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Abstract
On the basis of general principles of electrodynamics and quantum theory we have elaborated
the quantum field theory of plasmons in the plane metallic slab with a finite thickness by
applying the functional integral technique. A hermitian scalar field φ was used to describe the
collective oscillations of the interacting electron gas in the slab and the effective action
functional of the system was established in the harmonic approximation. The fluctuations of this
scalar field φ around the background one φ0 corresponding to the extreme value of the effective
action functional are described by the fluctuation field ζ generating the plasmons. The dynamical
equation for this fluctuation field was derived. The solution of the dynamical equation would
determine the plasmon energy spectrum.

Keywords: plasmon, plasmonic, functional integral, collective oscillation, fluctuation
Classification numbers: 3.00, 5.04

1. Introduction

During the last two decades, a new scientific discipline called
plasmonics has emerged and has rapidly developed [1, 2]. At
the present time it has extended into a large area of experi-
mental and theoretical research works. In particular, sig-
nificant scientific results were achieved in the study of
plasmonic molecular resonance coupling [3–15], plasmoni-
cally enhanced fluorescence [16–22] and plasmonic nanoan-
tennae [23–30]. To explain experimental data or to guide the
experimental research works, different phenomenological
quantum theories were proposed. Recently an attempt was
performed to construct a unified quantum theory of plasmonic
processes and phenomena—the theoretical quantum plas-
monics, starting from general principles of electrodynamics
and quantum theory [31–33]. In these theoretical works, for
simplicity the authors have limited to the case of the homo-
geneous interacting electron gas in the whole three-dimen-
sional physical space. However, in practice we always deal
with the electron gas in metallic media with boundaries. The
purpose of the present work and the subsequent ones is to

generalize the calculations in previous works [31–33] to the
case of the electron gas in a plane metallic slab with a finite
thickness.

The formulation of the problem is presented in section 2,
and a general form of the dynamical equation for the fluc-
tuation quantum field ζ is proposed. In section 3 the effective
action functional of the interacting electron gas in the metallic
slab is established in the harmonic approximation, and the
derivation of the proposed dynamical equation for the fluc-
tuation field ζ is demonstrated. The Fourier transformation of
this dynamical equation is performed in section 4. As the final
result we obtain the system of homogeneous linear integral
equations for the Fourier components of the fluctuation field
ζ. The conclusion and discussions are presented in section 5.

2. Formulation of the problem

Consider a plane metallic slab with the small thickness d and
choose the orthogonal coordinate system such that the axis Oz
is perpendicular to the plane of this slab and the coordinate
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plane xOy is located in its middle. As usual, in the quanti-
zation of the electron motion inside the slab, we consider a
rectangular box with the vertical side d and two horizontal
square bases of the side L, and impose on the electron wave
functions the periodic boundary conditions along the direc-
tions of the Ox and Oy axes. Denote

R z t x y z tr( , ; ) ( , , ; ) (1)= =

the four-dimensional coordinate vector of a point in the space-
time and choose the center of the box to be the origin O of the
coordinate system, as this represented in following figures 1
and 2.

Suppose that the electron motion along the Oz axis and
those along all directions in the coordinate plane xOy are
independent, and consider electron wave functions of the
form

u z t u t u z t u x y t u z tr r( , ; ) ( ; ) ( ; ) ( , ; ) ( ; ). (2)II II= =⊥ ⊥

Wave functions of the horizontal motion must satisfy the
following periodic boundary conditions

u L y t u L y t

u x L t u x L t
( 2, ; ) ( 2, ; ),
( , 2; ) ( , 2; ). (3)

II II

II II

− =
− =

For simplicity, suppose that the metallic slab can be
considered as a quantum well with the infinite depth: the
potential energy of electron equals to zero inside the slab and
becomes infinitely large outside the slab. Then the wave
functions u z t( ; )⊥ must satisfy the vanishing boundary con-
dition

u d t u d t( 2; ) ( 2; ) 0. (4)− = =⊥ ⊥

Free election Hamiltonian has the following eigenvalues
and eigenfunctions:
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The purpose of this work is to demonstrate that there
exists a scalar hermitian quantum field ζ(R) = ζ(r, z;t) such
that the energy spectrum of plasmons in the metallic slab is
determined by a dynamical equation of the form

( ) ( )dR A R R R, 0, (9)2 1 2 2∫ ζ =

and to derive the explicit expression of the kernel A
(R1, R2).

3. Effective action functional in the harmonic
approximation

Now we extend the method elaborated in the previous works
[31–33], introduce the scalar field φ(R) of collective oscilla-
tions of electrons and establish the effective action functional
I0[φ] of the electron gas in the harmonic approximation.
Denote

( )u R R u z z t tr r( , ) ( ), (10)1 2 1 2 1 2 1 2δ− = − − −

where u(r1–r2, z1–z2) is the potential energy of the Coulomb
interaction between two electrons located at two points (r1,
z1) and (r2, z2) in the metallic slab, and S(R1, R2) the Green

Figure 1. Plane metallic slab in the orthogonal coordinate
system Oxyz.

Figure 2. Projection of plane metallic slab with thickness d on a
plane containing axis Oz.
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function of non-interacting (i.e. without their mutual
Coulomb repulsion) electrons. Then we have

( ) ( ) ( )

( ) ( ) ( )

A R R U R R i dR dR U R R

S R R S R R U R R

,

, ,

(11)

1 2 1 2 3 4 1 3

3 4 4 3 4 2
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× −

and
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×

where n(R2) is the constant (time-independent) electron
density. Functions u(r1–r2, z1–z2) and S(R1, R2) have
following explicit expressions:
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where e is the electron charge, ε0 is the dielectric constant of
the medium,
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and n p( , )v
( )ε ± is the occupation number at the correspond-

ing quantum state of electron n p0 ( , ) 1v
( )ε⩽ ⩽± .

The expression in rhs of relation (11) contains the
function

( ) ( ) ( )R R iS R R S R R, , , . (16)1 2 1 2 2 1Π =

Using formula (14) of S(R1, R2), after lengthy but standard
analytical calculations we derive following formula
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4. Fourier transformation of dynamical equation

Formula (17) represents the Fourier transformation of the
kernel Π(R1, R2) of an integral operator. For the functions
U(R1−R2) and A(R1, R2) we have similar formulae
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Then the integral formula (11) is reduced to following
algebraic relation
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Let us now perform the corresponding Fourier transformation
of the quantum field ζ(R) in the dynamical equation (9):
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Then the dynamical equation becomes
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By solving this system of linear homogeneous integral
equations, we can calculate the plasmon frequency ω as a
function of the quantum numbers k, v and v′ of plasmons in
the metallic slab with a finite thickness d.

5. Conclusion and discussions

In this work we have presented the general formulation of the
quantum field theory of plasmons in a plane metallic slab with
a finite thickness. Starting from the expression of the effective
action functional of the electron collective oscillation field φ
(R) we have derived the dynamical equation for the fluctua-
tion quantum field ζ(R) in the form of a homogeneous linear
integral equation. Then we performed the Fourier transfor-
mation and rewrote this equation in the form of a system of
homogeneous linear integral equations for the Fourier com-
ponents of the fluctuation quantum field ζ. The comparison
with experimental data requires the approximate numerical
solution of this system of equations.

For the experimental study of physical processes and
phenomena with the participation of plasmons, the most
popular and powerful method is to investigate the electro-
magnetic processes with the presence of plasmons. In all these
processes the photon–plasmon interaction plays a significant
role. In solids there always exists the electron–phonon inter-
action leading to the plasmon–phonon coupling. The quantum
theory of interacting plasmon–photon–phonon system in a
metallic slab will be elaborated in subsequent works. More-
over, beside of conventional metallic conductors, there exists
a particular two-dimensional conductor with excellent con-
duction properties: graphene [34–36]. The elaboration of
quantum theory of plasmons in graphene would be a very
interesting work.
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