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Abstract
The half-metallic characteristic of Co2FeAlHuesler alloy films in
Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure was controlled by different substrate tempera-
tures during deposition. The evolution ofmicrostructure shows theB2 ordering degree of Co2FeAl
thinfilm increase with the substrate temperature decreasing from550 °C to 480 °Cduring deposition,
which can be verified by anisotropymagnetoresistancemeasurement.Moreover, the resultmeasured
by rotating-angle ferromagnetic resonance demonstratesB2 ordering degree of Co2FeAl thinfilm
controlled the change of symmetry ofmagnetic anisotropy. In addition, the loop-like curve of
magnetic resonance field/linewidth versus electric field exhibits the non-volatile behavior, which can
be attributed to the 109° ferroelectric domain switching of PMN-PT substrate. This result can provide
opportunities formagnetization control inmultiferroic devices.

Introduction

Half-metallicmaterials, have triggered great attention because of the perfect spin polarization of conduction
electrons at the Fermi level, which is used to enhance the spin-dependent transport efficiency of high
performance spintronic device [1–6]. Among half-metallicmaterials, Co-basedHeusler alloys, such as Co2FeAl,
generally with a lowmagnetic damping constant and a highCurrie temperature became a hot spot in thisfield.
Thematerial Co2FeAl (CFA) has the composition X2YZ (where X andY are the different transitionmetal
elements, and Z is a group III, IV, or V element) [7–9]. According to the variety of derived structure types
originating from atomic order degree in the occupation of the available sites, three different phases of CFA thin
film obtained. L21 phase with totally order degree is difficult to achieve.B2 phase is with X atoms occupying their
assigned sites, while Y andZ atoms randomly sharing the other ones, andA2 phasewith a completely random
occupation for anyX, Y, or Z atom.On the other hand, a complete disorder among occupation for X, Y, or Z
atom leads to a further reduction of the crystal symmetry to theA2 phase [10–12]. For samplemeasurement,
except for theCFA’s fundamental peakmeasured by x-ray diffraction (XRD), the negative anisotropy
magnetoresistance (AMR) ratio can also be afingerprint for half-metallicmaterial [13–15]. For sample
preparation, these factors, which can influence atomic ordering degree, half-metallic andmagnetic character
related to the d orbital electrons of CFA, include sample preparationmethods, the annealing temperature after
deposition, different substrates, and especially different substrate temperatures during deposition. Considering
the continuing development ofmany existing and emerging devices such asmagnetoresistive random access
memory, themanipulation ofmagnetization using electric fields in ferromagnetic/ferroelectric (FM/FE)
heterostructures has sparked intensive research because of the accuracy and accessibility of themethod, which
represents a pathway towards lower dynamic energy dissipation [16–20]. One particular ferroelectric crystal
substarte Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) is often used in FM/FE heterostructure tomanipulate the
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magnetic anisotropy of the adjacentmagnetic layer, which results in amagnetoelectric (ME) effect [21–24]. In
our previous reports, we have investigated piezostrain induced by electric field controllingmagnetic anisotropy
and the non-volatile electric field-based control ofmagnetic anisotropy inCFA/PMN-PTheterostructures only
at room temperature [25, 26]. Therefore, in this work, we investigate in details the characteristic of CFAHuesler
alloyfilms inCFA/PMN-PTheterostructure by changing substrate temperatures during deposition. TheB2
ordering degree of CFA thin film changewith the substrate temperature (Ts) decreasing from550 °C to 480 °C
during deposition, which can be verified byXRD and dynamicmagneticmeasurements.Moreover, the non-
volatile behavior of resonance-magnetic-field/linewidth versus electric field (E) can be obtained inCFA/
PMNPTheterostructure at 480 °C,which can be attributed to the 109° ferroelectric domain switching of PMN-
PT substrate [27–29].

Experimental procedure

TheCFA thin filmwas deposited on the (001)-oriented PMN-PT substrate by direct current (DC)magnetron
sputtering at differentTs 480 °C, 500 °C, 520 °C, and 550 °C, respectively. The sputtering condition includes Ar
pressure of 0.1 Pa andflow rate at 10 SCCM (SCCMdenotes cubic centimeter perminute at STP), with a base
pressure of 2×10−5 Pa. The thickness of CFA thinfilmswas all 150 nm. The Pt layers were sputtered as
electrodes. The thickness of top and bottomPt layer were 10 nmand 50 nm, respectively. Cuwires were
connected on the electrodes by the adhesive tape. Keithley 2400 sourcemeasurement unit was used to test the
resistance of the sample using the four-probe technique. XRDmeasurement was performed onX’Pert x-ray
powder diffractometer withCuKα radiation (1.540 56 Å). TheDCpower supply (Keithley 2410)was used to
provide biased voltage. Ferromagnetic resonance (FMR)measurements were performed on the JEOL, JES-FA
300 (X-band at 8.969 GHz) spectrometer.Moreover, considering the possible existence of ferroelastic domain
switching, the piezoresponse forcemicroscopy (PFM) images of the PMN-PT substrate weremeasured to
understand the evolution of ferroelectric domain switchingmore clearly. All the results weremeasured at room
temperature.

Results and discussion

TheXRDpatterns of the CFA films at differentTs during depositionwere shown infigure 1(a). At room
temperature, there was no peak corresponding toCFAphase detected in XRD scans.When increasing
temperature to 480 °C, except for the peaks of PMN-PT substrate, (004) fundamental peakwas observed at
∼65.09° in this film, which is originated from the basic cubic crystal structure, corresponding to theA2 phase of
CFA. TheA2 phasewas totally disorderedwith respect to Fe, Al, andCo. The presence of (002)peak at∼31.19°
indicated that the sample containsB2 phase. TheB2 phase is characterized by total disorder between Fe andAl
atomswhile Co atoms occupy regular sites [30, 31]. The similar behavior can be obtained at 500 °C, 520 °C, and
550 °C, respectively, which suggest the appearance ofB2 phase. However, with the accuracy of the
measurements, the L21-type peak at approximate 27 degree cannot be observed. The presence of the (002) and
(004) peak for theCFA thinfilm grown on the (001)-oriented PMN-PT indicated that the thin films are textured.
The integrated intensity ratio of (002) to (004) peak (I(002)/I(004)) as shown in the left offigure 1(b) increasedwith
decreasingTs from550 °C to 480 °C,which demonstrated the improvement of theB2 phase ordering degree.
Moreover, to quantify the chemical ordering ofB2 phase, the parameter (SB2) is given as following [32]:
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where I(002)/I(004) is the ratio of the integrated intensity of the (002)peak to that of the (004) peak as determined
by experiments, and ( )
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full order is the ideal ratio of the two peaks. The dependence of the SB2

parameter onTs was shown in the right offigure 2(b). The SB2 parameter increased from32.6% to 43.3%withTs
decreasing from550 °C to 480 °C.These results indicated highest orderedCFAfilms in this work can be
achieved at 480 °C,whichmight be interpreted qualitatively as following: when the substrate temperature excess
critical point, the continuing increase of ordering phase lead to the higher atom energy, which can be resulted to
the increase of the atomdisorder degree.

Except for the resultmeasured byXRD, the anisotropymagnetoresistance (AMR) can also be a fingerprint
for half-metallic/non-half-metallicmaterial [15, 33]. AMRat differentTs weremeasured by electric transport
measurement system. The experiment setupwas shown infigure 2(a). The current 0.8 mA andmagnetic field
1000 Oewere applied in themeasurement process. The [(ρ(θ)−ρ⊥)/ρ⊥]×100%of theCFA thinfilm as a
function of θ (the direction of in-plane appliedmagnetic fieldHwith respect to the [100] direction) can be
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Figure 1. (a)XRDpatterns of CFA/PMN-PTheterostructure at differentTs. (b)The dependence ofTs on I(200)/I(400) and SB2.

Figure 2. (a) Schematic diagramofAMRmeasurement. (b) [(ρ(θ)−ρ⊥)/ρ⊥]×100%as a function of the angle between the
magnetic field and applied current direction at 480 °C, 520 °C, and 550 °C. (c)AMR ratio (defined as [(ρ//−ρ⊥)/ρ⊥]×100%)with
Ts changing from 480 °C to 550 °C.
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obtained. The curve of [(ρ(θ)−ρ⊥)/ρ⊥]×100%versus θ at differentTs were shown infigure 2(b), which
showed the clear twofold symmetry. Generally, the sign of the [(ρ(θ)−ρ⊥)/ρ⊥]×100% tend to be positive,
which can be attributed to the dominant s-d scattering process is fromup-spin s-state to down-spin d-states
(s↑→d↓) or s↓→d↑. In contrast, as shown infigure 2(b), the [(ρ(θ)−ρ⊥)/ρ⊥]×100% is negative due to the
dominant scattering process s↑→d↑ or s↓→d↓, whichwas in agreement with that in Fe4N and
Co2FexMn1−xSi thin film. Therefore, the negative value of [(ρ(θ)−ρ⊥)/ρ⊥]×100%was obtained, which can
be proved the half-metallic of CFA thinfilm.Moreover, as shown infigure 2(c), with decreasingTs, the increase
of AMR ratio (defined as [(ρ//−ρ⊥)/ρ⊥]×100%) indicated the increase ofB2 phase ordering degree, which
was in consistent with the resultmeasured byXRD.

In order to investigate the change of dynamicmagnetic property induced byB2 phase ordering degree, the
rotating-angle ferromagnetic resonance (FMR) spectra weremeasured. The schematic of FMR spectroscopy
measurement was shown infigure 3(a). Themeasurement sample had a 1 mm×1 mmsquare shape. The
integral curves of FMR spectra under θ=0° atTs 480 °C, 520 °C, and 550 °C, respectively, were shown in
figure 3(b). The linewidth had an obvious increase with increasingTs. The two-dimensional red-yellow-blue
scalemappings of the integral intensity as a function of θ andH at 480 °C, 520 °C, and 550 °Cwere shown in
figures 3(c)–(e), respectively. In general, themagnetization is probed using a special phase correlation under the
microwave excitation, and the FMR spectrumdoes not correspond to the imaginary part of the susceptibility
alone, but in fact represents amixture of the imaginary and real parts [34]. Therefore, the actual function of the
absorption curve is given by an asymmetric Lorentzian function:

Figure 3. (a) Schematic diagramof FMRmeasurement. (b) Ferromagnetic resonance absorption spectra of Co2FeAl/PMN-PT
prepared at 480 °C, 520 °Cand 550 °C.The two-dimensional red-yellow-blue scalemappings of the integral intensity as a function of
θ andH at (c) 480 °C, (d) 520 °C, and (e) 550 °C, respectively.
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whereA is the integral coefficient,ΔH is the half-width at half-maximumof the linewidth,Hr is the resonance
field,ψ is the phase thatmixes the real and imaginary parts of the dynamic susceptibility, andH is the external
magnetic field. These integration curves of the FMR spectra werefitted using equation (2), and related
parameters were obtained. At 480 °C, 520 °C, and 550 °C, the experimental dots ofHr−jH can be obtained as
shown infigure 4(a), which exhibited a superposition of two-fold and four-fold symmetric. The schematic of the
established coordinate system inCFA/PMN-PT is shown in our previous report [35].jH andjMare the angles
of the in-plane appliedfield and the in-planemagnetizationwith respect to the start direction, respectively. θM is
the angle of the out-of-planemagnetizationwith respect to the [001] direction. In this system, there existmany
compete anisotropy energy including themagnetocrystalline anisotropy, in-plane uniaxialmagnetic anisotropy
energy, andmagnetoelastic energy. Thereinto, themagnetoelastic energy and in-plane uniaxialmagnetic
anisotropy energy, which are bothwith two-fold symmetry, can be considered as the effectivemagnetic
anisotropy energy. Therefore, the free energy on ferromagnetic resonance field [36] according to the Stoner-
Wohlfarthmodel can be expressed as:
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Here, thefirst term is the externalmagnetic field energy, the second term is the demagnetizing energy, the third
term is themagnetocrystalline anisotropy energy, the remaining one is the effectivemagnetic anisotropy energy.
Furthermore,Keff andK4// in equation (3) are the effectivemagnetic anisotropy and cubicmagnetocrystalline
anisotropy, respectively;Ms is the saturatedmagnetization. In addition, the resonantmagnetic field of the
uniformprecessionmode at equilibrium is obtained from the total free energy using the following equation:
(2πf/γ)2= -q q j j q j( )/F F F M2

s
2

M M M M M M
sin2θM [37].Where f is themicrowave frequency, and γ is the

gyromagnetic factor.When the high saturatedmagnetization under a high applied in-planemagnetic field is
considered, themagneticmoment of CFA lies in the plane of the film and a coherent rotation of themagnetic
moment exists, such that θM=π/2 andjM=jH. Therefore, we obtain:
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the angles a and b represent the initial positions of the axes of the cubicmagnetocrystalline anisotropy and
effectivemagnetic anisotropy, respectively, with respect to the starting point used in ourmeasurements. The
effective anisotropy field is given byHeff=2Keff/Ms, and the in-planemagnetocrystalline anisotropy field is
given byH4//=2K4///Ms. To obtain the change in the value ofH4// andHeff with change in the electric fields,
thefitting curves of theHr–jH at 480 °C, 520 °C, and 550 °Cby equation (4) are shown infigure 4(a).With
increasingTs,H4// is 19.5, 19.0, and 14.0 mT, respectively.Meanwhile,Heff is 3.0, 3.7, and 11.7 mT, respectively.
The origin of the decrease ofH4// (related to themagnetocrystalline anisotropy energywith four-fold symmetry)
can be resulted from the deterioration ofB2 phase orderwith increasingTs, as confirmed by the increasing of the
Heff related to the in-plane uniaxialmagnetic anisotropy energy andmagnetoelastic energy bothwith two-fold
symmetry. The result can be in consistent with thatmeasured byXRD as shown infigure 1(b) andAMR
measurement as shown infigures 2(b) and (c).

Figure 4. (a)The experimental results (dots) andfitting results (lines) ofHr−jH at 480 °C, 520 °C, and 550 °C, respectively. (b)ΔH
as a function of θ at 480 °C, 520 °C, and 550 °C, respectively.
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From the above result, the samplewith highestB2 phase ordering degree was that at 480 °C.Whichwas
chosen to investigate theME coupling effect in theCo2FeAl/PMN-PTheterostructure. Themeasurement setup
was shown infigure 5(a). The FMR spectra of the sample under different applied electric fields (E) along [110]
directionwere obtained as shown infigure 5(b).Ewas applied from -Pr −10 kV cm−1- +Pr -−10 kV cm−1- -P .r
+Pr refers to the positive remanent polarization state when the electricfieldwas reduced from10 kV cm−1 to

0 kV cm−1. -Pr represents the negative remanent polarization state when the electric field is changed from
−10 kV cm−1 to 0 kV cm−1. The two-dimensional red-yellow-blue scalemappings of the integral intensity as a
function ofE andHwere shown infigure 5(c). These integration curves of the FMR spectra werefitted using
equation (2), and the related parameters were obtained.Hr had a slight increase when sweeping E from -Pr to
10 kV cm−1, and decreasing E from10 to−5 kV cm−1.Hr increases sharply and approximately linearly, while it
remained almost unchanged as Ewas swept from−5 to -−10 kV cm−1, and thenHr decreased sharply and
linearly withE changing from−10 kV cm−1 to -P .r The loop-like curve ofHr as a function ofEwere shown in
figure 5(d), which exhibited the non-volatile behavior. The similar phenomenon can be obtained in this curve of
ΔH dependence ofE as shown infigure 5(e).

Figure 5. (a) Schematic of theCFA/PMN-PTmultiferroic heterostructure under applied electric fields. (b)The ferromagnetic
absorption spectra under different electric fields along [110]direction. (c)The two-dimensional red-yellow-blue scalemappings of
the integral intensity as a function ofE andH along [110] direction. (d)The curve ofHr-E along [110] direction. (e)The curve ofΔH-E
along [110]direction.
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Themagnetoelectric coupling effects in FM/FE heterostructure included piezostrain effect and charge
effect. Generally, the charge effect will only occur in the thinner FM layer, which can be neglected in this sample
(the thickness of CFA∼150 nm). According to our previous reports, the piezostrain effectmediated-the
magnetic parameters dependence on the electric field exhibited a butterfly-like behavior. As shown in
figures 5(d) and (e), the loop-like behavior ofHr−E andΔH−E curve implies another type ofME coupling
mechanism taken into account in this sample. Zhang et al also have reported electricfield-mediated loop-like
magnetization inCo40Fe40B20/PMN-PTheterostructure, which can attributed to the combined action of 109°
ferroelastic domain switching [22]. In order to further verify the loop-likeME coupling behavior in this sample,
ferroelectric domains of PMN-PT substrate weremeasured by PFM.The out-of-plane and in-plane PFM images
of PMN-PT substrate at P+were shown infigure 6(a). P+ and P− are the polarizationwhen applying electric field
10 and−10 kV cm−1. P0 represents the unpoled state. As shown infigure 6(b), PMN-PT at P0 is in the
rhombohedral phase with eight spontaneous (r1±, r2±, r3±, and r4±) polarization along the 〈111〉 direction. At
P+ as shown in figure 6(a), the out-of-plane image becomeswhite, which indicated that all the out-of-plane
polarization directions are switched upward.Meanwhile, the in-plane image changes to brown, whichmeans
the two possible in-plane polarization directions [111]/[−1−11] or [−111]/[1−11]. As shown infigure 6(b),
when the polarity of electricfieldwas changed, the spontaneous polarization can be switched by 71°, 109° and
180°, respectively [25–27].When polarization variants changed fromP+/ +Pr to P−/ -Pr or P−/ -Pr →P+/ +Pr

(P+/ +Pr ↔P−/ -Pr ), corresponding to 71°/180° ferroelectric domain switching.While the 109° ferroelectric
domain switch corresponded to +Pr / -Pr ↔P−/P+. In this sample, therewere not only 71°/180° switching but
also 109°switching, which can lead to a loop–like behavior ofHr-E andΔH-E curve.

Conclusion

We report the half-metallic characteristic of Co2FeAlHuesler alloy films in
Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure by changing substrate temperature during deposition.
With substrate temperature decreasing from550 °C to 480 °C, the evolution ofmicrostructure shows theB2
phase ordering degree of Co2FeAl thinfilm increase, which can be verified bymeasurement of anisotropy
magnetoresistance and ferromagnetic resonance.Moreover, the loop-like curve of resonance-magnetic-field/
linewidth versus electricfield exhibits the non-volatile behavior, which can be attributed to the 109° ferroelectric
domain switching of PMN-PT substrate.
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