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Abstract
ZnO/Fe3O4/paraffin composites with goodmicrowave absorption performance in low frequency
bandwere prepared by physical blending technology. Themorphology, phase structures, frequency-
dependent electromagnetic andmicrowave absorbing properties of the composites were investigated.
The results showed that the addition content of ZnO can adjust themicrowave absorbing properties
i.e. the position, intensity, and absorption bandwidth of composites, and the synergetic consequence
of dielectric loss andmagnetic loss is themainmicrowave absorptionmechanismof the composites.
The bandwidths with RL below−10 dB over different frequency ranges were obtained in the low
frequency range of 0.5∼3 GHz at a thickness of 5mm, e.g. 0.93 GHz from1.59 to 2.52 GHz and
0.85 GHz from1.26 to 2.11 GHz corresponding to themass ratios of ZnO and Fe3O4 are 1:2 and 1:4,
respectively. Thus, such absorbers can be applied as effectivemicrowave absorbers in low frequency
range of 0.5∼3 GHz.

1. Introduction

With the rapid development ofmodern radar and electronic technology,microwave absorbingmaterials within
the range of gigahertz have attractedmore andmore attention inmilitary and civil fields [1–4]. Up till now, the
detection frequency ofmany spaceborne radars has been extended from1.8 GHz to 1.2 GHz, and theworking
frequency band of phased-array radars used today is in S-band (1.55∼3.4 GHz), which poses a huge challenge
to the research of stealthmaterials. For the absorbing frequency bands of existing absorbentmaterials aremainly
focus on 2∼18 GHz, the stealth effect of which ismuchworse to the low frequencymicrowave, especially in the
frequency range of 1∼2 GHz.Hence, the design and development of composites with strong absorption ability
in low frequency band is strongly demanded [5, 6].

To address these issues,multifariousmicrowave absorbingmaterials, which can attenuatemicrowave by
converting them into heat or dissipating themvia interference, have been extensively investigated, including
conductivemacromolecules [7, 8], magneticmetals [9, 10], dielectricmaterials [11, 12], and ferrites. Among all
kinds of absorbingmaterials,magnetic ferrites have beenwidely used to absorbmicrowave due to their high
magnetic loss [13]. HZhao et al [14] synthesizedNiFe2O4microwave absorbingmaterials by the polyacrylamide
gelmethod, the composite with 65 wt% ferrite content showed aminimum reflection loss of−13 dB at
11.5 GHzwith a−10 dB bandwidth over the extended frequency range of 10.3∼13 GHz for an absorber
thickness of 2 mm.CHou et al [15] preparedmulti-wall carbon nanotube/Fe3O4 hybrids by a chemical
synthesis-hydrothermal treatmentmethod, and themicrowave absorbing properties in the frequency range of
X-bandwere investigated as well. Theminimum reflection loss of−18.22 dB at 12.05 GHzwas achieved for the
magnetismof hybrids was enhanced by increasing the content of Fe3O4.DMin et al [16] prepared flake carbonyl
iron/Fe3O4 composites with enhancedmicrowave absorbing properties by a direct and flexible surface
oxidation technique, the results showed that lower permittivity aswell asmodest permeability was obtained by
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the FCI/Fe3O4 composites, such absorbers can act as effective andwide broadbandmicrowave absorbers in the
GHz range. P Sardarian et al [17] evaluated the synergistic effect ofmagnetic/dielectric composites system i.e.
Fe3O4/BaTiO3@MWCNTon themechanismof enhancedmicrowave absorbing properties, the composites
withmoremagnetic percentage showed better absorption in low frequency band. Due to the complex
permittivity and permeability of pure Fe3O4 particles are relatively higher, which results in a poor impedance
matching condition. This situation causes that the absorption bandwidth of pure Fe3O4 particles is too narrow,
thus themicrowave absorption efficiency of which is unsatisfactory over awide frequency range. Therefore,
combining Fe3O4 particles with dielectricmaterials has been promised to be an effective route to improve their
microwave absorbing properties.

In our present work, ZnOwas employed as a dielectric absorbent composite with Fe3O4 for its excellent
dielectric properties. TheZnO/Fe3O4/paraffin composites have been prepared via physical blending technology
on account of convenience and high efficiency of thismethod. In addition, themicrostructure, phase
identification andmicrowave absorption performances of the as prepared composites in the low frequency
range of 0.5∼3 GHzwere investigated in detail.

2. Experimental details

The Fe3O4 andZnOmicropowder used in this investigationwere purchased fromTianjin ZhiYuanChemical
Reagent Co. Ltd, China, andTianjin FuchenChemical Reagent Factory, China, respectively. The purity of the
twomicropowders are both analytical pure, and the former is a powder of amorphous structure. Paraffinwas
used asmatrix to adhere Fe3O4 andZnOparticles, and the physical blending technologywas employed to
prepare ZnO/Fe3O4/paraffin composites with different blending ratios ofmagnetic and dielectric powder at the
room temperature. Themass ratios of ZnO and Fe3O4micropowder are 4:1, 2:1, 1:2, and 1:4 respectively, while
themass ratio of ZnO/Fe3O4mixed powder and Paraffin isfixed on 1:1, for the physical performance of
composites becomes too poor to shaping as the powder is overloading.

The phase components and crystalmicrostructures were characterized by a Rigaku SmartLab x-ray
diffractometer withCu-Kα(λ=0.154 18 nm) radiation at a voltage of 35 kV and a current of 200 mA at a scan
step of 0.04°, and themicrostructuremorphology of the composites was investigated and analyzed by the
Scanning ElectronMicroscope (SEM,XL30, Philips).

The electromagnetic parameters of composites weremeasured at 0.5∼3 GHz by using a TIANDA
TD3618CVectorNetworkAnalyzer, and the sweep rate is set to1601 points. The producedmaterials were
pressed into a toroidal shapewith 7 mmouter diameter, 3.04 mm inner diameter and 2∼5 mm thicknesses.
Then, the coaxial transmission and reflectionmethodwas used formeasurement of the S-parameters, i.e. S11
and S21, the exact process of two-portsmeasurement was showed infigure1. Finally, the relative complex
permittivity and permeability of composites were calculated based on the theory ofNicolson andRoss [18].

Themicrowave reflection loss of ZnO/Fe3O4/paraffin composites was calculated according to the above
electromagnetic parameters and transmission-line theory [19], inwhich the input impedanceZin is given by:

m
e

p
m e=

⎛
⎝⎜

⎞
⎠⎟ ( )Z Z j

fd

c
tanh

2
1in

r

r
r r0

Where c is the velocity of light, f the frequency, d the thickness of thematerials, εr the complex permittivity, and
μr the complex permeability. Hence, the reflection loss of normal incidentmicrowave at the absorber surface
can be express as:
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Figure 1. Schematic of two-portsmeasurement process of the S-parameters.
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Here, theZ0 is the impedance of air. Furthermore, thewhole calculation procedure of electromagnetic
parameters and reflection loss was programmedwithMatlab language.

3. Results and discussion

3.1.Morphology andphase identification of ZnO/Fe3O4 composites
Themorphologies of ZnO/Fe3O4 composites and pure Fe3O4 are shown infigure 2, we can see that there are
only Fe3O4 particles dispersed independently in the field of viewwhen the Fe3O4micropowderwas not
compositedwith ZnOmicropowder.Whereas, it indicates that fewer Fe3O4 particles can be observed in the
figures 2(a) and (b), for themass percentage of ZnO is relatively high, a large number of ZnO fine particles
agglomerate with each other to form the porous structures. The Fe3O4 particles dot in the agglomerations of
ZnOwith the increasing content of Fe3O4, butwhichwere not envelopedwell by the ZnO agglomerations. This
kind of situation is improved as themass percentage of Fe3O4 be added up to 80%,most of Fe3O4 particles are
enveloped by the agglomerations of ZnOfine particles. It is well known thatmodest complex permittivity and its
suitable combinationwith the complex permeability is one of themost important factors for improving the
microwave absorption efficiency of absorbers. Fe3O4with ZnO enveloped canmodify its electromagnetic
parameters, which is helpful to improve themicrowave absorbing properties of composites.

The crystal structures of ZnO/Fe3O4mixed powders were analyzedwith the x-ray diffractometer. The
diffraction patterns of the as obtained samples were shown infigure 3. The characteristic diffraction peaks at
2θ=31.770°, 34.422°, 36.253°, 47.539°, 56.603°, 62.864°, and 67.963° are in good agreementwith the (100),
(002), (101), (102), (110), (103) and (112) planes of ZnO reported in the standard card (JCPDS cardNo. 36-
1451). The sharp strong peaks of ZnO indicate that the component of ZnO is polycrystalline, x-ray diffraction
peaks of the (100), (002), and (101)planes are characteristic of ZnOwith awurtzite structure [20], andwurtzite is
themost stable phase of ZnOunder standard conditions [21]. It can be also observed that the intensity of ZnO

Figure 2. SEM images of ZnO/Fe3O4 composites withmass ratio of (a) 4:1, (b) 2:1, (c) 1:2, (d) 1:4 and (e) pure Fe3O4.
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diffraction peaks decrease with the increase of Fe3O4 content.While, the diffraction peaks of Fe3O4were not
observed as its content increases, suggesting that the Fe3O4micropowder is amorphous structure indeed.

3.2. Electromagnetic properties of ZnO/Fe3O4/paraffin composites
the complex permittivity (ε= ε′-jε″) and permeability (μ=μ′-jμ″) ofmicrowave absorbingmaterials play an
important role in determining the reflection and transmission ofmicrowave, and the dielectric andmagnetic
loss are reflected by the complex permittivity and permeability inmicrowave absorption process aswell [22]. To
investigate themicrowave absorbing properties of ZnO/Fe3O4/paraffin composites, the electromagnetic
parameters weremeasured at the room temperature, and are shown infigure 4. As shown infigures 4(a) and (b),
it is clear that the values of real part of permittivity decrease, and the values of imaginary part increase firstly then
decrease with the increase of frequency, which exhibited obviously frequency dependence dielectric properties.
In general, the permittivity of composites inGHz frequency range strongly depends on the interfacial
polarization and inherent dipole polarization, the generation of displacement current significantly lags behind
the build-up potential as the frequency increased. Thus, both real and imaginary parts of permittivity show the
frequency dependence response [23]. Besides, we can find that the real part of permittivity changes little as the
content of Fe3O4 is lower, while it increases significantly when the Fe3O4 content is relatively higher, especially in
the low frequency domain, and the value is largest at amass ratio of 1:2. In addition, it is interesting to note that
when the content of Fe3O4 is lower, the imaginary part of permittivity in high frequency domain decreases with
the decrease of ZnO content.Moreover, it increases in thewholemeasurement range as the content of Fe3O4

increases continuously, while the imaginary part of permittivity decreases sharply in the high frequency domain
when the content of ZnO reduces further to a lower ratio. Hence, it can be concluded that the content of ZnO is
mainly influence the imaginary part of permittivity in the high frequency domain, but the content of Fe3O4

contributes to thewhole frequency range. According to the relationship between the imaginary part of
permittivity and the resistivity [24]:

e
rwe

 = ( )1
3

0

Where,ω is the angular frequency, ρ the resistivity and ε0 the dielectric constant of free space. The resistivity of
composite with themass ratio of 1:4 isminimumat 0.5 GHz andmaximumat 3 GHz among all the simples, and
the doping of ZnO can adjust the resistivity of composites under different frequency ranges.

As seen infigures 4(c) and (d), the real part of permeability changes little when the content of Fe3O4 is lower
aswell, while it increases observably as the content of Fe3O4 increased further. This is primarily because theMs of
composites increases signally with the high doping of Fe3O4, and the real part of permeability is in direct
proportion toMs, i.e.μ′∝ 4πMs [25]. Besides, the values of real part of permeability under differentmass ratios
are all increasing as the frequency increased. The change laws of imaginary part of permeability aremainly the
same as the former, and the difference is that there is a peak value of 4.15 at 1.8 GHzwhen themass content of
Fe3O4 is 80%,which showed that the excessive content of Fe3O4 is helpless to enhance the imaginary part of
permeability, but leads to a reduction of the imaginary part of permeability in the high frequency domain. It
thought that the resonance peak in imaginary part of permeability spectra is attributed to natural resonance and
domainwall resonance [14].

Furthermore, it does note that the complex permittivity and permeability of ZnO/Fe3O4/paraffin
composites decrease substantially compared to Fe3O4/paraffin composite without the addition of ZnO. The

Figure 3. x-ray diffraction patterns of ZnO/Fe3O4 absorbingmaterials.
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permittivity and permeability of composites can be adjusted by doping the ZnOmicropowder, for the complex
permittivity and permeability of ZnO is far lower than the Fe3O4. Thus, the complex permittivity and
permeability of composites would reducewhen the ZnOmicropowderwas added, whichmakes the value of
permittivity be closer to the value of permeability further, itmeans that theμ′/ε′ ratio of ZnO/Fe3O4/paraffin
composites is closer to the free space than the composites without ZnO added. Based on the impedance
matching theory, the incidentmicrowave can access into the composites to be depletedmuch easier, which is
very helpful tomodify the absorption properties, e.g. position of absorption peak and absorption bandwidth etc
of the composites.

The dielectric loss tangent andmagnetic loss tangent of the composites as a function of frequency can be
calculated based on themeasured complex permittivity and permeability, which are shown infigures 5(a) and
(b).We can see that the dielectric loss of ZnO/paraffin composite increases with the increase of frequency, which
presents the linear relationship approximately.When themass ratio of ZnO and Fe3O4 is 4:1, whichmeans that a
little quantity of Fe3O4 addedwould be helpful to enhance the dielectric loss.While, the dielectric loss decreases
in high frequency domain as the content of ZnOdecreased further for ZnOmainly influence the imaginary part
of permittivity in the high frequency domain.Nonetheless, the dielectric loss still increases when the content of
Fe3O4 is relatively higher, because the dipole polarization can enhance owing to the electron transfer process
between Fe2+ and Fe3+ ions in Fe3O4 particles [26]. Therefore, there is a peak value of 0.41 at 2.04 GHz in
dielectric loss tangent as the content of ZnO further reduces to a lower ratio. Additionally, themagnetic loss
value is almost increasing as the content of Fe3O4 increased for itsmagnetic lossmechanism, andwhich of ZnO/
paraffin composite is lower relatively, particularly in the low frequency domain.However, the excessive content
of Fe3O4 leads to a reduction ofmagnetic loss. Themagnetic loss is in direct proportion to the content of Fe3O4

in the low frequency domain, and it decreases with the increase of frequency, especially when the content of
Fe3O4 is high enough, this ismainly due to themagnetic loss properties of Fe3O4 clearly.

It is interesting to note that the dielectric loss andmagnetic loss can both reach the high valueswhen themass
ratio of ZnO and Fe3O4 in composites is in the suitable range, this is owing to that the interface polarization
increases for the charges transfer along the boundaries betweenZnO and Fe3O4 particles.Moreover, it is obvious

Figure 4. Frequency dependence of real part (a) and imaginary part (b) of complex permittivity, real part (c) and imaginary part (d) of
complex permeability of ZnO/Fe3O4/paraffin composites with the thickness of 5 mm.
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that themagnetic loss is a little larger than dielectric loss in themeasurement range, which indicates that the
dielectric loss andmagnetic loss are all contributes to themicrowave absorption in the composites.

3.3.Microwave absorbing properties of ZnO/Fe3O4/paraffin composites
In order to characterize themicrowave absorbing properties,microwave reflection losses (denotedRL
henceforth) of the ZnO/Fe3O4/paraffin composites were calculated at different absorber thicknesses according
to the electromagnetic parameters and transmission-line theory, which are shown infigure 6. It suggests that
there is none of absorption peak can be observed between 0.5 GHz and 3 GHz infigures 6(a) and (b), i.e. the
thicknesses of composites are 2 mmand 3mmrespectively. The reflectivity ofmicrowave decreases with the
increase of frequency, and the curve of RL is lowerwith the increase of Fe3O4 content aswell. Furthermore, it is
clear that the absorption bandwidthswith RL below−5 dB of composites at the thickness of 2 mmare 0 GHz,

Figure 5. Frequency dependence of dielectric loss tangent (a) andmagnetic loss tangent (b) of the ZnO/Fe3O4/paraffin composites
with the thickness of 5 mm.

Figure 6. Frequency dependence of RL curves at different thicknesses for (a) 2 mm, (b) 3 mm, (c) 4 mm, (d) 5 mm.
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0.26 GHz (2.74∼3 GHz), 0.71 GHz (2.29∼3 GHz) and 0.96 GHz (2.04∼3 GHz), corresponding to themass
ratios of 4:1, 2:1, 1:2 and 1:4 respectively. However, the RL bandwidths below−5 dB add up to 0.27 GHz
(2.73∼3 GHz), 0.71 GHz (2.29∼3 GHz), 1.24 GHz (1.76∼3 GHz) and 1.4 GHz (1.6∼3 GHz) respectively
when the thickness of composites is 3 mm, particularly the RL bandwidths below−10 dB start to appear, this is
because that the composites havemore effective electromagnetic absorption in the frequency range as the
thickness added.

As shown infigure 6(c), we can see that theminimumRLpeaks appeared in the low frequency range of
0.5∼3 GHzwhen the thickness of composites is 4 mm.Although, there exists a stronger absorption peak in the
Fe3O4/paraffin composite, the frequency position ofminimumRLpeak is too low. Aswe all know that the
minimumRL value and its peak frequency strongly depend on the absorber thickness and the RL peakmoves to
a lower frequencywith the increase of absorber thickness. This phenomenon can be explained by theλ/4
resonance effect and the resonance frequency f is expressed as:

m e
= ( )f

c

d4
4

r r

Here, c is the velocity of light in free space, d the thickness of absorber,μr the complex permeability, εr the
complex permittivity. Therefore, it is reasonable that theminimumRLpeak shifts to lower frequency due to the
increase of thickness [27]. Hence, it is evident that themicrowave absorbing properties of Fe3O4/paraffin
composite in awide frequency rangemight not be improved only by increasing the thickness, but the addition of
ZnOmicropowder can be helpful tomodify this behavior precisely. For instance, theminimum loss is
−11.82 dB at 2.09 GHzwith a−10 dB bandwidth over the extended frequency range of 1.69∼2.62 GHz for the
mass ratio of ZnO and Fe3O4 is 1:4, above 90%microwave energy can be absorbed as the RL is below−10 dB.

The electromagnetic absorption of ZnO/Fe3O4/paraffin composites ismore effective in the low frequency
range of 0.5∼3 GHzwhen the thickness adds to 5 mm, andwhich are shown infigure 6(d). TheminimumRL
peaks appeared in the all simples with differentmass ratios of ZnO and Fe3O4, and themicrowave absorbing
properties of composites with themass ratio of 1:2 and 1:4 are better. Besides, themicrowave reflection loss of
Fe3O4/paraffin andZnO/paraffinwere alsomeasured here, which further presents the impact of ZnOon the
microwave absorbing properties of ZnO/Fe3O4/paraffin composites clearly.We canfind that theminimumRL
of Fe3O4/paraffin andZnO/paraffin are –28.04 dB at 0.83 GHz and –7.60 dB at 1.90 GHz, respectively.
Unfortunately, themicrowave absorbing properties of Fe3O4/paraffin is unsatisfactory at a wide frequency
range of 1∼3 GHz, and themicrowave absorption intensity of ZnO/paraffin is also undesirability. Usually, the
minimumRLof composites used for absorbingmicrowave should below−10 dB, whichmeans that above 90%
microwave energy can be absorbed theoretically. The addition of ZnOmicropowder can adjust the position,
intensity, and absorption bandwidth of absorption peak. TheminimumRLwith themass ratio of 1:2 is
−12.42 dB at 2.05 GHzwith a−10 dB bandwidth over the extended frequency range of 0.93 GHz
(1.59∼2.52 GHz), meanwhile theminimumRL is−12.92 dB at 1.66 GHzwith a−10 dB bandwidth over the
extended frequency range of 0.85 GHz (1.26∼2.11 GHz)when themass ratio of composites is 1:4. As
mentioned above, themainmicrowave absorptionmechanismof ZnOmicropowder is dipole polarization and
which of Fe3O4micropowder are domainwall resonance and natural resonance. Consequently, themicrowave
absorptionmechanismof ZnO/Fe3O4/paraffin composites will have the complexmechanism of the two
components and the interface polarization between different particles, hence the finalmicrowave absorption
effect is a synergetic result of dielectric loss andmagnetic loss of the composites [28]. Besides, the surface
enveloped structure of Fe3O4 particles with thefineZnO agglomerations is also contributed for enhancing the
impedancematching [29]. Generally speaking, it suggests that we can get the superior absorbing property with
−10 dB bandwidth over different frequency ranges in the low frequency range of 0.5∼3 GHz by controlling the
mass ratio of ZnO and Fe3O4 in composites.Most importantly, the preparation process used here are simple,
without complex treatment and reaction. Thus, such absorbers can be applied as effectivemicrowave absorbers
in the low frequency range of 0.5∼3 GHz.

4. Conclusions

In this paper, ZnO/Fe3O4/paraffin composites were prepared by physical blending technology, and the
microwave absorbing properties of composites in the low frequency range of 0.5∼3 GHzwere investigated as
well. The content of ZnOmicropowder added can adjust themicrowave absorbing properties of composites, i.e.
the position, intensity, and absorption bandwidth. The surface enveloped structure and synergetic consequence
of dielectric loss andmagnetic loss are all contribute to themicrowave absorption of ZnO/Fe3O4/paraffin
composites. The bandwidths with RL below - 10 dB over different frequency ranges in the low frequency range
of 0.5∼3 GHzwere obtained, e.g. 0.93 GHz from1.59 to 2.52 GHz and 0.85 GHz from1.26 to 2.11 GHzwith
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themass ratios of ZnO and Fe3O4 are 1:2 and 1:4 respectively, at a thickness of 5 mm.This study presents an easy
and effective approach to preparemicrowave absorbingmaterials with good performance in low frequency
band, and indicates that ZnO/Fe3O4/paraffin composites are promising candidates asmicrowave absorbing
materials in the frequency range of 0.5∼3 GHz.
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