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1. Introduction

Graphene [1], a single atomic layer of graphite, 
is featured by ultra-high mobility and electrical 
tunability of carrier density and hence provides an 
attractive platform for studying the unique electron 
optics of Dirac fermions owing to its gapless and linear 
dispersion. Cheianov et al [2] proposed the interesting 
idea that an interface between electron (N)-doped 
and hole (P)-doped regions in graphene can focus an 
electron beam, which may lead to the realization of an 
electronic analog of the Veselago lens in optics [3–6]. 
This anomalous focusing effect has motivated many 
new ideas and device concepts [7–11] . Very recently, 
this effect was observed experimentally [12, 13], which 
paves the way for realizing electron optics based on 
graphene P–N junctions (PNJs). A common feature 
of these works is that they concentrate on focusing the 
electrons themselves, leaving its potential applications 
to other fields unexplored.

In this work, we explore a very different direc-
tion by showing that the anomalous focusing effect 
could be utilized to manipulate the carrier-mediated 
 Rudermann–Kittel–Kasuya–Yosida (RKKY) interac-
tion [14–16] between magnetic moments (spins), with 
potential applications in spintronics [17–19], scalable 
quantum computation [20, 21], and majorana fermion 

physics [22] as the RKKY interaction enables long-
range correlation between spatially separated local 
spins [23–27] , a crucial ingredient in these develop-
ments. In recent years, a lot of efforts have been devoted 
to characterizing the RKKY interaction in different 
2D uniform systems such as two-dimensional electron 
gases [28, 29], graphene [30–36] , and the surface of 
topological insulators [37–39]. There are also many 
interesting schemes to manipulate the RKKY interac-
tion [40–48] . Recent experimental advances further 
enable the RKKY interaction to be mapped out with 
atomic-scale resolution from single-atom magnetom-
etry using scanning tunnelling spectroscopy [49–51]. 
However, in a d-dimensional uniform system, the 
RKKY interaction usually decays at least as fast as 1/Rd. 
This rapid decay—a common feature of the previous 
studies mentioned above—makes the RKKY interac-
tion very short-ranged and may hinder its applications. 
This motivates growing interest in modifying the long-
range behavior of the RKKY interaction, e.g. the 1/R3 
long-range decay in undoped graphene can be changed 
by thermal excitation [52] and even be slowed down 
by electron-electron interactions [53]. Here we show 
that the graphene PNJ allows the diverging electron 
beams emanating from one local spin to be refocused 
onto the other local spin, thus the electron-mediated 
RKKY interaction between these two local spins can be 
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Abstract
The carrier-mediated RKKY interaction between local spins plays an important role for the 
application of magnetically doped graphene in spintronics and quantum computation. Previous 
studies largely concentrate on the influence of electronic states of uniform systems on the RKKY 
interaction. Here we reveal a very different way to manipulate the RKKY interaction by showing 
that the anomalous focusing—a well-known electron optics phenomenon in graphene P–N 
junctions—can be utilized to refocus the massless Dirac electrons emanating from one local spin 
to the other local spin. This gives rise to rich spatial interference patterns and symmetry-protected 
non-oscillatory RKKY interaction with a strongly enhanced magnitude. It may provide a new way to 
engineer the long-range spin-spin interaction in graphene.
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strongly enhanced and tuned beyond the 1/Rd limit of 
non-interacting uniform systems. The graphene PNJ 
also gives rise to symmetry-protected non-oscillatory 
RKKY interaction as a function of the distance, in sharp 
contrast to the ‘universal’ oscillation of the RKKY 
interaction in uniform systems with a finite carrier con-
centration. This may provide a new way for engineering 
the correlation between spatially separated local spins 
for their applications in spintronics and quantum com-
putation.

This paper is organized as follows. In section 2, we 
explain intuitively how to utilize the graphene PNJ to 
manipulate the RKKY interaction and highlight the 
symmetry-protected non-oscillatory RKKY interaction. 
Then in section 3, we perform numerical simulation 
based on the tight-binding model to demonstrate this all-
electrical manipulation and discuss the exper imental fea-
sibility. Finally, we present a brief summary in section 4.

2. RKKY interaction in graphene P–N 
junction: physical picture

Let us consider two local spins SS1
ˆ  (located at 

RR1) and SS2
ˆ  (located at RR2) coupled to the spin density 
δ≡ −ss xx ss rr xxˆ( ) ˆ (ˆ ) of itinerant carriers via the exchange 

interaction = − ⋅ − ⋅V J JSS ss RR SS ss RR ,ex 0 1 1 0 2 2
ˆ ˆ ˆ( ) ˆ ˆ( )  where 

sŝ (rr̂) is the carrier spin (position) operator. The total 
Hamiltonian of the coupled system is the sum of Vex

ˆ  
and the carrier Hamiltonian Ĥ. The carrier-mediated 
RKKY interaction originates from the local excitation 
of carrier spin density fluctuation by one local spin and 
its subsequent propagation to the other spin. At zero 
temperature, the effective RKKY interaction between 
the local spins is obtained by eliminating the carrier 
degree of freedom through second-order perturbation 

theory as [14–16, 54] = ∑αβ αβ
α β

=H J S Sx y zRKKY , , 1 2
ˆ ˆ ˆ , 

where the RKKY range function

[ˆ ˆ( )ˆ ˆ( )]∫π= −αβ α β
−∞

J
J

s G E s G E ERR RR RR RRImTr , ; , ; d ,
E

0
2

1 2 2 1
F

 (1)

EF is the Fermi energy of the carriers, Tr traces over the 

carrier spin, and ≡ | + − |+G E E Hrr rr rr rr, ; i00 0
ˆ( ) ⟨ ( ˆ ) ⟩ is 

the unperturbed (i.e. in the absence of the local spins) 

propagator of the carriers in real space. In general, 

G Err rr, ;0
ˆ( ) is still an operator acting on the carrier 
spin degree of freedom. In a d-dimensional uniform 
system, the carriers excited by the first local spin at RR1 
propagate towards the second local spin at RR2 in the 

form of an outgoing wave ∼ −G E RRR RR, , e kR d
2 1

i 1 2ˆ( ) / ( )/ , 
where ≡ | − |R RR RR2 1 , k is a characteristic wave vector of 
the carriers with energy E, and the denominator R(d−1)/2 
ensures the conservation of probability current. The 
integration over the energy in equation (1) yields 
another factor 1/R from the oscillating phase factor 

e kRi , so ∝αβJ R1 d/ . This provides a rough explanation 

for the ‘universal’ 1/Rd decay of the RKKY interaction, 
as discovered in a great diversity of materials by previous 

studies. It also reveals a very different way—tailoring the 
carrier propagation and interference—to manipulate 
the RKKY interaction beyond this constraint, as opposed 
to previous studies that exploit the electronic states and 
energy band structures of different uniform materials. 
The anomalous focusing effect in graphene PNJs [2] 
provides a paradigmatic example for this manipulation.

As shown in figure 1(a), the honeycomb lattice of 
graphene consists of two sublattices (denoted by A 
and B) and each unit cell contains two carbon atoms 
(or πz-orbitals), one on each sublattice. Let us use RR to 
denote the location of each carbon atom, |RR⟩ for the  
corresponding orbital, and sRR (=A or B) for the sub-
lattice on which RR locates. For carriers in the graphene 
PNJ, the tight-binding Hamiltonian is the sum of H0

ˆ  

for uniform graphene and VĴ for the on-site junction 

potential:

= +H H V ,0 J
ˆ ˆ ˆ (2a)

∑= − | | +′
′

H t RR RR h.c.,
RR RR

0
,

ˆ 〉〈
〈 〉

 (2b)

∑= | |V V RR RR ,
RR

RRĴ ⟩⟨ (2c)

where ′RR RR,⟨ ⟩ denotes nearest neighbors, ≈t 3 eV is the 
nearest-neighbor hopping [1] , and VRR is equal to  −V0 
(+V0) when RR locates in the left (right) of the junction 
(shaded stripe in figure 1(a)) with V 00 ⩾ . As shown 
in figure 1(b), the zero point of energy is chosen such 
that the Dirac point in the left (right) of the junction 
lies at  −V0 (+V0). Uniform graphene corresponds to 
V0  =  0, while nonzero V0 corresponds to a junction, 
e.g. N-N (P-P) junction corresponds to >E VF 0 
( <E VF 0). Here we consider the P–N junction (PNJ), 
corresponding to ∈ − +E V V,F 0 0[ ]. In uniform graphene 
(V0  =  0), the doping is determined by EF. In graphene 
PNJ, the electron doping in the N region (left) is +V E0 F, 
while the hole doping in the P region (right) is −V E0 F, 

Figure 1. (a) Graphene P–N junction at x  =  0, with two 
localized spins SS1 (in the N region) and SS2 (in the P region). 
The unit cell of graphene (dashed ellipse) consists of one 
atom on sublattice A and one atom on sublattice B. (b) Dirac 
cones of the N region and P region relative to the Fermi 
energy. ∥vv qqN N and ∥( )−vv qqP P  are the group velocities of the 
incident and transmission waves, respectively.

2D Mater. 4 (2017) 035005
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e.g. =E 0F  corresponds to the electron doping in the N 
region being equal to the hole doping in the P region.

Due to the absence of spin-orbit coupling in 
the carrier Hamiltonian Ĥ , the carrier-mediated 
RKKY interaction at zero temperature between one 
local spin SS1

ˆ  at RR1 (sublattice sRR1) in the N region and 
another local spin SS2

ˆ  at RR2 (sublattice sRR2) in the P region  
(see figure 1(a)) assumes the isotropic Heisenberg form 
[33, 34]: = ⋅H JSS SSRKKY 1 2

ˆ ˆ ˆ , where the range function

∫π= −
−∞

J
J

G E ERR RR
2

Im , , d
E

0
2

2
2 1

F

( ) (3)

is determined by the unperturbed propagator (i.e. in the 
absence of the local spins) of the carriers from RR1 to RR2:

≡ | + − |+G E E HRR RR RR RR, , i0 .2 1 2 1( ) ⟨ ( ˆ ) ⟩

In arr iv ing at equation (3), we have used 
=G E G ERR RR RR RR, , , ,2 1 1 2( ) ( ) due to the time-reversal 

invariance of the graphene Hamiltonian Ĥ. Note that 
the propagator G ERR RR, ,2 1( ) and hence the RKKY range 
function J are very sensitive to the sublattices on which 
RR1 and RR2 locate (i.e. sRR1 and sRR2), e.g. when RR2 moves from 
an atom on the A sublattice ( =s ARR2 ) to a neighboring 
atom on the B sublattice ( =s BRR2 ) (see figure 1(a)), 
the propagator and hence the RKKY interaction may 
change significantly.

Now we discuss how the anomalous focusing effect 
in graphene PNJs [2] can be utilized to manipulate 
the carrier propagator and hence the RKKY interac-
tion beyond the ‘universal’ 1/Rd long-range decay as 
encountered in previous studies. Ever since the pioneer-
ing work of Cheianov et al [2], there have been many 
studies on the anomalous focusing effect, either based 
on the classical analogy to light propagation in geo-
metric optics or based on the scattering of the electron 
wave functions. Below, we provide a physically intuitive 
analysis on how the graphene PNJ focuses the carrier 
propagator and hence the RKKY interaction based on 
the continuum model of graphene [1]. The purpose is 
to provide a qualitative picture for the focusing of the 
RKKY interaction and establish its effectiveness for an 
arbitrary direction of the P–N interface.

2.1. Anomalous focusing of carrier propagator: 
continuum model
The low-energy physics of graphene is described by two 
Dirac cones located at KK  and = −′KK KK, which form a 
Kramer pair. For clarity, we first analyze the focusing 
effect based on the KK-valley continuum model, leaving 
the discussion including both valleys to the end of this 
section. Using the band-edge Bloch functions |Φ AKK, ⟩ 
(from πz-orbitals on the A sublattice) and |Φ BKK, ⟩ (from 
πz-orbitals on the B sublattice) of the KK  valley as the 
basis, the continuum model for the KK valley reads [1],

σ= ⋅ +h v x Vpp sgn ,F 0ˆ ˆˆ ( ) (4)

where pp̂ is the momentum relative to the KK  valley 
and vF is the Fermi velocity. Note that the continuum 
model regards the two atoms of the same unit cell 

to locate at the same spatial point, so each spatial 
point contains two sublattices/orbitals and the 
Hamiltonian ĥ is a ×2 2 matrix. Correspondingly, the 
carrier propagator from RR1 to RR2 is also a ×2 2 matrix: 

≡ | + − |+E E hgg RR RR RR RR, , i02 1 2 1( ) ⟨ ( ˆ) ⟩, e.g. its (B, A) 
matrix element gives the carrier propagator from the 
sublattice A at RR1 to the sublattice B at RR2.

For uniform graphene, the KK-valley continuum 
model (equation (4) with V0  =  0) leads to a massless 
Dirac spectrum ( )≡± | |±E vqq qqF  and chiral eigenstates 

〉 ( )〉|± = |⋅ ±uqq qq, e qq rri , where | ±u qq( )⟩ is the two-comp-
onent spinor for the sublattice degrees of freedom. The 
conduction (valence) band state |+ qq, ⟩ (|− qq, ⟩) has a 
group velocity = | |vvv qq qq qqF( ) /  (− ≡− | |vvv qq qq qqF( ) / ) par-
allel (anti-parallel) to the momentum qq. The RKKY 
interaction is usually dominated by the contributions 
from carriers near the Fermi surface (the energy int-
egral in equation (3) merely produces a multiplicative 
factor ∝ R1/ ), so we focus on the carrier propagator on 
the Fermi level EF. For >E 0F , the Fermi momentum 
is ≡q E vF F F/ , and the right-going eigenstates |+ qq, ⟩ on 
the Fermi contour are characterized by the momen-

tum ≡ −q q qqq ,y yF
2 2 1 2(( ) )/ . The ×2 2 propagator from 

RR1 to RR2 (on the right of RR1) in uniform graphene can be 
expressed in terms of these eigenstates as

∫ π
=

| |
−∞

∞ + + ⋅ −E
q u u

v
gg RR RR

qq qq

qq
, ,

d

2 i
e .

y

x

qq RR RR
uniform 2 1 F

i 2 1( )
( )〉〈 ( )

( )
( )

 

(5)
The RKKY interaction in uniform graphene is given by 
equation (3) with G ERR RR, ,2 1( ) replaced by the s s,RR RR2 1( ) 
matrix element of Egg RR RR, ,uniform 2 1 F( ).

For the graphene PNJ described by the KK-valley 
continuum model in equation (4), the first local spin 
SS1 in the N region excites a series of outgoing plane 
wave eigenstates on the Fermi contour, but only the 
right-going eigenstates, i.e. |+ qq, N⟩ with momentum 

≡ −q q qqq ,y yN N
2 2 1 2(( ) )/ , can transmit across the P–N 

interface, becomes a right-going eigenstate |− qq, P⟩ 
with momentum ≡ − −q q qqq ,y yP P

2 2 1 2( ( ) )/  on the Fermi 

contour of the P region, and finally arrive at SS2, where 
≡ +q V E vN 0 F F( )/  and ≡ −q V E vP 0 F F( )/  are Fermi 

momenta in the N and P regions, respectively. In terms 
of these local, right-going eigenstates on the Fermi 
contours, the carrier propagator from RR1 to RR2 is (see 
appendix A):

( ) ( )
( )〉〈 ( )

( )∫ π
=

| |
−∞

∞ − + ⋅ − ⋅E
q

w q
u u

v
gg RR RR

qq qq

qq
, ,

d

2 i
e e ,

y
y

x

qq RR qq RR
2 1

P N

N

i iP 2 N 1

 (6)

where w(qy) is the transmission coefficient of the 
incident state |+ qq, N⟩ across the PNJ. The RKKY 
interaction in the graphene PNJ is given by equation (3) 
with G ERR RR, ,2 1( ) replaced by the s s,RR RR2 1( ) matrix element 
of Egg RR RR, ,2 1 F( ).

The key difference between the carrier propagator 
in the graphene PNJ (equation (6)) and that in uniform 
graphene (equation (5)) is the change of the propaga-
tion phase factor from ≡ φ⋅ −e e qqq RR RRi i y2 1 0( ) ( ) for uniform 

2D Mater. 4 (2017) 035005
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graphene to ≡ φ⋅ − ⋅e e qqq RR qq RRi i yP 2 N 1 NP( ) ( ) for the graphene 
PNJ. This change is responsible for the anomalous 
focusing of the diverging carrier wave into a converg-
ing one. For an intuitive analysis of this behavior, we 
discretize the qy axis into grids ∆m  ( Z∈m ), where the 
spacing �∆  size of the graphene Brillouin zone. Then 

equation (6) gives = ∑E Egg RR RR gg RR RR, , , ,m
m

2 1 2 1( ) ( )( )  and 
gg m( ) is the contribution from the qy integral over the mth 
segment − ∆ + ∆m m1 2 , 1 2[( / ) ( / ) ], corresponding to 
a wave packet characterized by the center momentum 
= ∆q my . In other words, the entire propagator is the 

sum of contributions from all these wave packets char-
acterized by different center momenta qy’s on the Fermi 
contour. The same analysis is applicable to the propaga-
tor gguniform in uniform graphene (equation (5)). Since 
the integrand is the product of a slowly-varying part 
and a rapidly oscillating propagation phase factor, the 
contribution from a given wave packet characterized by 
the center momentum qy is appreciable only when the 

propagation phase is stationary: φ∂ =q 0q y0y
  ( )  (for uni-

form graphene) or φ∂ =q 0q yNPy
( )  (for graphene PNJ). 

This first-order stationary phase condition determines 
the most probable (or classical) trajectory of a wave 
packet emanating from RR1.

In uniform graphene, the classical trajectory 
of a given wave packet characterized by the center 
momentum = −q q qqq ,y yF

2 2 1 2(( ) )/  on the Fermi 

contour (equation (5)) is a beam emanating from 

RR1 and going along the wave vector qq. The classical 
trajectories of different wave packets on the Fermi 

contour form many outgoing beams emanating 
from RR1, which manifests the diverging propaga-

tion of the carriers in uniform graphene and leads to 

∝ Rgg 1uniform
1 2/ / . By contrast, in the graphene PNJ, the 

classical trajectory of a given wave packet character-
ized by the center momentum = −q q qqq ,y yN N

2 2 1 2(( ) )/  

with incident angle θ = − q qtan y xN
1

N,( / ) consists of 

the incident beam along qqN, the reflection beam with 

a  reflection angle θN, and the refraction beam with a 
refraction angle θ ≡ − q qtan y xP

1
P,( / ), as sketched in 

figure 1(a) and further visualized in figure 2(a). Here 
the refraction angle θP is determined by the Snell law 
θ θ= nsin sinN P with a negative effective refractive 

index ≡− − +n V E V E0 F 0 F( )/( ) [2].
Let us use X Y,1 1( ) and X Y,2 2( ) to denote the Cartesian 

coordinates of RR1 and RR2, respectively. In the graphene 
PNJ, when RR2 locates on the caustics [2]

− =
−
−

Y Y
X nX

n 1
,2 1

2 2
2 3

1
2 3 3

2
( ) [ ( ) ]/ /

 (7)

the wave packet going from RR1 to RR2 obeys not 

only φ∂ =q 0q y0y
( ) , but also φ∂ =q 0q y

2
0y
( ) , so that 

its contribution to the propagator Egg RR RR, ,2 1 F( ) is 
enhanced. The most interesting case occurs at =E 0F  or 
equivalently n  =  −1. In this case, we have = −q qx xN, P, , 
thus for RR2 at the mirror image of RR1 about the PNJ, i.e. 
= ≡ | |X YRR RR ,2 1

m
1 1( ), the phase φ qyNP( ) vanishes for 

all qy, so that the integrand in equation (6) no longer 
suffers from the rapidly oscillating phase factor 
φe qi yNP( ). This corresponds to constructive interference of 

Figure 2. Anomalous focusing across a graphene PNJ at x  =  0. The propagator is the sum of the contributions from all the wave 
packets characterized by different center momenta on the Fermi contour. (a) Contribution of a single wave packet on the Fermi 
contour (whose center momentum has an incident angle �θ = 15N ) to the propagator ( )| = |g E tRR RR, , 0.03BA 2 1 F  versus ( )= X YRR ,2 2 2  
on the B sublattice, where ( )= X YRR ,1 1 1  is fixed at X1  =  −3000a and Y1  =  0 on the A sublattice. The dashed arrows mark the classical 
trajectory. (b) Propagator ( )| = |g ERR RR, , 0BA 2 1 F  versus RR2 on B sublattice for fixed ( )= − aRR 601 , 01  on A sublattice. (c) Decay of the 

propagator ( )| |g ERR RR, ,BA 2 1 F  along the x axis (i.e. = =Y Y 01 2 ) with increasing distance R, where RR2 is on the cusp of the caustics. The 
PNJ potential V0  =  t/2 for (a) and t/5 for (b) and (c).

2D Mater. 4 (2017) 035005
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all the transmission waves at RR1
m or equivalently perfect 

focusing of the diverging electron beams emanating 
from RR1 onto RR1

m [2]. This not only lead to strong local 
enhancement of the propagator =Egg RR RR, , 02 1 F( ) when 
RR2 locates in the vicinity of RR1

m (see figure 2(b)), but also 
makes =Egg RR RR, , 01

m
1 F( ) independent of the distance 

R (black, solid line in figure 2(c)), in sharp contrast to 
the 1/R1/2 decay in uniform graphene. This distance 
independent propagator can be attributed to the 
existence of a hidden symmetry on the Fermi contours 
of the host material [55].

When ≠E 0F , the anomalous focusing locally 
enhances the propagator from RR1 to its caustics and 
slows down its decay with the distance to a slower 
rate  ∼ ξR1/  (ξ< 1 2/ ) compared with the 1/R1/2 decay 
in uniform graphene, as a consequence of imperfect 
focusing away from n  =  −1, e.g. for RR2 on the cusp 
( )| | |n X , 0 ,1  we have ξ≈ 0.24 nearly independent of EF, 
as shown in figure 2(c). By contrast, for RR2 far away  
from the caustics, the propagator recovers the 1/R1/2 
decay of uniform graphene. In addition to locally 
enhancing the propagator, the PNJ also slightly 
decreases the propagation amplitude via the finite 
transmission w(qy). However, this effect is of minor 
importance because Klein tunneling [56] allows car-
riers with a small incident angle θN to go through the 
PNJ almost completely, as demonstrated by the weak 
reflection in figure 2(a) when the incident angle is small.

From the above analysis, it is clear that the PNJ 
qualitatively changes the diverging spherical propaga-
tion of carriers in graphene into a converging one. This 
greatly enhances the propagator near the caustics, so 
that its decay with inter-spin distance R slows down (for 
≠E 0F ) and even ceases (for =E 0F ). At large distances, 

the non-decaying propagator could lead to 1/R decay 
of the RKKY interaction between two mirror symmet-
ric spins about the PNJ, as we demonstrate shortly (see 
section 3.1).

Before concluding this section, we emphasize that 
the above analysis is based on the KK-valley continuum 
model, featured by a single Dirac cone and a circular 
Fermi contour. This simplified model ignores two 
important effects: the trigonal warping at high energies 
and the presence of another Dirac cone at = −′KK KK. At 
high Fermi energies | | ∼E tF , the trigonal warping leads 
to non-circular Fermi contours, while the inter-valley 
scattering may decrease the transmission probability 
across a sharp PNJ [57]. The former makes the focus-
ing effect no longer perfect even when =E 0F , while the 
latter decreases the carrier propagator and hence the 
RKKY interaction. Even in the linear regime �| |E tF , 
the presence of two inequivalent valleys still gives rise 
to inter-valley interference that significantly affect the 
RKKY interaction, as discussed by Sherafati and Sat-
pathy [33, 34] for uniform graphene. Here we briefly 
discuss this issue for the graphene PNJ. First, we assume 
that the P–N interface does not induce inter-valley scat-
tering. Then, when both KK and ′KK  valleys are included, 
the ×2 2 carrier propagator from RR1 to RR2 would be

( ) ( ) ( )( ) ( )G = + ′⋅ − ⋅ −′E E ERR RR gg RR RR gg RR RR, , e , , e , , ,KK RR RR KK RR RR
2 1

i
2 1

i
2 12 1 2 1

where gg ( ′gg ) is the propagator in the presence of 
the KK  ( ′KK ) valley alone (see equation (6) for the 
expression of gg). The ′KK -valley continuum model 

σ= − ⋅ +′ ∗h v x Vpp sgnF 0ˆ ˆˆ ( )  i s  the t ime reversal 
of the KK -valley model (equation (4)), so that 

=′g E g ERR RR RR RR, , , ,s s s s2 1 1 2
2 1 1 2

( ) ( ), i.e. the propagator 

of a ′KK -valley electron from the sublattice s1 at RR1 to 
the sublattice s2 at RR2 is equal to the propagator of a  
KK-valley electron from the sublattice s2 at RR2 back 
to the sublattice s1 at RR1. This also ensures the 
time-reversal invariance of the total propagator: 
G G=E ERR RR RR RR, , , ,s s s s2 1 1 22 1 1 2  ( ) ( ). The RKKY inter-

action is given by equation (3) with G ERR RR, ,2 1( ) 
replaced by the s s,RR RR2 1( ) matrix element of ( )G ERR RR, ,2 1 .  
Consequently, the RKKY interaction consists of 
the intra-valley contributions and the inter-valley 
interference term. The former oscillates slowly on the 
length scale of the Fermi wave length, while the latter 
oscillates rapidly as − ⋅ −′e KK KK RR RRi 2 1( ) ( ) on the atomic scale, 
similar to the case of uniform graphene [33, 34]. In 
the presence of inter-valley scattering by the P–N 
interface, a quantitative description is very difficult 
within the continuum model, but we still expect the 
contribution from the inter-valley interference to be 
rapidly oscillating on the atomic scale. Therefore, the 
slowly-varying envelope of the RKKY interaction is 
always determined by the intra-valley contributions, 
which are independent of the direction of the P–N 
interface with respect to the crystalline axis of graphene. 
In other words, the continuum model suggests that the 
focusing of the RKKY interaction should occur for an 
arbitrary direction of the P–N interface, as confirmed 
by our subsequent numerical calculation based on the 
tight-binding model.

2.2. Symmetry-protected non-oscillatory RKKY 
interaction
For uniform graphene, the tight-binding Hamiltonian 
H0
ˆ  (see equation (2a)) possesses electron-hole 

symmetry = −−
PH P H0

1
0

ˆ ˆ ˆ ˆ . [31, 36, 58], where P̂ inverts 
all the πz-orbitals on sublattice B but keeps all πz-orbitals 

on sublattice A invariant, i.e. | =±|P RR RRˆ 〉 〉, with the 
upper (lower) sign for =s ARR  ( =s BRR ). For undoped 
graphene, this makes the RKKY interaction between 
local spins on the same (opposite) sublattice always 
ferromagnetic (antiferromagnetic), irrespective of 
their distance. However, once the graphene is doped, 
the RKKY interaction recovers its ‘universal’ oscillation 
with a characteristic wavelength λ 2F/  (λF is the Fermi 
wavelength) between ferromagnetic and anti-
ferromagnetic couplings, as also found in many other 
materials.

For the graphene PNJ, the presence of the junc-
tion potential breaks the electron-hole symmetry of 
uniform graphene. Moreover, since both the N region 
and the P region are doped, the RKKY interaction is 
also expected to oscillate between ferromagnetic and 
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antiferromagnetic couplings with the distance. Inter-
estingly, we find that the electron-hole symmetry can 
be restored under certain conditions. Let us consider a 
general graphene PNJ described by the tight-binding 
Hamiltonian equation (2) with a general on-site junc-
tion potential VRR and define the mirror reflection opera-
tor M̂ that maps the πz-orbital |RR⟩ to another πz-orbital 
|RRm⟩ at the mirror image location RRm about the P–N 

interface, i.e. | = |M RR RRmˆ 〉 〉. The key observation is that 
as long as the mirror reflection M̂ about the P–N inter-
face keeps the graphene lattice invariant but inverts the 
junction potential (i.e. = −V VRR RRm), the PNJ Hamilto-
nian Ĥ possesses a generalized electron-hole symmetry: 
( ˆ ˆ ) ˆ ( ˆ ˆ ) ˆ= −−PM H PM H1 . This ensures the eigen-energies 
of the PNJ to appear in pairs ε ε−,( ) and the corre-

sponding eigenstates φ| ε⟩ and φ| ε− ⟩ obey φ φ| = |ε ε− PM⟩ ˆ ˆ ⟩, 
similar to the electron-hole symmetry in uniform gra-
phene [31, 36, 58]. As a consequence of this symmetry, 
when =E 0F , the Matsubara Green’s function G τ′RR RR, ,( ) 
[59] obeys τ τ− =±RR RR RR RR, , , ,1 1

m
1
m

1( ) ( )G G , with the 
upper (lower) sign for RR1 and RR1

m on the opposite (same) 
sublattices. The time-reversal symmetry further dictates 
the Matsubara Green’s functions to be real. According 
to the imaginary-time formalism for the RKKY interac-
tion [31, 36, 58] (equivalent to the real-time formalism 
in equation (3)), the sign of the RKKY range function 
is determined by G Gτ τ−RR RR RR RR, , , ,1 2 2 1( ) ( ). Therefore, 
when the two local spins are mirror symmetric about 
the PNJ, i.e. =RR RR2 1

m, their RKKY interaction is always 
ferromagnetic (antiferromagnetic) on the same (oppo-
site) sublattices, irrespective of their distance. If the 
P–N interface is along the zigzag direction, then RR1 and 
RR1

m are always on opposite sublattices, so the RKKY 
interaction is antiferromagnetic. If the P–N interface 
is along the armchair direction, then RR1 and RR1

m are 
always on the same sublattice, so the RKKY interaction 
is ferromagn etic.

3. Numerical results

Here we calculate the RKKY interaction in the 
graphene PNJ numerically based on the tight-binding 
model (equation (2)), with the on-site junction 
potential = −V VRR 0 ( = +V VRR 0) in the N (P) region. 
For convenience, we introduce the dimensionless 
RKKY range function J≡ tJ J0

2/ . Due to the 
transformation −H Hˆ → ˆ  upon − −V t V t, ,0 0( ) → ( ) 
and the time-reversal symmetry, J  is invariant upon 

− −E V E V, ,F 0 F 0( ) → ( ) (see appendix B), so we need only 
consider V0  >  0. Our results show that for different 
orientations of the PNJ (e.g. along the zigzag direction, 
the armchair direction, and a slightly misaligned 
direction) and different sublattice locations of RR1 and 
RR2, the RKKY interaction exhibits similar anomalous 
focusing behaviors, consistent with our previous 
analysis based on the continuum model in section 2.1. 
For specificity, we present our results for a PNJ along the 
zigzag direction and always take RR1 on the A sublattice 
and RR2 on the B sublattice.

3.1. Anomalous focusing of RKKY interaction
For the first local spin SS1

ˆ  fixed at = − aRR 91 , 01 ( ) (a is 
the C–C bond length, see figure 1(a)), the spatial map 
of the scaled range function JR a2 2/  as a function of 
the location = X YRR ,2 2 2( ) of the second local spin 
SS2
ˆ  is shown in figure 3(a) for uniform graphene and 
figures 3(b)–(d) for graphene PNJ. Here we follow 
[60] and use the multiplication factor R a2 2/  to remove 
the intrinsic decay ∝ R1 2/  of the RKKY interaction in 
uniform graphene [30, 34]. This helps us to present 
an overall view of the spatial texture of the RKKY 
interaction over both the N region and the P region 
in a single contour plot and highlights the focusing 
of the RKKY interaction by the P–N interface. For 
example, in uniform graphene with V0  =  0 and 
=E t0.2F  (figure 3(a)), the scaled range function does 

not decay, manifesting the intrinsic 1/R2 decay of the 
RKKY interaction. By contrast, in the graphene PNJ 
(figures 3(b)–(d)), the P–N interface induces strong 
local enhancement of the RKKY interaction in the 
P region, but it has a negligible influence in the N 
region. This is an obvious consequence of anomalous 
focusing: in the N region, the carrier propagation 
remains diverging, similar to uniform graphene shown 
by figure 3(a); while in the P region, the carrier wave 
is refocused by the PNJ [2]. For =E 0F  in figure 3(b), 
corresponding to an effective refraction index n  =  −1, 
the RKKY interaction is significantly enhanced when SS2

ˆ  
locates near the mirror image of SS1

ˆ  about the PNJ. For 
=E t0.02F  in figure 3(c) ( = −E t0.02F  in figure 3(d)), 

corresponding to ≈−n 0.82 ( ≈−n 1.2), the maximum 

Figure 3. Scaled RKKY range function /JR a2 2 versus 
( )= X YRR ,2 2 2  on the B sublattice for fixed ( )= − aRR 91 , 01  

on the A sublattice in (a) uniform graphene with electron 
doping =E t0.2F  and (b)-(d) graphene PNJ with junction 
potential V0  =  0.2t and different Fermi energies. The 
same color scale is used for all the panels , i.e. blue (red) 
for negative (positive) or equivalently ferromagnetic 
(antiferromagnetic) RKKY interactions.
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of the RKKY interaction shifts towards (away from) 
the PNJ, consistent with the shift of the caustics (see 
equation (7)).

Now we discuss two fine features in figure 3. First, 
for uniform graphene, figure 3(a) reproduces the C3v 
spatial symmetry at short distances [60], the slow 
 oscillations with a characteristic wavelength λ 2F/  
[30, 34, 60], and the rapid oscillations on the atomic 
scale due to the inter-valley interference [31, 34, 60], as 
described by the dimensionless range function at large 
distances �q R 1F( ) [34]:

π

θ

≈ − − ⋅

−

′
q a

R a

q R

KK KK RR
9

32
1 cos

2 sin 2 ,RR

uniform
F

2 2

F

( / )
{ [( )

]} ( )

J
 

(8)

where qF is the Fermi momentum and θRR is the angle 
between ≡ −RR RR RR2 1 and − ′KK KK . For the graphene  
PNJ in figures 3(b)–(d), the RKKY interaction also 
consists of a slowly-varying envelope and a rapidly-
varying part that oscillates on the atomic scale. As 
discussed at the end of section 2.1, the former comes 
from the intra-valley contributions, while the latter 
comes from the inter-valley interference and hence 
oscillates with a momentum − ′KK KK , similar to 
equation (8). Notice that in figures 3(a)–(d), the most 
rapid atomic-scale oscillation occurs along the y axis 
(i.e. the zigzag direction, see figure 1(a)), consistent 
with previous studies in uniform graphene [33, 34].

Second, in figures 3(b)–(d), there is no local 
enhancement of the RKKY interaction near the P–N 
interface. According to equation (3), this manifests the 
fact that there is no local charge accumulation near the 
P–N interface, since the incident electron wave emanat-
ing from RR1 either reflects back or transmits through the 
P–N interface. The interference between the incident 
wave and the reflection wave in the N region (near the 
P–N interface) can be clearly seen by comparing fig-
ures 3(b)–(d) to figure 3(a).

Let us consider the RKKY interaction between two 
mirror symmetric spins in graphene PNJ at =E 0F , i.e. 
electron doping V0 in the N region and hole doping V0 
in the P region. According to the symmetry analysis 
in section 2.2, for the PNJ with its interface along the 
zigzag direction, the RKKY interaction between two 

mirror symmetric spins is always antiferromagnetic. 
This feature is demonstrated by figure 4. As shown in 
figure 4(a), in the linear regime ( �V t0 ), the RKKY 

interaction J∝V 0
2 increases quadratically with V0. 

As shown in figure 4(b), the scaled RKKY interaction 
strength JR a/  is R-independent at large distances. This 
indicates that J  follows 1/R asymptotic decay due to 
the perfect refocusing, in sharp contrast to the 1/Rd 
asymptotic decay in a great diversity of doped d-dimen-
sional materials, as well as the 1/R3 asymptotic decay in 
undoped graphene. Therefore, the RKKY interaction 
at �V t0  and � λR F can be well approximated by the 
analytical expression J≈ V t R a0.012 ,0

2( / ) /( / )  where 
the constant 0.012 is obtained by fitting the data in fig-
ures 4(a)–(b). For comparison, in uniform graphene 
with the same doping level as the PNJ, the envelope of 
the RKKY interaction (see equation (8)) has the asymp-
totic form J ≈ V t R a0.037uniform 0

2 2( / )/( / ). The RKKY 
interaction in the graphene PNJ differs qualitatively 
from that in uniform graphene in the scaling with both 
the distance (J ∝ R1uniform

2/  versus J∝ R1/ ) and the 
junction potential V0 or equivalently carrier concentra-

tion (J ∝Vuniform 0 versus J∝V 0
2). Since the localized 

spins are usually fixed, dynamic tuning of the PNJ by 
electric gating potentially allows for selective control of 
localized spins, an important ingredient for spin-based 
quantum computation.

3.2. Experimental feasibility and generalization  
to other materials
Since the focusing of the RKKY interaction is 
dominated by the contribution from the electron states 
near the Fermi level, and these states cannot not ‘feel’ 
any potential variation on the length scale � Fermi 
wavelength λF, the finite width of the PNJ has a small 
influence as long as it is much smaller than λF. Taking 
V0  =  0.1t and the first local spin at = − aRR 151 , 01 ( ) as 
an example, using the experimentally fabricated linear 
PNJ [61] of width ≈a29 4.1 nm, instead of a sharp PNJ, 
only reduces the magnitude of the RKKY interaction 
by  ∼25% without changing the 1/R asymptotic scaling.

In the presence of a finite gap ∆ (e.g. due to sub-
strate mismatch [62]) in the Dirac spectrum of gra-
phene, as long as �∆ | |V0 , the gap does not signifi-

Figure 4. RKKY range function between two local spins mirror symmetric about the PNJ with =E 0F . (a) J  versus junction 
potential for different inter-spin distances R. (b) /JR a versus R for different junction potentials.
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cantly influence the states near the Fermi level, which 
dominates the anomalous focusing effect. This has been 
confirmed by our numerical calculation using =E 0F , 
V0  =  0.2t, and a typical gap ∆ = t0.03 : no appreciable 
change of the focusing behavior occurs. As a matter 
of fact, from our analytical analysis following equa-
tion (6), it is clear that perfect focusing of the PNJ with 
=E 0F  essentially arises from the opposite momenta 

= − = −q q V v qx x yN, P, 0 F
2 2 1 2[( / ) ] /  in the N region and 

P region of the PNJ, which suppresses the rapidly oscil-
lating phase ⋅ − ⋅ =qq RR qq RR 0P 2 N 1  (see equation (6)) as 
long as RR1 and RR2 are mirror symmetric about the PNJ. 
The key ingredients of this effect are the circular Fermi 
contours and the opposite group velocities in the N 
region and P region, although the linear dispersion and 
gapless feature of graphene allows high transmission of 
electron waves (i.e. Klein tunneling) and hence quanti-
tatively stronger focusing effect. Consequently, similar 
principle should lead to similar effect in other mat-
erials with a nonlinear dispersion and/or a finite gap 
(e.g. silicene PNJ [63]). For example, we have numer-
ically verified that the local enhancement of the RKKY 
interaction remains effective even when the gap of the 
graphene PNJ increases to ∆ = 0.1 t.

The anomalous focusing is pronounced at low 
temper ature and persists up to nitrogen temperature 
[2]. To observe the 1/R long-range RKKY interaction 
across the graphene PNJ, experiments should be carried 
out at a temperature higher than the Kondo temper-
ature to avoid the screening of the local spins by the 
carriers [35]. The anomalous focusing in graphene 
PNJ has been demonstrated by two recent experiments 
[12, 13]. Thus we expect our theoretical results to be 
exper imentally accessible.

4. Summary

As opposed to previous works that explore the 
influence of electronic states and energy band 
structures of uniform 2D systems on the carrier-
mediated RKKY interaction, we have proposed a very 
different way to manipulate the RKKY interaction: 
tailoring the carrier propagation and interference via a 
well-known electron optics phenomenon in graphene 
P–N junctions—the anomalous focusing effect. 
This gives rise to rich spatial interference patterns 
and locally enhanced, symmetry-protected non-
oscillatory RKKY interaction, which may pave the way 
towards long-range spin-spin interaction for scalable 
graphene-based spintronics devices. The key physics 
leading to the focusing of the RKKY interaction is the 
focusing of the carrier spin fluctuation emanating 
from a local spin. In this context, we notice a very 
relevant work by Guimaraes et al [64], which shows 
that a gate-defined curved boundary in graphene can 
focus the spin current emanating from a precessing 
magnetic moment onto a specific point. We expect that 

this spin current lens could be utilized as an alternative 
way to focus the RKKY interaction.
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Appendix A. Propagator in KK-valley 
continuum model

Here we derive the ×2 2 matrix propagator ′ Egg rr rr, ,( ) 
with ∈ −E V V,0 0[ ] in the KK-valley continuum model 
(equation (4) of the main text). Due to translational 
invariance along the y axis, the 2D propagator

∫ π
≡′ ′− ′E

q
x x Egg rr rr gg, ,

d

2
e , ,

y q y yi
1D

y( ) ( )( ) (A.1)

is determined by the 1D propagator ′x x Egg , ,1D( ) 
of the ×2 2 Hamiltonian ( ) σ̂− ∂ = − ∂ +x vhh , i ix x x1D F  
σ +v q x Vsgny yF 0ˆ ( ) , with the dependence of �gg1D( ) 

and �hh1D( ) on qy omitted for brevity. Here ′x x Egg , ,1D( ) 
obeys the differential equations

[ ( )] ( ) ( )

( )[ (
←⎯⎯

)] ( )

δ

δ

+ − − ∂ = −

+ − − ∂ = −

′ ′

′ ′ ′

+

+
′

E x x x E x x

x x E E x x x

hh gg

gg hh

i0 , i , , ,

, , i0 , i ,

x

x

1D 1D

1D 1D

(
←
∂ ′x  acting on the left) and the continuity condi-

tions

( ) ( ) /
( ) ( ) /

σ
σ

+ − − = −
+ − − =

+ +

+ +

x x E x x E v

x x E x x E v

gg gg

gg gg

0 , , 0 , , i ,

, 0 , , 0 , i .
x

x

1 D 1D F

1D 1D F

Then ′x x Egg , ,1D( ) is obtain by first calculating the 
general solutions in the region ≠ ′x x  and then 
matching them using the boundary conditions.

To present the results in a physically intuitive way, 
we introduce the following concepts. Given the energy 

E and momentum qy, there is one right-going eigenstate 

|+ qq, N⟩ with ≡ q qqq ,x yN N,( ) and one left-going eigenstate 

|+ qq, N˜ ⟩ with ≡ −q qqq ,x yN N,˜ ( ) in the N region, as well as 

one right-going eigenstate |− qq, P⟩ with ≡ q qqq ,x yP P,( ) and 

one left-going eigenstate |− qq, P˜ ⟩ with ≡ −q qqq ,x yP P,˜ ( ) in 

the P region, where | ∝ |⋅s uqq qq, e s
qq rri⟩ ( )⟩ is the eigenstate 

of uniform graphene in the conduction band (s  =  +) 

or valence band (s  =  −). For small | |qy , we choose 

>q 0xN,  and <q 0xP, , so that |+ qq, N⟩ and |− qq, P⟩ (|+ qq, N˜ ⟩ 
and |− qq, P˜ ⟩) propagate from the left (right) to the right 

(left) without decay. For large | |qy , we choose >qIm 0xN,  
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and >qIm 0xP, , so that |+ qq, N⟩ and |− qq, P⟩ (|+ qq, N˜ ⟩ and 
|− qq, P˜ ⟩) decays to zero at +∞x →  −∞x( → ).

In terms of these left-going and right-going eigen-
states with given energy E and qy, the 1D propagator 
from ′x  in the N region to x in the P region is

= | |′ − +
− ′x x E

w q

v
u ugg

qq
qq qq, ,

i
e ,

y

x

q x q x
1D

N
P N

i x xP, N,( )
( )

( )
( )⟩⟨ ( ) ( )

 (A.2)

where θ= +θ θ−w q 2 cos e ey N
i iN P( ) /( ) is the transmi- 

ssion coefficient and ≡ | |vvv qq qq qqF( ) /  is the group 
velocity, with θN (θP) is the incident (transmission) 

angle defined via + = + θv q q E Vi ex yF N, 0
i N( ) ( )  and  

+ = − − θv q q V Ei ex yP, 0
i

F
P( ) ( ) . Substituting equations  

(A.2) into (A.1) g ives  the 2D propagator 

|′
∈ ∈′Egg rr rr, , rr rrN, P( )  in equation (6) of the main text. For 

< <′x x 0, the 2D propagator ′ Egg rr rr, ,( ) is the sum of 
the direct, forward propagation from ′rr  to rr,

∫ π
| |+ + ⋅ − ′

q u u

v

qq qq

qq

d

2 i
e ,

y

x

qq rr rrN N

N

i N
( )⟩⟨ ( )

( )
( )

and the contribution from the reflected wave

∫ π
| |+ + ⋅ − ⋅ ′

q
r q

u u

v

qq qq

qq

d

2 i
e e

y
y

x

qq rr qq rrN N

N

i iN N
˜

( )
( )⟩⟨ ( )

( )
˜

via three steps: the propagation from ′rr  to the PNJ, 
the reflection by the PNJ, and the propagation of 
the reflected wave from the PNJ to rr. For < <′x x 0, 

′ Egg rr rr, ,( ) is obtained from |′
< <′Egg rr rr, , x x 0( )  by replacing 

the direct, forward propagation by the direct, backward 
propagation:

∫ π
| |+ + ⋅ − ′

q u u

v

qq qq

qq

d

2 i
e .

y

x

qq rr rrN N

N

i N
˜ ˜( )⟩⟨ ( )

( )
˜ ( )

Appendix B. Symmetry of propagators and 
RKKY interaction in tight-binding model

In the tight-binding model, the propagator from ′RR   

to RR is ≡ | − + |′ ′+ −G E E HRR RR RR RR, , i0 1( ) ⟨ ( ˆ ) ⟩. Using 

the invariance θ θ =−H H
1ˆ ˆ ˆ ˆ  and ˆ 〉 〉θ | = |RR RR  under  

time-reversal transformation, we have ( ) ≡′G ERR RR, ,  
〈 ( ˆ ) 〉 ( )| − − | =′ ′+ − ∗E H G ERR RR RR RRi0 , ,1 . Inverting the  
nearest-neighbor hopping amplitude −t t→  amounts  
to the transformation 〉→ ( ) 〉| |RR RR RRsgn  in the Hamiltonian  
and hence ( ) →| =′ −G ERR RR, , t t  ′ ′G ERR RR RR RRsgn sgn , ,( ) ( ) ( ), 
where = +RRsgn 1( )  if RR locates on the A sublattice 
and = −RRsgn 1( )  if RR locates on the B sublattice. Since 

−H Hˆ → ˆ  under − −V t V t, ,0 0( ) → ( ) and θ θ =
−

H H
1ˆ ˆ ˆ ˆ , 

we have

− | − − |

= − | − + |
= −

′ ′

′

′

+ −

+ − ∗

∗

G E E H

E H

G E

RR RR RR RR

RR RR

RR RR

, , i0

i0

, ,

1

1

( ) → ⟨ ( ˆ ) ⟩
⟨ ( ˆ ) ⟩

( )

under − − −E V t E V t, , , ,0 0( ) → ( ). Combining the 
transfor mation properties of the propagator under  
 −t t→  and − − −E V t E V t, , , ,0 0( ) → ( ) gives ′G ERR RR, ,( ) → 

( ) ( ) ( )− ′ ′∗G ERR RR RR RRsgn sgn , ,  up on  − −E V E V, ,0 0( ) → ( ).  
Using the generalized electron-hole symmetry  
of the graphene PNJ, we also have =G ERR RR, ,m( )  

( ) ( ) ( )− −∗G ERR RR RR RRsgn sgn , ,m m .
The above transformation properties of the prop-

agator leads to the corresponding properties of the 
RKKY range function J, e.g. J is invariant upon −t t→ . 
Similarly, upon − −V E V E, ,0 F 0 F( ) → ( ), we have

∫

∫

π

π

− − |

=

+∞

−

+∞

J
J

E G E

J
E G E

RR RR

RR RR

2
d Im , ,

2
d Im , , .

E
V V

E

0
2

2
2 1

0
2

2
2 1

F
0 0

F

→ ( ) →

( )

Using ∫ =
−∞

∞
G E ERR RRIm , , d 02

2 1( ) , we see that J is 

invariant upon − −V E V E, ,0 F 0 F( ) → ( ). Also, when the 
two spins locate at mirror symmetric points RR and RRm, 
their RKKY interaction J is invariant upon −E EF F→ .
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