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Abstract
The present work reports the use and application of a novel protic ionic liquid
(triethylammonium bis(trifluoromethylsulfonyl)imide; NEt3H TFSI) as an electrolyte for
symmetric planar micro-supercapacitors based on silicon nanowire electrodes. The excellent
performance of the device has been successfully demonstrated using cyclic voltammetry,
galvanostatic charge-discharge cycles and electrochemical impedance spectroscopy. The
electrochemical characterization of this system exhibits a wide operative voltage of 4 V as well
as an outstanding long cycling stability after millions of galvanostatic cycles at a high current
density of 2 mA cm−2. In addition, the electrochemical double layer micro-supercapacitor was
able to deliver a high power density of 4 mW cm−2 in a very short time pulses (a few ms). Our
results could be of interest to develop prospective on-chip micro-supercapacitors using protic
ionic liquids as electrolytes with high performance in terms of power and energy densities.
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1. Introduction

Recently, micro-supercapacitors, also known as micro-ultra-
capacitors, have emerged as alternative and prospective
electrochemical energy storage devices due to their interesting
properties in terms of high power density, efficiency, fast
charge and discharge rate, excellent reversibility, long life-
span and relatively low cost, which make them very attractive
as micro-power sources for different technological

applications [1]. Over the past years, these kinds of devices
have attracted considerable attention owing to their possible
integration into miniaturized, wearable and portable electro-
nics devices such as micro-mechanical systems, micro-robots,
smartcards, radio frequency identification (RFID) tag or
medical micro-devices (e.g. implants) [2, 3]. The rapid
growth and demand of these technological applications has
triggered an important advancement in the scientific research
field of novel nano-materials and electrolytes in order to
provide ultra-high performance micro-supercapacitors in
terms of power and energy densities [4, 5]. Within this con-
text, nanostructured silicon such as silicon nanowires
(SiNWs) [6–10], silicon nanotrees (SiNTrs) (e.g.
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hyperbranched SiNWs) [11] or silicon carbide nanowires
(SiCNWs) [12–15] has sparked a great deal of interest as
nanoscale materials for micro-supercapacitor devices due to
their high surface specific area, high power pulse and long
cyclability.

In parallel, during the last decade tremendous efforts
have also been devoted to study the effect of electrolyte in
different energy technological applications such as for
example batteries, fuel and solar cells, actuators or micro-
supercapacitors [16, 17]. In this way, ionic liquids (ILs) and
derivatives (e.g. ionogels) have been selected as one of the
most novel and advanced electrolytes in the performance of
energy storage devices (e.g. micro-supercapacitors) due to
their interesting properties regarding their high thermal sta-
bility (>300 °C), wide electrochemical window (>4 V), non-
flammability and very low vapor pressure [18–20]. Accord-
ingly, one of the most important characteristics in the per-
formance of supercapacitors is related with their specific
energy (E= 1/2CV2), where C is the capacitance and V is the
cell voltage and the maximal power density (P=V2/4ESR),
where ESR is the equivalent series resistance. As can be seen,
both properties, energy and power densities, are proportional
to V2. Typically, the cell voltage is mainly limited by the
electrochemical stability of the electrolyte. According to these
characteristics, ILs as electrolyte can play a key role on the
performance of micro-supercapacitors since they can widen
the cell voltage and consequently the properties related with
power and energy densities could be increased. Currently, we
have demonstrated the excellent performance of an aprotic
ionic liquid (APIL) (N-methyl-N-propylpyrrolidinium bis
(trifluoromethylsulfonyl)imide; PYR13TFSI) as electrolyte in
a micro-supercapacitor device based on SiNWs electrodes [6].
The results reflected an operating cell voltage of 4 V, a high
maximal power density value of 182 mW cm−2 as well as an
excellent electrochemical stability after millions of galvano-
static charge-discharge cycles (e.g. 25% of the initial capa-
citance was found to be lost) [6]. The use of this IL
(PYR13TFSI) as an electrolyte in SiNWs-based micro-super-
capacitors was proven as important progress regarding the
values reported in the literature employing as an electrolyte a
PC solution containing 1M tetraethylammonium tetra-
fluoroborate (NEt4BF4) [21, 22]. Moreover, pyrrolidinium-
based APILs have shown to be excellent electrolytes for
supercapacitor operating at high temperatures [23]. Among
ionic liquids protic ionic liquids (PILs), produced through
proton transfer from a Bronsted acid to a Bronsted base, have
aroused special attention as electrolytes in the field of
supercapacitors (e.g. electrochemical double layer capacitors,
EDLCs) and fuel cells due to their interesting physical-che-
mical properties in terms of higher conductivity, proton
activity, fluidity as well as lower melting points by compar-
ison with APILs [24, 25]. Nowadays, EDLCs made of active
carbon electrodes in presence of several PILs based on
phosphonium, ammonium or pyrrolidinium derivatives have
already shown an excellent capacitive behaviour, a high
cycling stability as well as a wide cell voltage [26–31].
Interestingly, over the past years a novel protic ionic liquid
known as triethylammonium bis(trifluoromethylsulfonyl)

imide (NEt3H TFSI) has been reported as an excellent elec-
trolyte for carbon-based EDLCs [32–34]. However, to the
best of our knowledge the performance of PILs has not been
yet reported as electrolyte for micro-supercapacitors based on
nanostructured materials.

Herein, we describe the performance of a symmetric
planar micro-supercapacitor based on nanostructured silicon
electrodes (e.g. SiNWs grown by chemical vapor deposition)
using a NEt3H TFSI (scheme 1) protic ionic liquid as elec-
trolyte. The electrochemical characterization of the device
was analyzed using cyclic voltammetry, charge-discharge
galvanostatic cycles and electrochemical impedance spectro-
scopy using a wide electrochemical window of 4 V. Fur-
thermore, a morphological analysis of SiNWs was carried out
using scanning electron microscopy (SEM).

2. Experimental methodology

2.1. Materials and reagents

Highly n-doped Si (111) substrates (doping level: 5 × 1018

doping atoms cm−3) and resistivity less than 0.005 Ω cm were
used as the substrate for SiNW growth. Gold colloid solution
(50 nm) was purchased from British BioCell. Triethylammo-
nium bis(trifluoromethylsulfonyl)imide (NEt3H TFSI) was
purchased from IOLITEC (ionic liquids technologies GmbH,
Germany) and used as received without further purification.

2.2. Growth of SiNWs

SiNWs electrodes with a length of approximately 35 μm and a
diameter of 50 nm were grown in a CVD reactor (Easy-
Tube3000 First Nano, a Division of CVD Equipment Cor-
poration) by using the vapor-liquid-solid (VLS) method via
gold catalysis on highly doped n-Si (111) substrate. Gold
colloids with size of 50 nm were used as catalysts, H2 as
carrier gas, silane (SiH4) as silicon precursor, phosphine
(PH3) as n-doping gas and HCl as additive gas. SiNWs were
grown using a standard deposition process reported in our
previous works [6, 7]. The growth was performed at 600 °C,
under 6 Torr total pressure, with 40 sccm (standard cubic
centimeters) of SiH4, 100 sccm of PH3 gas (0.2% PH3 in H2),
100 sccm of HCl gas and 700 sccm of H2 as supporting gas.

2.3. Design of the micro-supercapacitor

Symmetric micro-supercapacitors were designed from
nanostructured electrodes made of SiNWs (L= 35 μm,

Scheme 1. Chemical structure of triethylammonium bis(trifluor-
omethylsulfonyl)imide (NEt3H TFSI).
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ϕ= 50 nm) with a geometric surface of 1 cm2. A homemade
two-electrode supercapacitor cell was built by assembling two
nanostructured electrodes separated by a Whatman glass fiber
paper separator soaked with the electrolyte NEt3H TFSI.

2.4. Electrochemical characterization of micro-supercapacitors

Cyclic voltammetry (CV) curves and galvanostatic charge–
discharge cycles were performed between 0 and 4 V using
different scan rates (0.2–20 V s−1) and current densities
(0.1–2 mA cm−2), respectively. Electrochemical impedance
spectroscopy (EIS) measurements were performed using a
sinusoidal signal of ±10 mV amplitude and a frequency range
from 400 kHz to 10 mHz. The electrochemical stability of the
device was obtained by performing galvanostatic charge-
discharge cycles over 5 × 106 cycles at a current density of
2 mA cm−2 in the potential range from 0 to 4 V. Electro-
chemical tests were performed using a multichannel VMP3
potentiostat/galvanostat with Ec-Lab software (Biologic,
France). All measurements were carried out using NEt3H
TFSI as an electrolyte in an argon-filled glove box with
oxygen and water levels less than 1 ppm at room temperature.

2.5. Morphological characterization

The morphology of the resulting SiNWs was examined by
using a ZEISS Ultra 55 scanning electron microscope oper-
ating at an accelerating voltage of 10 kV.

3. Results and discussion

Figure 1(a) shows the morphology of the resulting SiNWs
grown by the chemical vapor deposition process. The density
of nanowires was calculated to be ∼108 nanowires per cm2 by
counting the number of gold colloids as reported in our pre-
vious works [6, 10]. The overall length of the SiNWs was
found to be approximately 35 μm as displayed in figure 1(b).
The diameter of the nanowires was estimated to be 50 nm
according to the colloid size employed in this study.

Figure 2 shows the electrochemical characterization of
the symmetric micro-supercapacitor at room temperature
using NEt3H TFSI as electrolyte. As can be seen in

figure 2(a), cyclic voltammograms reflect a nearly rectan-
gular shape at different scan rates (5, 10 and 20 V s−1,
respectively) demonstrating an excellent capacitive behavior
and a high rate capability in a wide cell voltage range of
4 V. It is worth noting that the straight rectangular shape
was kept even at high scan rates reflecting the excellent
reversibility and faster ionic diffusion in the electrolyte–
electrode interface. The enhancement of the voltage window
up to 4 V and the excellent capacitive behavior at a high
scan rate of 20 V s−1 represent an outstanding improvement
compared with the conventional EDLCs based on carbon
electrodes. A slightly distortion of the CV curves was
attributed to the oxidation of silicon to SiO2 according to the
increase of the current reflected in figure 2(a). This beha-
viour was also observed in systems based on SiNWs or
SiCNWs using aqueous electrolytes (e.g. 1 or 3.5M KCl)
[8, 35] or organic solvents [10]. Thus, the silicon oxidation
on SiNWs has been reported due to the presence of water
traces [36]. Figure 2(b) shows a linear relation between the
capacitive current and the scan rate, which demonstrates a
negligible ohmic drop in the electrolyte bulk and no redox
peaks between the electrodes and the electrolyte were
observed. According to figure 2(b), a specific capacitance
(SC) value of approximately 17 μF cm−2 was calculated for
the SiNWs micro-supercapacitor using the CV curves. The
value was estimated from the relation

Δ=SC j
V

t

d

d
,

where Δj corresponds to the current density differences [Δj:
(jox—jred)/2 expressed in mA cm−2] in the middle of the
voltage window (2 V) and dV/dt is the scan rate (V s−1).
This value was found higher than SiNWs-based micro-
supercapacitors performed in a PC solution using a narrow
electrochemical window of ∼1 V (e.g. 10 μF cm−2) [21].
Figure 2(c) displays the galvanostatic charge–discharge
cycle of the device using a high current density of
2 mA cm−2. The profile shows a nearly symmetric triangular
shape and fairly linear slopes between 0 and 4 V reflecting
once again the excellent capacitive behavior. The specific
capacitance of the micro-supercapacitor device was obtained

Figure 1. (a) SEM image of the surface morphology of SiNWs prepared by CVD via gold colloids recorded at 45° titled angle. (b) Cross
sectional view of SiNWs.
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from the equation

= −SC
I

A

V

t
,

where the I is the applied current, A is the area of the
electrode and V/t corresponds to the slope of discharging
curve. According to this equation, a specific capacitance
value was determined to be about 16 μF cm−2 which was
found to be in excellent agreement with the CV curves. This
value was found to be constant at current densities higher
than 0.25 mA cm−2. Additionally, the device was able to be
charged and discharged in a very short time pulse (e.g.
∼0.03 s for the discharge time at a current density of
2 mA cm−2). Figure 2(d) corresponds to the Nyquist plot of
the device in a frequency range from 400 kHz to 10 mHz at
0 V. The impedance spectra of SiNWs micro-supercapacitors
reflects a straight line in the low frequency range. The
vertical profile at low frequencies indicates pure capacitive
behavior, which is associated with the good diffusion of ions
into the structure. EIS is also a powerful tool in order to
determine some other important parameters in the perfor-
mance of micro-supercapacitors such as the ESR or time
constant of the device (τ0). Precisely, τ0 is defined as the
minimum time needed to discharge all the energy from the
device with an efficiency of more than 50% [37]. This
parameter was calculated using the relation (τ0 = 1/f0)
according to a previous work reported by Taberna et al [38].

This value was found to be 4.6 ms, which was found to
be significantly lower than other micro-supercapacitors
reported in the literature based on carbon electrodes (e.g.
values ranging from 26 to 700 ms) [1]. Thus, SiNWs-based
micro-supercapacitors show a great potential for the instan-
taneous delivery of high power. Accordingly, a power
density (P) value of 4 mW cm−2 was obtained from the
galvanostatic charge–discharge cycle displayed in
figure 2(c). The power density was estimated from the
relation P=E/t where E (expressed in mJ cm−2) is the
specific energy which was described in the introduction and
t (in s) is the discharge time. This value was found to be
higher than another planar micro-supercapacitors based on
carbon derivatives such as graphene (P: 9 μWcm−2) or
carbon nanotubes (P: 0.28 mW cm−2) [1], SiCNWs [13] or
SiNWs performed in organic solvents [21]. Overall, the
electrochemical response of the device using the CV curves,
Nyquist plot and galvanostatic charge–discharge cycles
reflect two important features compared with carbon-based
EDLCs: (1) the enlargement of the electrochemical window
up to 4 V with a quasi-pure capacitive behavior at very high
scan rates, and (2) the ultra-fast capability of the device to
be charged and discharged able to deliver high power den-
sity values. These results demonstrate the excellent capaci-
tive performance of SiNWs in a 2-electrode configuration in
the presence of NEt3H TFSI. It is worth noting that a similar

Figure 2. Characterization of a SiNWs-based micro-supercapacitor using NEt3H TFSI as electrolyte at room temperature. (a) Cyclic
voltammograms at different scan rates: 20 V s−1 (blue line), 10 V s−1 (red line) and 5 V s−1 (green line). (b) Evolution of the capacitive current
versus scan rate. (c) Galvanostatic charge-discharge cycles at a current density of 2 mA cm−2 between 0 and 4 V. (d) Nyquist plots measured
at a voltage of 0 V. The impedance was measured using a frequency range from 400 kHz to 10 mHz.
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tendency was also observed for SiNWs-based micro-super-
capacitors using APILs as electrolyte (e.g. PYR13TFSI) [6].
In conclusion, ILs can be employed as promising electro-
lytes in energy storage micro-devices as for example micro-
supercapacitors based on SiNWs in the near future.

In this work, the long cycle life of the device was eval-
uated by applying a million charge–discharge galvanostatic
cycles at a high current density of 2 mA cm2 between 0 and
4 V. The percent of retained capacitance as a function of the
cycle number is shown in figure 3(a). After 5 × 106 charge–
discharge cycles, only ∼27% of the initial capacitance was
found to be lost. More importantly, most of the degradation of
the initial performance of the device occurs during the first
700 000 cycles according to the silicon oxidation, after which
the system showed stabilization, reaching a plateau-like pro-
file. This loss of specific capacitance at the beginning of the
cycling test was observed in our previous work using SiNWs
in a 3-electrode configuration in the presence of an aprotic
ionic liquid (1-ethyl-3-methylimidazolium bis(tri-
fluoromethylsulfonyl)imide (EMIM TFSI)) [39] as electrolyte
or in a 2-electrode configuration using PYR13TFSI as

electrolyte [6]. Regarding this issue, this phenomenon was
attributed to the complete oxidation of the topmost and at
least first underlying atom layer of silicon [39]. After galva-
nostatic cycling, CV curve showed a pure rectangular shape
even after several million galvanostatic charge-discharge
cycle, as displayed in figure 3(b). Accordingly, the oxidation
peak identified at the beginning of the cycling (figure 1(a))
was suppressed after cycling indicating passivation of the
surface [8]. As can be illustrated in figure 3(b), the device
exhibits a pure and excellent capacitive behaviour demon-
strating its long and remarkable stability at a wide cell voltage
of 4 V.

4. Conclusions

This manuscript reports the application of a PIL (NEt3H
TFSI) as electrolyte for planar micro-supercapacitors based
on SiNWs. The performance of the electrochemical device
shows an excellent capacitive behaviour in a wide cell voltage
as high as 4 V. In addition, the micro-supercapacitor exhibits
a high power density of 4 mW cm−2 and an outstanding
electrochemical stability after several million galvanostatic
charge-discharge cycles with a remarkable reversibility. The
results of this investigation have been compared with pre-
vious works using aprotic ionic liquids as electrolytes. The
performance of both APILs and PILs demonstrates that they
can be employed as alternative electrolytes for electro-
chemical micro-supercapacitors with similar capacitive
properties. Hence, novel ultra-high performance micro-
supercapacitors could be designed and integrated in minia-
turized electronic devices using ILs as electrolytes. To con-
clude, the performance of SiNWs-based micro-
supercapacitors in the presence of ILs as electrolytes repre-
sents an innovative breakthrough in the field of conventional
carbon-based EDLCs.
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