interactions, will have a large influence on the signal amplitude. Furthermore, the particular cell passage as well as partial coverage of the sensors could lead to a variation in the recorded signal quality. Additionally, the variations of the electrode area and corresponding changes in the impedance will influence the noise level of the recordings.

In addition to the recording of spontaneous activity, the samples were stimulated chemically by adding the neurotransmitter noradrenaline. Adding noradrenaline increases the beating frequency of the cells. In our experiment, we were able to observe this effect as depicted in figure 8(b). The plots show recordings after addition of 0, 20 and 40 μL of noradrenaline (top to bottom). As can be seen, the spike rate of action potentials increases as a response to the added neurotransmitter. In this particular recording, the spontaneous frequency of 0.33 Hz changed to 0.38 Hz and 0.58 Hz after adding 20 and 40 μL of noradrenaline solution, respectively. In total, this demonstrates that the all-printed MEAs can be used for bioelectronic investigations, e.g., as disposable devices for testing drug effects.

In the future, we envision that further refinements of the printing process may enhance the resolution and density of active sensor array devices. Furthermore, it might be possible to also apply printed microelectrodes for stimulation of cells. To this end, investigations concerning the stability of the printed
electrode layer during prolonged stimulation should be investigated.

4. Conclusion

The aim of this work was to fabricate a disposable gold MEA for extracellular recordings from cells using solely inkjet printing technology. The printed MEAs were fabricated in two steps. First, a custom gold ink was used to print conductive tracks on flexible polymer-based substrates. In a post-processing step, the printed gold was thermally sintered to achieve conducting feedlines. In a second step, the feedlines were passivated using a polyimide-based ink. Two MEA layouts were designed and printed. The first layout was printed on a temperature-stable polyimide foil and contained 28 electrodes for cell recordings. The second layout was printed on a polyethylene-naphthalate substrate and contained 64 microelectrodes. The microelectrodes had a diameter of about 31 μm and were separated by a pitch of 200 μm.

Impedance measurements were conducted to characterize the interfacial capacitance of the microelectrodes. Extracellular measurements from HL-1 cells grown on the MEAs demonstrated the feasibility of using printed MEAs for recording action potentials. In total, P2P amplitudes of about 36 μV at a SNR of ∼17 were observed. The cellular origin of the recorded signals was demonstrated by chemically stimulating the cells with noradrenaline, which lead to an increased frequency in the recorded signals. Overall, this work demonstrates that inkjet printing can be applied to easily fabricate disposable sensing devices for cell-based bioelectronic applications. Although the inkjet technology inherently limits the resolution of the structures, we believe that this approach can be used in the future to provide low-cost disposable alternatives to microfabricated electrode array devices.

Acknowledgments

We gratefully acknowledge funding from the Helmholtz Young Investigators Program (VH-NG-515), Helmholtz Validation Fund (HVF-0034 ‘LiveCheck’) and the Bernstein Center of Computational Neuroscience (grant number 01GQ1004A, BMBF). Furthermore, we would like to thank Elke Brauweiler-Reuters (FZ Jülich) for performing the SEM imaging, Norbert Wolters (FZ Jülich) for help in designing and building the amplifier system, and Dieter Lomparski (FZ Jülich) for programming the LabView control and visualization software for the amplifier.

ORCID iDs

Andreas Offenhäusser @ https://orcid.org/0000-0001-6143-2702

References

[34] Roth E A, Xu T, Das M, Gregory C, Hickman J and Boland T 2004 Inkjet printing for high-throughput cell patterning Biomaterials 25 3707–15

[39] Li J, Rossignol F and Macdonald J 2015 Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing Lab Chip 15 2538–58

[53] Soltman D and Subramanian V 2008 Inkjet-printed line morphologies and temperature control of the coffee ring effect Langmuir 24 2224–31