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1.  Introduction

Graphene nanoribbons are very interesting systems 
not only for their potential applications as connectors 
in graphene based nano devices, but also by their 
fundamental physical properties. Many of the exotic 
properties of graphene have origin on the bipartite 
character of the honeycomb lattice [1, 2]. Similarly, 
the magnetic and electric properties of graphene 
nanoribbons depend dramatically on the atomic 
termination of the edges [3–7]. The chiral nature 
of the low energy carriers in graphene makes zigzag 
nanoribbons to have highly degenerate zero energy 
states localized at the edges, and this unique property 
has stimulated the study of magnetic instabilities in 
these ribbons [8–16].

Zigzag graphene nanoribbons (ZZGN’s) are char-
acterized by the number of atoms in the unit cell, Nx, 
that corresponds to a ribbon width W =

√
3Nxa/4, 

being a the graphene lattice parameter. The momen-

tum of the electrons along the ribbon, k, is restricted 

to take values in the one-dimensional Brillouin zone, 

0 < k < 2π
a . The number of atoms per unit cell deter-

mines the number of electronic bands per spin in 
the Brillouin zone. The low energy conduction band 
and the high energy valence band are degenerate at 
the center of the Brillouin zone, and these two bands 
become flatten as the width of the ribbon increases, so 

that they are practically degenerate at zero energy in 

the range 2π
3a < k < 4π

3a . These zero energy states cor-

respond to states localized at the edges of the nanorib-
bons and because they are located on opposite sublat-
tices of the graphene unit cell they are not coupled by 
the kinetic energy part of the Hamiltonian.

The degeneracy of the valence and conduction 
bands produces a sharp peak in the density of states 
at the Fermi energy that makes the system unstable 
against broken symmetry ground states. Several ab 
initio density functional based calculations [8, 10, 12], 
and tight-binding Hamiltonians with long-range [17, 
18] or on-site [4] interactions have shown that the elec-
tron–electron interaction opens a gap in the electronic 
structure and induces magnetic order in the ground 
state. All the theoretical calculations indicate the exist-
ence of spin polarization localized near each edge 
and an antiferromagnetic coupling between opposite 
edges, see figure 1(a). This antiferromagnetic coupling 
between opposite edges satisfies the Lieb’s theorem 
[19, 20]. The exchange interaction between electrons 
favors the occupancy of electronic states in an edge 
with a spin orientation and states with opposite spin in 
the opposite edge. Zigzag graphene nanoribbons have 
been obtained by using top-down approximations 
[21–26], by growing graphene epitaxially on silicon 
carbide [27–30], by growing graphene on hexagonal 
boron nitride trenches [31] and by using on-surface 
syntesis techniques [32]. Some of these nanoribbons 
show ballistic transport and have a high performance 
[29, 30]. In addition, experiments have found proof of 
magnetic order at zigzag graphene nanoribbons [25, 
32, 33].
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Abstract
Graphene nanoribbons with zigzag terminated edges have a magnetic ground state characterized 
by edge ferromagnetism and antiferromagnetic inter edge coupling. This broken symmetry state is 
degenerate in the spin orientation and we show that, associated with this degeneracy, the system has 
topological solitons. The solitons appear at the interface between degenerate ground states. These 
solitons are the relevant charge excitations in the system. When charge is added to the nanoribbon, 
the system energetically prefers to create magnetic domains and accommodate the extra electrons in 
the interface solitons rather than setting them in the conduction band.
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1.1.  Main conclusions
By inverting the spin polarization of the full system 
there is another energy degenerate ground state, see 
figures 1(a)–(c). The origin of the degeneracy is the 
broken symmetry in the spin sector that occurs in the 
ground state. The band structures of the degenerate 
ground states are inverted, see figures 1(b)–(d), and 
we argue that, when connecting two domains with 
opposite mass, a symmetry-protected topological 
state will appear at the interface. Here, the topological 
defects are soliton-like excitons that carry a 
charge  ±e, with half electron localized at each edge 
of the nanoribbon. We claim that when doping, the 
extra charge will accommodate creating domain 
walls between opposite polarized degenerate ground 
states. Interestingly the topological properties of 
zigzag graphene nanoribbons are generated by the 
electron electron interaction and not by spin–orbit 
coupling [34], orbital [35] or bond ordering [36]. In 
the following of this letter, we develop these arguments 
and present numerical results supporting the existence 
of topological charged excitations in zigzag graphene 
nanoribbons.

2.  Hamiltonian

In this work we describe the electron–electron 
interaction in the on-site Hubbard model,

H = −t
∑
〈i,j〉,σ

c+i,σcj,σ + U
∑

i

n̂i,↑n̂i,↓ ,
� (1)

here c+i,σ creates an electron at site i with spin σ and 

n̂i,σ = c+i,σci,σ. In this Hamiltonian hopping exits between  

nearest neighbor π orbitals with a value t ≈ 2.7 eV [1, 
2]. The Hubbard model takes into account the short-
range part of the Coulomb interaction through the 
parameter U > 0. Experiments [37, 38] give the range 
of values U ∼ 3.0–3.5 eV. In this work we use a value 
of U ∼ t  that yields results in agreement with density 
functional theory [8, 11]. Exchange interaction is 
the main ingredient for obtaining magnetic order 
and therefore Hartree–Fock pairing of the operators 
is a good approximation for describing magnetic 
properties of graphene zigzag nanoribbons. The 
unrestricted Hartree–Fock approximation for the 
Hubbard term read

Vmf =U
∑

i

(∑
σ

(
n̂i,σ〈n̂i,−σ〉 − c+i,−σci,σ〈c+i,σci,−σ〉

)

−〈ni,↑〉〈ni,↓〉+ 〈c+i,↑ci,↓〉〈c+i,↓ci,↑〉
)

�

(2)

where 〈Ô〉 means expectation value of the Ô  operator. 
By solving self-consistently the Hamiltonian we obtain 
the expectation value of charge and spin at every site 

Figure 1.  (a) Schematic picture of the spin polarization of an undopped zigzag nanoribbon. (b) Lowest energy conduction band 
and highest valence band of a ZZGN with N = 20, and U = t . (c) spin polarization and (d) band structure for the state degenerate 
with the ground state shown in (a) and (b). In (a) and (c) the spin orientations are rotated to make the figure clearer.

2D Mater. 5 (2018) 015026
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of the nanoribbon and the band structure. In figure 1 
we plot a typical band structure and magnetic order 
for the case of an undopped nanoribbon. The bands 
are spin degenerate and electron electron interaction 
creates a magnetic order, with ferromagnetic order 
at the edges that are anti-ferromagnetically coupled. 
Because graphene has a bipartite lattice atoms in 
different sublattices have opposite spin polarization.

3.   2 × 2 effective Hamiltonian

Although the charge density is uniform along and 
across the nanoribbon, the spin polarization produces 
spin-dependent electric polarizations [39]. To a great 
degree of precision the magnetic properties of zigzag 
graphene nanoribbons can be described by restricting 
the Hilbert space to the highest energy valence band, 
|k,−〉 and the lowest energy conduction band, |k,+〉 
of the non interacting, U = 0, Hamiltonian [39, 40]. 
The wave functions of these states are even and odd 
combinations of the π orbitals across the nanoribbon. 
As the electric and magnetic properties of the 
nanoribbon are associated with localization of charge 
at the edges, it is appropriated to use a local base of the 
form

|k, L(R) >=
1√
2
(|k,+ > ±|k,− >)� (3)

in this basis the self-consistent Hamiltonian for each 
spin orientation takes the form1,

Hσ(k) =

(
−σΣ(k) T(k)

T(k) σΣ(k)

)
� (4)

where σ = ±1 for for spins pointing up or down 
respectively, T(k) is the k-dependent hopping between 
left and right located states and Σ(k) is the exchange 
self energy that has opposite sign for states located on 
opposite edges or with opposite spin. Both the hopping 
amplitude and the self energy are real quantities 
which are obtained by solving self-consistently the 
Hubbard Hamiltonian. In figure 2 we plot T(k) and 
Σ(k) for a particular zigzag graphene nanoribbon. 
From the eigenvectors and eigenvalues of the previous 
Hamiltonian, the spin-dependent electric dipoles in 
the transverse direction, x̂, of the nanoribbon, take the 
form2,

Pσ = eσ
∑

k

Σ(k)√
Σ(k)2 + T(k)2

〈k, L|x|k, R〉.� (5)

As commented above the system is not ferrolelectric 
and the sum of the spin-dependent electric dipoles 
vanishes, P↑ + P↓ = 0.

The form of the two Hamiltonians, equations (1) 
and (4), indicates the degeneracy of the ground state; 
by reversing the spin orientation of the full system, 
another degenerate ground state appears, where the 

spin polarization at the edges and the spin-depend-
ent electric polarization are reversed, see figure 1. We 
characterized the two degenerate ground states by 
T = signP↑. The index T  shows the spin polarization 
of the dipole generated in the ribbon by a transversal 
electric field [39]. The degeneracy of the ground state 
reflects the broken symmetry of the ground state in 
the spin sector. Associated with this degeneracy there 
exist topological excitations, in this case solitons. These 
solitons are characterized by an integer winding num-
ber or topological charge, ±1, that prevents them from 
decaying into spin waves [41]. For each spin orienta-
tion, the two degenerate ground states have the bands 
inverted and therefore there will be two topological 
protected states, one for each spin orientation, at the 
interface between domains with opposite T .

Both Hamiltonians, equations (1) and (4), satisfy 
the anticommutation relation τyHσ(k)τy = −Hσ(k), 
being τy a Pauli matrix. A consequence of this symme-
try is that the spectrum of Hσ is electron hole sym-
metric, any eigenstate |ψ〉with energy ε has a conjugate 
state τy|ψ〉 with energy −ε. Because of the electron 
hole symmetry, the topological protected states should 
be placed at the middle of the gap and get zero energy. 
Half of the spectral weight of the mid gap state comes 
from the conduction band and the other from the 
valence band, therefore when the chemical poten-
tial is above (below) zero energy, the soliton carries a 
charge -e/2 (e/2) [36, 42]. Considering the two spin 
orientations, the topological excitation in ZZGN’s 
consists of two e/2 charged solitons, and carry a total 
charge e. The connection between topological defects 
and electric charge suggests that solitons can be the 
relevant charge excitation in zigzag graphene nanorib-
bons. Then whenever adding (subtracting) charge to 
the system an array of solitons can be formed, creating 
a solitonic phase. The distance between solitons is the 
inverse of the density of extra charge per unit length in 
the ribbon.

4.  Numerical results

To verify and quantify this proposal, we compute the 
energy and the electric and magnetic properties of a 
ZZGN in presence of an extra number of electrons. 
Because of the electron–hole symmetry existing in 
the system, the calculations are restricted just to the 
case of doping with electrons. We consider a periodic 
structure along the nanoribbon, with a supercell 
containing Ny repetitions of the minimum unit cell, 
so that the unit cell contains Ny × Nx carbon atoms. 
Because of the use of periodic boundary conditions 
the solitons in the unit cell always appears by pairs. 
We add a number nextra of electrons to the unit cell and 
because of the one dimensional nature of the system 
the excess of charge is expressed as density of electrons 
per unit length in the ribbon, δn = nextra/(Nya). By 
solving self-consistently the Hubbard Hamiltonian 
in the unrestricted Hartree–Fock approximation, 

1 See supplementary material (stacks.iop.org/TDM/5/015026/
mmedia).
2 See footnote 1.
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we obtain the energy and the spin and charge spatial 
distribution in the ribbons as function of the electron 
density. The solutions converge to the solitonic phase 
when imposing the initial guess with the appropriated 
spin-spatial distribution. In figure  3 we show the 
spatial spin polarization (a) and charge distribution 
(b) for a soliton separating two domains with opposite 
T . Crossing the domain wall, the spin polarization in 
the left edge rotates from pointing in the +ẑ direction 
to pointing in the −ẑ direction, acquiring the electron 
spin polarization a small x̂-component. In the right 
edge, the spin polarization in the ẑ  direction has 

opposite sign, whereas the x̂-component of the spin 
polarization, in both edges, are parallel.

In order to verify that the solitonic phase is the 
ground state at low densities we compare its energy 
with the energies of phases with uniform distribution 
of charge and spin polarization along the nanoribbon. 
In particular we compare with uniform phases with 
ferromagnetic (uni-FM) or antiferromagnetic (uni-
AFM) coupling between the edges [43]. Strictly, the 
spin polarization of the uniform doped phases is not 
collinear and the edge polarizations are slightly canted 
with respect the FM and AFM order. In figure 4 we plot 

Figure 2.  Selfenergy and tunneling amplitude between states centered in the left and right edges of a nanoribbon as function of the 
wavevector k. In the calculation we use Nx = 20 and U = t .

Figure 3.  (a) Local spin polarization and (b) excess of charge near a domain wall separating two degenerate gapped ground states. 
In (c) we plot the same quantities on the outermost atoms in the left edge of the ribbon as function of the position along the ribbon. 
In the right edge σz changes sign, whereas σx  does not. In (a) the orientation of the spins are rotated to make the figure clearer. In the 
calculations we use Nx = 20, Ny = 120 and U = t .

2D Mater. 5 (2018) 015026
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the total energy difference per unit length between the 
solitonic and the uni-FM and uni-AFM phases, for a 
nanoribbon with Nx = 20. The energy is referred 
to the energy of the uni-FM phase. From the results 
shown in this figure, we conclude that the solitonic 
phase is the ground state of the nanoribbon at densities 
lower than δn ∼ 0.05/a. At these densities the system 
prefers to create domains with opposite T  and accom-
modate the extra carriers at the solitons that appear at 
the domain walls.

5.  Relation with previous works and 
discussion

Using density functional theory [44] or tigh-binding 
Hamiltonians [43, 45–47], previous theoretical works 
have found that zigzag gaphene nanoribbons become 
ferromagnetic when doped. Using the same Hubbard 
model than us, Jung and MacDonald [43] find the 
transition from the uni-FM to the uni-AFM at a 
density δn ∼ 0.03/a. However, all these calculations 
do not allow the modulation of the charge and spin 
along the ribbon, and therefore did not find any 
clue for the existence of the solitonic phase. Under 
Moebius boundary conditions mathematically 
equivalent topological solitons have been studied 
in [48–50], however these kinks are not relevant 
for the physics of doped graphene nanoribons 
studied here. The presence of a solitonic phase in 
zigzag graphene nanoribbons should be detected in 
transport experiments, as a significant enhancement 
in the electrical transport in the middle of the energy 
gap. Also in the case of solitons trapped by defects or 
impurities, individual solitons could be visualized by 

scanning tunneling microscopy experiments. The 
typical size of the solitons is of some graphene lattice 
parameters, ∼20a, and their existence would require 
nanoribbons with magnetic correlation length larger 
than this size. Recent calculations by Yazyev et al [12] 
have shown that, at low temperatures, the correlation 
length in ZZGN’s could be as larger as 300 Å at 10 K, 
and this means that solitons can be observed at low 
temperatures. The calculations presented in this 
work are done for ribbons with Nx = 20, we have 
checked that solitonic phases appear in wider ribbons. 
The conditions for the appearance of solitons is the 
existence of an energy gap, and in ZZGN’s the gap scales 
as W−1 [40]. The value of the gap increases with the 
value of the Hubbard interaction U, in our calculations 
we use a value of U = t , that reproduces the gap 
obtained in density functional calculations. Non local 
Coulomb interactions can modify the value of U, 
and recently truly ab initio calculations [51, 52] have 
reported a value of U ∼ 2t , that makes the magnetic 
ground state of the ZZGN more stable and, therefore, 
more robust the existence of a solitonic phase. The 
long-ranged part of the Coulomb interaction, not 
taken into account in this work, is expected to increase 
the size of the solitons, minimizing in this way the 
electrostatic repulsion. This fact will reduce slightly the 
range of doping densities where the solitonic phase is 
the ground state of the system. Nevertheless, it is also 
likely that the Hubbard model correctly describes the 
qualitative features of the solitons in this system.

We expect that, in the presence of a transverse elec-
tric field, solitons would be also the relevant charge 
excitation for ZZGNs. A transverse electric field 
applied to ZZGNs splits the edge localized conduction 

Figure 4.  Energy per unit length of different phases of doped zigzag graphene nanoribbons. The energies are referred to that of 
the uni-FM phase. At low doping, δn < 0.05/a the solitonic phase is the ground state of the system. In the lower panels, we show 
schematically the band structures of the uniform phases and the position of the Fermi energy. In the inset in the upper part of the 
figure, we plot the density of states of the solitonic phase. The zero energy peak corresponds to the solitons. The calculations are done 
with Nx = 20, U = t  and t = 2.7 eV.

2D Mater. 5 (2018) 015026
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and valence bands, preserving the electron–hole sym-
metry [8, 14]. For moderate strength of the field the 
system remains gapped and the ground state is a bro-
ken symmetry state in the spin sector. In this situation 
a zero energy soliton should exist and, for low doping, 
the solitonic phase should be the ground state of the 
system instead of a uniform doped phase [53].

The existence of topological solitons could be also 
relevant in zigzag-terminated graphene nanoisland 
devices designed for spintronics functionalities [11, 
54]. In these devices the magnetic response to gate 
voltages can be influenced by the existence of spin tex-
tures related with topological defects.

In summary, we have shown that the low energy 
charge excitations in doped graphene zigzag nanorib-
bons are solitons. These solitons appear because of the 
degeneracy of the magnetic broken symmetry ground 
state of the ribbon. The two degenerate states have the 
electronic bands inverted, and when joining two oppo-
site magnetic domains a topological soliton will appear 
at the interface. The solitons are the low energy charge 
excitations in the system, and when doping the extra 
charge will create magnetic domains and will accom-
modate at the solitons.
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