Direct transfer of wafer-scale graphene films

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 2D Mater. 4 035004

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 54.191.40.80
This content was downloaded on 07/08/2017 at 16:46
Please note that terms and conditions apply.

You may also be interested in:

Graphene transfer to 3-dimensional surfaces: a vacuum-assisted dry transfer method
J L P Morin, N Dubey, F E D Decroix et al.

Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications
Ying Feng and Ke Chen

Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure
Junqi Xu, Can Fu, Haibin Sun et al.

Electronic properties and strain sensitivity of CVD-grown graphene with acetylene
Meng Yang, Shinichirou Sasaki, Masato Ohnishi et al.

Engineering electrical properties of graphene: chemical approaches
Yong-Jin Kim, Yuna Kim, Konstantin Novoselov et al.

Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons
Mingguang Chen, Dejan Stekovic, Wangxiang Li et al.

Uniformity of large-area bilayer graphene grown by chemical vapor deposition
Yuwen Sheng, Youmin Rong, Zhengyu He et al.
Direct transfer of wafer-scale graphene films

Maria Kim1, Ali Shah1, Changfeng Li1, Petri Mustonen1, Jannatul Susoma1, Farshid Manoocheri2, Juha Riikonen1 and Harri Lipsanen1

1 Department of Electronics and Nanoengineering, Aalto University, PO Box 13500, FI-00076 Aalto, Finland
2 Metrology Research Institute, Aalto University, PO Box 15500, FI-00076 Aalto, Finland

E-mail: maria.grigoryeva@aalto.fi

Keywords: graphene, flexible electronics, electrical conductivity, transparency, two-dimensional material, parylene-C

Abstract
Flexible electronics serve as the ubiquitous platform for the next-generation life science, environmental monitoring, display, and energy conversion applications. Outstanding multifunctional mechanical, thermal, electrical, and chemical properties of graphene combined with transparency and flexibility solidifies it as ideal for these applications. Although chemical vapor deposition (CVD) enables cost-effective fabrication of high-quality large-area graphene films, one critical bottleneck is an efficient and reproducible transfer of graphene to flexible substrates. We explore and describe a direct transfer method of 6-inch monolayer CVD graphene onto transparent and flexible substrate based on direct vapor phase deposition of conformal parylene on as-grown graphene/copper (Cu) film. The method is straightforward, scalable, cost-effective and reproducible. The transferred film showed high uniformity, lack of mechanical defects and sheet resistance for doped graphene as low as 18 \(\Omega / \text{sq} \) and 96.5% transparency at 550 nm while withstanding high strain. To underline that the introduced technique is capable of delivering graphene films for next-generation flexible applications we demonstrate a wearable capacitive controller, a heater, and a self-powered triboelectric sensor.

1. Introduction

The discovery of graphene was a breakthrough in the material science [1]. The excellent electrical, physical and chemical properties [2] gave rise to electronic applications, such as transparent electrodes [3], heaters [4], and graphene transistors [1, 5]. Owing to the atomically thin structure, high transmittance of \(\sim 97\% \) at visible light [6] and flexibility are inherent advantages of graphene rendering it an excellent candidate for flexible and transparent applications. CVD graphene appears as a cost-effective method satisfying industrial requirements to utilize graphene in real-life applications since it enables the fabrication of uniform highly conductive monolayer films in wafer scale [7]. Compared to indium tin oxide (ITO), graphene offers high flexibility and tolerance against strain [3]. Thus, processing of graphene and harvesting its inherent properties is a precious research area. Development of CVD graphene transfer method on a flexible and transparent substrate discloses numerous areas for graphene application.

Typically, CVD graphene employs transition metals as substrates due to their enhanced catalytic behavior [2]. Cu foil is the most commonly used catalytic substrate for graphene growth as it is inexpensive and readily available compared to other transition metals. Additionally, Cu alleviates the synthesis of monolayer graphene as the growth process is limited to the surface by the low carbon solubility [2]. To capitalize the graphene properties, for most applications, the CVD film is transferred to an insulating substrate. The transfer is a critical part of the whole fabrication process as it determines the quality of the graphene film and the overall cost of the material.

The most frequently applied transfer method for CVD graphene relies on using poly(methylmethacrylate) (PMMA) as a temporary supporting membrane [8]. After the PMMA deposition on graphene, Cu can be removed by several techniques including chemical etching [2], peeling [9], or electrochemical delamination [10]. The process is finalized by placing the PMMA/graphene film onto a target substrate and dissolving PMMA in acetone. This laborious
polymer-based method suffers from drawbacks: it is non-scalable, requires several intermediate steps, minuscule PMMA residues are difficult to remove, skills of the individual performing the transfers affects the outcome, and PMMA is not suitable as a final substrate due to instability at high temperatures and inability to resist basic solvents. Recently, Zhang et al reported about usage of rosins (C₁₉H₂₀COOH) as a good support layer for graphene transfer, however, claiming only a decreased amount of residue from a polymer [11]. The elastomer stamps and self-releasing layers such as polydimethylsiloxane (PDMS) [9] and thermal release tape (TRT) [12], respectively, substitute PMMA carrier overcoming some drawbacks. However, these supporters require high adhesion between graphene and the destination surface. Otherwise, removal of the carrier can cause undesired mechanical defects in the graphene layer [13]. Thus, an increase of adhesion between the target substrate requires additional process steps without solving the issue of a temporary carrier substrate.

Roll-to-roll techniques have been introduced for large-scale graphene transfer using flexible substrates [3, 14]. Transfer includes three stages, applying hot rollers in each; adhesion of a supporting polymer film, Cu removal and transfer to a flexible substrate. Despite cost-efficiency and scalability, this method also employs carrier substrate and relies on high adhesion between graphene and the target substrates. Moreover, the roll-to-roll process can induce undesired stress to graphene leading to cracks and voids [3, 8]. As opposed to the transfer methods using intermediate carrier substrates, the target substrate can be directly attached to graphene on the Cu foil. This kind of direct transfer is straightforward as essentially the second, and the final step is the removal of Cu. However, the most famous and known substrates such as polyethylene terephthalate (PET), polystyrene (PS), epoxy, and other polymers is the removal of Cu. However, the most famous and known substrates such as polyethylene terephthalate (PET), polystyrene (PS), epoxy, and other polymers are susceptible to heat degradation and their chemical and physical properties highly depend on processing condition. Further, removal of graphene from one side of the Cu foil requires additional step as in these methods etchants remove Cu to minimalize stresses, but graphene grows on both sides of Cu in the CVD process. A fracture mechanics analysis and measurements of adhesion energy between graphene and Cu prove that graphene transfer requires careful selection of target substrate and highly conformal contact to avoid additional defects [13, 15].

In this work, we demonstrate a direct transfer of 6-inch monolayer CVD graphene based on CVD deposition of poly-para-xylylene polymer (known as parylene). The transferred films are highly transparent (96.5% at 550 nm), and the smallest achieved sheet resistance is 18 Ω/sq, whereas average sheet resistance over an area of 6 × 6 cm² is 25 Ω/sq. The transferred film is robust showing invariable sheet resistance even upon 6% strain and bending to a radius of 250 μm. The transferred film is further employed to demonstrate a wearable capacitive controller, a heater, a touch panel, and a triboelectric sensor. The advantage of the method originates from the conformal deposition of parylene as it offers perfect support for CVD graphene despite intrinsic imperfections such as corrugations, wrinkles, and ripples. Considering that parylene is already widely utilized in the industry, we expect this transfer technique to results in whole new flexible and transparent graphene applications satisfying requirements of conformal coating and technical approach for graphene transfer.

2. Description of a graphene transfer method

Parylene has been employed for years in applications among military, aerospace, biomedicine and semiconductor industry. Military and US food and drug administration (FDA) have approved it for a huge number of applications such as a conformal coating for protecting equipment against environmental extremes, defibrillator membranes, and neural probes [16]. Parylene has several formulations including high-temperature and UV-stable variants. Deposition is extremely reproducible and safe as it performed at a room temperature and in a vacuum without solvents or hazardous substances. Consequently, it is widely adopted in the biomedical industry. Several research groups demonstrated various applications of parylene such as a substrate and/or coating for implantable biomedical devices [17, 18]. Recently, Park et al fabricated a graphene-based neural electrode, where parylene served as the substrate [19].

The semiconductor industry, on the other hand, employs parylene as an encapsulating, pinhole free layer against moisture with possibility to control thicknesses from nanometers to micrometers. Although, parylene was widely used as a gate dielectric in carbon nanotubes (CNT) based networks and composite films [20, 21]. To date, few reports demonstrate successful application of parylene in graphene encapsulation [22], gating of graphene-based field-effect transistor (FET) [23] and MoSe₂ FET [24]. Also, parylene was utilized as a substrate, however studies were limited to deposition of parylene on rigid or flexible substrates [25, 26]. Parylene was compared to the most common flexible substrates and underlined limitations for fabrication processes (see supporting information table S1) (stacks.iop.org/TDM/4/035004/mmedia). Thereby, the vast opportunities provided by the material itself and the vapor phase deposition at room temperature are explored for graphene transfer.

Figure 1(a) illustrates the direct transfer process demonstrated in this work. Monolayer CVD graphene utilized in the transfer process was grown on a 6-inch Cu foil (details in methods below). As the first step in the transfer process, Parylene-C was deposited directly on the as-grown graphene on Cu. It is to mention that, Parylene-C differs from natural parylene (Parylene-N) having one chlorine atom attached to the benzene
ring. This chemical modification results in an advantageous combination of electrical and physical properties including particularly low moisture and gas permeability in addition to deposition rate faster than that of Parylene-N. During the deposition, parylene is initially vaporized from its solid dimer phase inside the vaporizer furnace at ~120 °C. Next, the pyrolysis occurs in a high-temperature furnace (>600 °C), which converts the dimers to monomers by breaking the methylene-methylene bonds. In the last stage, the polymerization of the monomer takes place at room temperature on the substrate surface inside the deposition chamber at the pressure of ~0.1 mbar. As the polymerization reaction is limited to the surface and the monomer can penetrate into convex portions of the surface and results in a parylene film that is highly conformal [27]. The direct deposition induces no physical or thermal stress to graphene from the gas phase at room temperature.

The second and the final step in the transfer process is Cu removal to achieve freestanding graphene/parylene film. To demonstrate the versatility of this transfer method, we removed Cu by three different methods: etching, electrochemical delamination and peeling (see supporting information figure S1).

Figure 1(b) shows the flow diagram of the applied graphene transfer technique. We mainly utilize the electrochemical delamination (bubbling transfer) as it demonstrates an economic and environmentally-friendly way of preparing high-quality CVD graphene via recycling the Cu substrate. Figure 2(a) shows a wafer scale transferred graphene on parylene.

2.1. Raman and SEM investigation
Confocal µ-Raman spectroscopy was used to characterize and confirm the quality of the transferred graphene. Figure 2(b) presents the Raman spectrum of the graphene/parylene film displaying clearly the 2D peak of graphene at ~2691 cm⁻¹. The FWHM of the 2D band (29.1 cm⁻¹) is consistent with of the Raman fingerprint of monolayer graphene [28]. Unfortunately, as parylene also contains benzene rings, Raman spectrum of parylene has peaks at ~1442 cm⁻¹ and ~1609 cm⁻¹, which correspond to D and G peaks of graphene, respectively. This fact obviously limits the Raman analysis. SEM images in figure 2(c) show that the transferred graphene layers are highly continuous and uniform. To further test the method, we also transferred a non-continuous CVD graphene film, as the voids between the graphene grains are highly susceptible for rolling and cracking compared to a continuous film.

2.2. Enhancing of graphene conductivity
For further evaluation of the performance of transferred monolayer graphene, we employed graphene functionalization. Several different doping procedures and chemicals have been proposed and reported for graphene, CNTs, and other nanocarbon materials [29–32]. We utilized nitric acid (HNO₃) and gold chloride (AuCl₃) for doping as those are effective dopants for graphene [3, 32]. Some recent studies have also employed potassium and iodine as dopants by introducing them to the graphene surface via potassium adatoms [30], iodine ionic complexes [33], and iodine...
mixture with camphor [31]. However, KI was not employed in those experiments, but there are studies where KI has been used to etch gold away from top of graphene [34]. There, the finding was that the graphene was not affected by KI. Due to this contradiction, we decided to study the effect of KI doping to the graphene/parylene films.

Sheet resistance was measured using four-probe system by pressing the probes directly to graphene without predeposited contacts. The distance between the probes is 1.5 mm, which is relatively large as it results in a measured area of several square millimeters. Consequently, the measurement provides a meaningful value for the sheet resistance as it takes into account several grain boundaries and possible defects in the graphene film. Therefore, it is expected to provide reliable value for the sheet resistance compared to patterned small scale devices.

Figure 2(d) shows Raman spectra of graphene/parylene films before and after 15 min doping with 69% HNO₃. The 2D peak shift of 28 cm⁻¹ indicates strong p-type doping of graphene as expected [35]. The p-type doping with the chosen chemicals clearly enhances the conductivity of the graphene films. The lowest sheet resistance achieved by HNO₃ treatment is as low as 18 Ω/sq. The averaged value of the sheet resistance decreased from 150 Ω/sq to 25 Ω/sq by doping. Figure 3(a) shows the distribution of R_s measured from over 100 points of the 6 X 6 cm² graphene/parylene film before and after HNO₃ doping. The maps and histograms demonstrate increased spatial homogeneity in the sheet resistance due to chemical treatment. We attribute this enhancement to the removal of unintentional dopants (adatoms) and the ability of HNO₃ functionalization to provide uniform doping profile. Nitric acid provides covalent attachment of C–OH, C(O)OH and NO₃ moieties to carbon atoms through sp²–sp³ hybridization resulting in the Fermi level shift towards p-type doping [36]. Graphene doped with KI and AuCl₃ also led to the enhancement of graphene conductivity; sheet
resistance drops from 150 Ω/sq to 100 Ω/sq and 30 Ω/sq for KI and AuCl₃, respectively.

The sheet resistance values of the graphene/parylene films were confirmed by van der Pauw measurements 2 × 2 cm² control samples (as limited by the measurement setup). These samples were also used to perform Hall measurements, which showed hole mobility of ~1500 cm² V⁻¹ s⁻¹ at room temperature (figure 3(b)). High mobility for the large-area sample is also a clear evidence of high-quality graphene on parylene.

2.3. Transmission measurement

In addition to a low resistivity, high transmittance is paramount for transparent conductive layers. When analyzing transmittance of conducting films, it is important to note that these characteristics are in fact interconnected [37], as the response of electrons to either static (voltage) or dynamic (light) electric fields determines both R_s and T:

$$T = \frac{1 + \frac{Z_0Q_{op}}{2R_sQ_{DC}}}{2}$$

(1)

Where Z_0 is the impedance of free space, Q_{op} is optical conductivity, and Q_{DC} is DC conductivity. Thus conductivity ratio given by the equation controls dependence of T on R_s and, therefore, acknowledging the limits of desired properties. Q_{DC}/Q_{op} ratio can be considered as a figure-of-merit (FoM) for transparent conductors. Thus, the theoretical limitation of this ratio for graphene exceeds that for ITO and CNTs, which makes graphene very promising material in this research field [38].

Figure 4(a) presents empirical results achieved for transparent and conductive electrodes obtained in this work and previous studies [4, 9, 39–41]. Although, prior results display significant variation ranging from highly conductive to highly resistive films, here we have only included state-of-the-art films. Transmission values are substrate normalized, meaning that the value is the transmittance of the conductive film only. A graphene film transferred to PET by a soluble polymer support such as PMMA shows the highest transmittance of ~97.5% at 550 nm. However, the sheet resistance value after HNO₃ functionalization is 125 Ω/sq for monolayer graphene [3]. Additionally, as mentioned above, commonly applied PMMA based method is not suitable for large-scale industrial fabrication. Although commercially available ITO exhibits a very low sheet resistance (~10 Ω/sq), its transmission is as low as 84% [39]. Graphene films fabricated with the direct transfer employing parylene in this work have transmittance of ~96.5% and sheet resistance of 18 Ω/sq, which is the state-of-the-art combination of high transmittance and low sheet resistance.

Moreover, bare parylene showed 95% of transmittance which can be compared with the highest glass ~94% and PET ~90% transmittance at 550 nm wavelength [42]. Due to conformality of the CVD deposition process, parylene follows the surface morphology of the graphene on Cu film. Thus, final graphene/parylene film replicates initial roughness of the as-grown graphene/Cu foil. Electrochemical polishing of the Cu foil before the CVD growth of graphene to decrease roughness resulted in a dramatic enhancement in the transmittance of the graphene/parylene film up to 91%, which is correlated to a highest obtained graphene film transmittance of 96.5% (figure 4(b)).

2.4. Strain analysis of graphene films

As flexibility is an intrinsic property of graphene compared to fragile ITO, the electromechanical properties of graphene on parylene were also characterized. We verified the flexibility of graphene/parylene film by decreasing the bending radius from several centimeters to sub-millimeters. Figure 4(d) shows that the sheet resistance of the graphene/parylene film is practically unaffected by bending even to a radius of 0.25 mm. Strain S was calculated by
Where t_s, t_f, and R_b are the thickness of the substrate (parylene), the thickness of the conductive film (graphene), and the bending radius, respectively. As the monolayer graphene is extremely thin ($t_s \gg t_f$) we get

$$S = \frac{t_s + t_f}{2R_b}$$ \hspace{1cm} (2)

When the film was fully folded, what corresponded to maximum applied strain (figure 4(c)), the sheet resistance was increased by less than 1% and, moreover, showed complete recovery after the strain was relaxed. The CVD graphene transferred on PET using the roll-to-roll method showed a 100% increase in a resistance under 6% strain [3]. Studies on conductive electrodes such as ITO and metal nanowire networks report resistance increase of more than 30% and permanent cracking under 4% strain [43–45]. Extreme flexibility is one of the advantages of the graphene/parylene film compared to alternative approaches. Moreover, graphene/parylene films showed high tolerance to tapping test (see supporting information figure S2).

Authors wishing to acknowledge assistance or encouragement from colleagues, special work by technical staff or financial support from organizations should do so in an unnumbered Acknowledgments section immediately following the last numbered section of the paper.

3. Flexible electronics

Solvent-free transfer method demonstrated in this paper and bio-approved substrate allow using graphene/parylene films in wide array of wearable sensors and biological detectors. Moreover, in recent years a lot of efforts has been devoted to a novel type of energy harvesting technology called triboelectric nanogenerator (TENG), which can also be used as a
self-powered sensor. Materials used for TENGs play an important role, as nanogenerators should serve as light weight, small size, low cost, flexible devices. Figure 5(a) shows a schematic diagram of a triboelectric sensor as one of possible graphene application (see supplementary video S3). The triboelectric effect appears while bringing into a physical contact two films with distinct electron affinity [46]. The upper layer consists of parylene/graphene film, and the bottom layer is graphene/EVA/PET film. Graphene here plays a role of the electrode and additionally as a friction layer, thus a high strain tolerance and high conductivity determine the device performance [14]. We utilized a thin PET net as a spacer for simplicity. However, high flexibility of the films enables to fabricate arch-shape sensors using such design as a spacer. Moreover, device reliability under strain was confirmed by testing more than 2000 cycles (figure 4(d)).

Various structures of TENGs with different working modes among with theoretical models have been published in recent years [46, 47]. The basic working principles of the triboelectric sensor is illustrated in figure 5(a). Full separation of the upper and bottom layer relates to initial neutral charge state. When the layers are brought into a contact using a vibrator, according to the triboelectric tendency, the negative electrostatic charges are generated at parylene/graphene film and positive at graphene/EVA/PET. Electron flow between the upper and bottom electrodes stops, when the opposite film polarities and produced charges are equalized. Releasing from fully pressed state starts to form a dipole moment due to the separation of opposite triboelectric charges, driving electron to flow from bottom to upper electrode. The flow stops at the maximum separation. Next pressing and releasing series will induce reverse flow of electrons between the electrodes when the dipole moment disappears. The contact electrification and following electrostatic induction process produces the output signals. Figure 5(b) shows output voltage under vertical compressive force with the vibrational frequency of ~8 Hz; the inset photograph shows triboelectric sensor with the size of 3 × 3 cm. Graphene-based triboelectric sensor showed high dependence of sensitivity under applied forces (figure 5(c)). It is important to notice that the 7 mN and 20 mN forces correspond to the force of 70 mg object falling from rest 10 cm and 30 cm, respectively. We also utilize our graphene films as transparent controllers (see Supplementary Video S4) and heaters (see supporting information figure S3 and supplementary video S5).
In conclusion, we have developed and demonstrated a wafer-scale direct transfer of monolayer CVD graphene onto a highly flexible and transparent substrate. Wet chemical doping significantly decreases sheet resistance and improves the spatial homogeneity of obtained films. Combined transmission and sheet resistance values of our graphene/parylene films are superior than the commonly used transparent electrodes such as ITO. Films have demonstrated the excellent stability of electromechanical properties against large bending deformations. Finally, we utilized graphene/parylene film for several original applications, such as a triboelectric sensor, transparent controllers, and flexible heaters. Moreover, this direct transfer concept can be readily adopted in production as parylene, which is well suited for batch processing and is already widely used for example in semiconductor and biomedical industry.

4. Methods

4.1. CVD growth of graphene

Growth of large-area monolayer graphene was carried out by commercial CVD system (Black Magic CVD system Aixtron BM6) and home-built rapid photo-thermal CVD system [48]. Commercial Cu foils (25 µm, 99.8% purity, Alfa Aesar product 7440508) were used as the substrate. Typical growth process in Black Magic CVD system was performed at a constant pressure of 4.1 mbar. First, Cu foil was annealed for 30 min at 850 °C using a 20 sccm flow of H₂ diluted by 1500 sccm of Ar. Reduction step was followed by a 10 min graphene deposition at 1025 °C by introducing additional 7 sccm of CH₄. Subsequently, the CH₄ flow was closed, and the chamber was cooled to a temperature below 150 °C and opened to ambient air. Electropolishing in orthophosphoric acid for 15 min removed tarnishing and roughness of Cu surface. The electrolytic solution was prepared using 55% H₃PO₄ and two-Cu-electrode system was polarized by −1.5 V.

4.2. Graphene/parylene films preparation

Parylene-C deposition was carried out in a commercially available deposition system PDS-2010 Labcoater 2 (Specialty Coating Systems). 25 g and 15 g of di-para-xylene (Parylene-C dimer) were used to conformally deposit 25 µm and 15 µm films, respectively. An aqueous solution of NaOH was used for electrochemical delamination (bubbling transfer) as an electrolyte while Cu was polarized at −5 V to delaminate parylene/graphene.

4.3. Characterizations

Confocal µ-Raman spectroscopy measurements were performed using commercial confocal Raman system Witec alpha300 RA with a green laser (532 nm). Hall system used to perform measurements by van der Pauw method had a sample size of 2 × 2 cm² and it operated at a room temperature in ambient air, with the magnetic field strength of 1 T.

Acknowledgments

The research leading to these results received funding from the European Union Horizon 2020 Programme under grant agreement 696656 Graphene Core. This was undertaken at the Micronova, Nanofabrication Center of Aalto University.

References

8

[28] Ferrari A C and Basko D M 2013 Raman spectroscopy as a versatile tool for studying the properties of graphene Nanotechnology. 8 2353–46.

[38] Bao W et al 2014 Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation Nat. Commun. 5 4224.

