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Abstract
Adsorbates on graphene can create resonances that lead to efficient electron scattering and
strongly affect the electronic conductivity. Therefore, a proper description of these resonances
is important to gain a good insight into their effect on conductivity. The characteristics of the
resonance and in particular its T-matrix depend on the adsorbate itself but also on the
electronic structure of graphene. Here we show that a proper tight-binding model of graphene
which includes hopping beyond the nearest-neighbor leads to sizable modifications of the
scattering properties with respect to the mostly used nearest neighbor hopping model. We
compare results obtained with hopping beyond the nearest-neighbor to those of our recent
work (2013 Phys. Rev. Lett. 113 146601). We conclude that the universal properties discussed
in our recent work are unchanged but that a detailed comparison with experiments requires a
sufficiently precise tight-binding model of the graphene layer.
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1. Introduction

Electronic transport in graphene is sensitive in particular to
local defects such as vacancies or adsorbates [1–5]. These
defects are interesting in the context of functionalization
which aims at controlling the electronic properties by
attaching groups of atoms to graphene [6–13]. Therefore, a
theoretical understanding of conductivity in the presence of
such defects is needed. So far, the case of resonant local
defects has attracted much attention because these defects
strongly scatter electrons and therefore profoundly affect the
electronic transport properties. Yet most of the studies are
done in the standard nearest neighbor hopping model of
graphene. In particular, in a recent work [12] we detailed
some universal regimes of transport close to the Dirac point.
The aim of the present study is to analyze the effect of
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hopping beyond nearest neighbors in the graphene plane. As
we show, the universal regimes presented in the previous
work [12] still exist but their domain of existence in terms
of electron concentration for example is affected, which may
be important for precise comparison with experiments.

2. Modelization

We have developed a simple tight-binding (TB) scheme that
reproduces ab initio electronic structure in the energy range
±2 eV around the Dirac energy ED [14, 15]. Only pz orbitals
are taken into account since we are interested in electronic
properties at the Fermi energy EF. The Hamiltonian is

Ĥ =

∑
〈i; j〉

ti j
(
c∗

i c j + c∗

j ci
)
, (1)

where the coupling element matrix ti j depends on the distance
ri j between orbital i and orbital j,

ti j = −γ0 exp
(

q
(

1 −
ri j

a

))
(2)
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Figure 1. Density of states (DOS) n versus energy E, for
concentration c of resonant adsorbates (vacancies): (dashed line)
first neighbor coupling only, (solid line) beyond first neighbor
coupling.

with the first neighbor distance, a = 0.142 nm, and the first
neighbors interaction in a graphene plane, γ0 = 2.7 eV. The
constant q is fixed to have a second neighbors interaction
equal to 0.1γ0 [10, 13]. We consider that resonant adsobates
(such as H, OH, CH3, etc) can create a covalent bond with
some carbon atoms of the graphene sheet. Then a generic
model is obtained by removing the pz orbital of the carbon
that is just below the adsorbate [6, 13].

In our calculations resonant adsorbates (mono-vacancies)
are distributed at random with a finite concentration c.
Preliminary results of quantum diffusion for these
models have been published in [10]. The conductivity is
computed by the Mayou–Khanna–Roche–Triozon (MKRT)
method [16–19]. This method allows very efficient numerical
calculations by recursion in real-space. Our calculations are
performed on a sample containing up to 108 atoms. That
corresponds to typical size of about 1 µm2 which allows
studying systems with inelastic mean-free length of the
order of a few hundreds of nanometers. MKRT method has
also been used to study other kinds of defects in graphene
sheet [9, 11, 20, 21].

In the relaxation time approximation, we introduce an
inelastic scattering time τi beyond which the propagation
becomes diffusive due to the destruction of coherence by
inelastic process (see [12] and references therein). One finally
gets the conductivity

σ(EF , τi) = e2n(EF)D(EF, τi) (3)

and the diffusivity

D(EF, τi) =
L2

i (EF, τi)

2τi
, (4)

where n is the density of states (DOS) and L i is the
inelastic mean-free path. L i(E, τi) is the typical distance
of propagation during the time interval τi for electrons at
energy E.

3. Results and discussion

The total density of states (DOS) for concentrations c = 1,
2 and 3% is shown in figure 1. With only first neighboring

Figure 2. Conductivity σ (solid line) and inelastic scattering length
L i (dashed line) versus inelastic scattering time τi for concentration
c = 2% of resonant adsorbates (vacancies), for three energy values
and with coupling beyond first neighbor. G0 = 2e2/h.

Figure 3. Microscopic conductivity σM versus energy E for
concentration c = 1, 2 and 3% with same symbols than figure 1:
(dashed line) first neighbor coupling only, (solid line) beyond first
neighbor coupling. G0 = 2e2/h.

coupling a resonance of the DOS is found at the Dirac energy
(E = 0). This is reminiscent of the midgap state produced
by just one missing orbital [6, 13]. With coupling beyond
nearest neighbors, the resonance of the density of states is
enlarged and displaced by the effect of the hopping beyond
nearest neighbors [13, 10]. This changes of course the relation
between the density of states, the electronic mean-free path Le

and the Fermi energy or the filling factor (electron density) of
the band.

The conductivity σ and the inelastic scattering length
L i are shown in figure 2. At short times the propagation is
ballistic and the conductivity increases when τi increases.
For large τi, the conductivity decreases with increasing τi

due to quantum interference effects, and it goes to zero due
to Anderson localization in two-dimension (2D) [22]. We
defined the microscopic conductivity σM as the maximum
value of σ(τi) values (figure 2). The microscopic conductivity
is shown in figure 3 for different values concentration c.
According to the renormalization theory [22] this value is
obtained when the inelastic mean free path L i and the elastic
mean free path Le are comparable. Here we compute Le by

Le(E) =
2DM(E)

V
, (5)
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Figure 4. Elastic mean free path Le(E), versus energy E, for
concentration c: (dashed line) first neighbor coupling only, (solid
line) beyond first neighbor coupling.

Figure 5. Conductivity σ(L i) versus the inelastic scattering length
L i for concentration c (%) and different energies E (eV) in the
plateau of σM (E): (dashed line) first neighbor coupling only, (solid
line) beyond first neighbor coupling. G0 = 2e2/h.

where DM(E) is the maximum value of the diffusivity and
V is the velocity of electrons at energy E. Le versus E is
shown figure 4. Finally we define the localization length ξ as
the value for which the extrapolated conductivity (see below)
cancels, i.e. σ(L i ' ξ) = 0 (figure 5).

For Fermi energy EF very close to the Dirac energy
ED a strong fine peak in the microscopic conductivity is
found for the model with nearest-neighbor coupling only
(inset of figure 3) [11, 12, 23]. This particular behavior,
which is a consequence of the resonance in the DOS, is
specific to this model and it is not found when hopping
beyond nearest neighbors is included. Indeed in the last
case, the microscopic conductivity is slightly higher but still
close to the universal plateau [9–12, 20, 21] of microscopic
conductivity (figure 3), σM ' 4e2/(πh). Thus, our results with
hopping beyond nearest neighbors show that the plateau of
the microscopic conductivity near the Dirac energy is robust.
In contrast, the high central peak of the conductivity and the
anomalous behavior at the Dirac energy (see [12]) are not
robust and are specific to the model with nearest neighbor
hoping only.

For Le < L i < ξ , the conductivity is not equal to the
microscopic conductivity and quantum interference have to

be taken into account. As shown in figure 5, σ(L i) follows
the linear variation with the logarithm of the inelastic mean
free path L i that was found in our previous work for smaller
concentration of adsorbates [12]

σ(L i) = G0 (2 − α log (L i/Le)) with G0 = 2e2/h (6)

and α ' 0.25, which is close to the result of the perturbation
theory of 2D Anderson localization for which α = 1/π [22].
As discussed in [12, 24] this could be tested through
magneto-conductance measurements.

4. Conclusion

We propose a unified description of transport in graphene
with resonant adsorbates simulated by simple vacancies [12].
Sufficiently far from the Dirac energy and at sufficiently small
concentration of adsorbates, the semi-classical theory is a
good approximation. For Fermi energy EF close to the Dirac
energy ED different quantum regimes are found.

Some universal aspects of the conductivity are present
with or without the hoping beyond nearest neighbors. For
small inelastic scattering length L i such as L i ' Le, the
conductivity σ is almost equal to the universal minimum
(plateau) of microscopic conductivity σM ' 4e2/(πh), except
for EF ' ED when the model only takes into account nearest
neighbor hopping. For larger L i, Le < L i, the conductivity
follows a linear variation with the logarithm of L i [12] for both
models, with nearest neighbor hopping only and with hopping
beyond nearest neighbors. In contrast, the high central peak
of the conductivity and the anomalous behavior at the Dirac
energy (see [12]) are not robust and are specific to the model
with nearest neighbor hoping only. Therefore, we conclude
that a precise comparison of conductivity with experiments
requires a detailed description of the electronic structure and
in particular of that of graphene [25].
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