

PAPER • OPEN ACCESS

Synthesis of vanadium-modified rutile TiO₂ nanoparticle by reactive grinding method and its photocatalytic activity under solar light at room temperature

To cite this article: Thi Minh Nguyet Tran et al 2013 Adv. Nat. Sci: Nanosci. Nanotechnol. 4 035010

View the article online for updates and enhancements.

You may also like

- <u>Structural evolution and relative stability of</u> <u>vanadium-doped boron clusters</u> Zhiyang Xiang, Zhongjie Luo, Jie Bi et al.
- Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO₂ thin films as efficient electron transport layer Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour et al.
- <u>Flake-Like WO₃-Based Thin Films for</u> <u>Enhanced Ethanol Sensing Applications</u> Srinivasa Rao Sriram, Nagaraju Pothukanuri, Saidi Reddy Parne et al.

IOP PUBLISHING

Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 (2013) 035010 (4pp)

Synthesis of vanadium-modified rutile TiO₂ nanoparticle by reactive grinding method and its photocatalytic activity under solar light at room temperature

Thi Minh Nguyet Tran¹, Thi Hoang Yen Quach¹, Que Chi Tran¹, Thi Toan Nguyen¹, Van Chien Nguyen¹, Hung Manh Do¹, Dang Thanh Tran¹, Hong Nhung Nguyen¹, Phi Tuyen Vu¹ and Dang Khuong Le²

¹ Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam

² Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam

E-mail: qthyen@gmail.com

Received 1 March 2013 Accepted for publication 3 June 2013 Published 25 June 2013 Online at stacks.iop.org/ANSN/4/035010

Abstract

Rutile TiO₂ was synthesized by sol–gel method. Vanadium-doped rutile TiO₂ nanoparticle was obtained by reactive grinding method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB) under solar light at room temperature. The results show that after 4 h of milling the particle size of rutile decreased from 130 to 14 nm and the Brunauer–Emmet–Teller (BET) specific surface area increased from 7.18 to $15.12 \text{ m}^2 \text{ g}^{-1}$. The vanadium doping promoted the particle growth and the particle size of vanadium-modified rutile TiO₂ obtained by 4 h of milling is about 22 nm, but the BET specific surface area increased from $15.12 \text{ m}^2 \text{ g}^{-1}$ for TiO₂ to $20.8 \text{ m}^2 \text{ g}^{-1}$ for vanadium-doped TiO₂ under the same conditions. The 5% vanadium-doped rutile possessed better absorption ability of solar light; the calculated band gap energy value is 2.7 eV. The degradation rate of MB on vanadium-doped rutile TiO₂ was higher than that of pure rutile obtained after the same time of milling.

Keywords: Rutile TiO₂, vanadium doping, grinding reactive, solar light, room temperature

Classification number: 5.07

1. Introduction

Among various semiconductors, TiO_2 is the most promising photocatalyst because it is biologically and chemically inert; its band gap and position of valence band (VB) and conduction band (CB) are appropriate for the photocatalytic oxidation and reduction of a wide range of environmental pollution as well as for water splitting to generate hydrogen and oxygen [1–3]. However, because the band gap of anatase

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. is 3.2 eV, TiO₂ anatase only shows photocatalytic activities under the UV light of wavelength $\lambda < 387$ nm; the band gap of rutile is 3.0 eV and TiO₂ rutile exhibits activity in a very small visible range near to the UV one with wavelength $\lambda \leq 413$ nm. So TiO₂ can utilize only a small UV fraction of the solar light, about 2–5%. Many publications have focused on doping TiO₂ by metals or non-metals, so that its photocatalytic activities exhibit in the visible range of light [4–9]. The authors show that activities of materials depend on their surface properties such as particle size, specific surface area, surface structure and active reaction sites. Those properties are dependent on the methods of preparation. The authors [4, 8, 10] indicated that Cr-doped TiO₂ prepared by an impregnation method exhibits photocatalytic activities less than those of the Cr ions implanted TiO₂. A majority of publications concentrates on modifying of TiO₂ anatase. Since they demonstrated that the density of TiO₂ octahedral in anatase is smaller than that in rutile (creating more hollow spaces inside the anatase for the process of transportation and diffusion of photogenerated holes and photogenerated electrons) and the anatase can be obtained at low temperature (<500 °C) with small particle size, the TiO₂ production for application purposes requires controlling over reaction conditions to obtain anatase. When the preparation temperature is increased, not only is there a rise in the particle size but the anatase also converts into rutile. This means we always obtain TiO₂ rutile with large size under normal calcination at high temperature and hence the photocatalytic activities of rutile are less than those of anatase.

In fact, the most common and stable form of TiO_2 is rutile. If the rutile form of TiO_2 can be utilized as a photocatalyst, the cost can be reduced, and also too much concern about controlling the conditions during production is not necessary.

For these above reasons, by the special method, we prepared TiO₂ rutile with sufficiently small size and doping TiO₂ with metal or metalloid ions can be expected to result in the total effects that decrease the band gap of material. According to the published works [7, 11], doping V₂O₅ into TiO₂ anatase can reduce the band gap, shifts the absorption wavelength of the material to the visible range, thus, their photocatalytic activities significantly increase. Some authors have made an effort to obtain rutile and modified rutile by *in situ* hydrothermal method and they show effective catalytic properties [12].

By the top-down preparation route, Kaliagine *et al* [13] received many complex nano-oxides as catalysts using reactive grinding method. In the grinding process, solid reactions occurred by high energy and nanometer particles were created. So, in this work, we used this grinding reactive method for vanadium-doped rutile TiO_2 and prepared a product that has high photocatalytic activities.

2. Experimental

According to [7, 9], the increase of vanadium doping promoted the particle growth, and enhanced 'red-shift' in the UV–Vis absorption spectra. It was found that the samples containing 2.5-5% of V_2O_5 have the highest degradation of MB. Accordingly, in the present work we prepared $5\% V_2O_5/TiO_2$ rutile and studied its characterizations and photocatalytic activity.

2.1. Preparation of TiO₂ rutile

Titanium butoxide and butanol were mixed together, then this mixture was dropped slowly into 3 M HCl solution. The obtained sol was stirred continuously for 4 hours and gel was created. The gel was dried at $120 \,^{\circ}$ C for 48 h and calcinated at $750 \,^{\circ}$ C for 4 h. TiO₂ rutile powder was obtained.

2.2. Preparation V₂O₅/TiO₂ rutile

The 5% V_2O_5/TiO_2 was prepared by reactive grinding as follows: the milling process uses mixed powders of 5% of

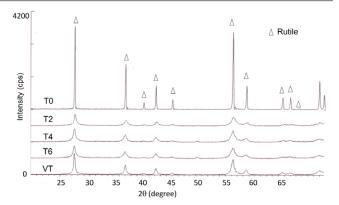


Figure 1. XRD patterns of TiO₂ (T0, T2, T4, T6) and VT.

vanadium oxide V₂O₅ (Aldrich) and 95% of TiO₂ rutile obtained above as follows. The powder of V₂O₅ and TiO₂ was dried at 90 °C for 2 h to eliminate the water before weighing. TiO₂ and the oxide mixture of $(5\% V_2O_5 + 95\% TiO_2)$ were mixed and introduced in two vials with the volume of 65 ml and two types of balls of 1/2 and 1/4 inch. The vials and the balls are made with tempered steel material. The milling process was performed in a SPEX 8000D shaker mill for milling time t_{mil} of 2, 4 and 6 h, at room conditions.

The nanocrystalline structure was determined on an x-ray diffraction (XRD) meter (SIEMENS D5000) using the Cu-K_{α} radiation at $\lambda = 1.5406$ Å. The mean grain sizes and grain size distributions of the nanosystems were determined by means of various techniques involving the use of a commercial WIN-CRYSIZE program packet based on the Warren–Averbach formalism to analyze the XRD data. The UV–Vis absorption spectra of TiO₂ and V₂O₅/TiO₂ samples were taken by CARRY 5000 UV–Vis–NIR. The Brunauer–Emmet–Teller (BET) specific surface area of the samples was determined by nitrogen adsorption/desorption at 77 K. The catalytic activity of the materials was studied by degradation of methylene blue under solar light.

3. Characterizations of material

3.1. Crystal structure, morphology, particle size and the BET specific surface area

Figure 1 shows XRD patterns of TiO₂ sample before grinding (T0), TiO₂ samples after grinding for 2, 4, 6 h (T2, T4 and T6) and V_2O_5/TiO_2 sample ground for 4 h (VT). There are only specific peaks of TiO₂ rutile and no peak of V_2O_5 . The XRD patterns showed that samples synthesized are single phase—rutile phase. Peaks of sample T0 are higher and narrower than those of TiO₂ particles T2, T4, T6 and VT. Thus, the particle size of TiO₂ sample before grinding (T0) is larger than that of TiO₂ ground samples (T2, T4, T6). This result is clear and suitable with a decrease in particle size when increasing grinding time. The average crystal sizes and the BET specific surface area values of these samples are given in table 1.

From table 1 it is seen that the ground particle size decreased significantly as grinding time increased. However, when grinding time increased from 4 to 6 h, the TiO_2 particle sizes and BET specific surface area nearly did not change.

Adv. Nat. Sci.:	Nanosci.	Nanotechnol.	4	(2013)) 035010
-----------------	----------	--------------	---	--------	----------

Sample	Symbol	Grinding time (h)	Average crystal size (nm)	$\begin{array}{c} \text{BET} \\ (m^2 g^{-1}) \end{array}$
TiO ₂	T0	0	130	7.18
	T2	2	40	9.84
	T4	4	14	15.12
	T6	6	13	15.20
V_2O_5/TiO_2	VT	4	22	20.80

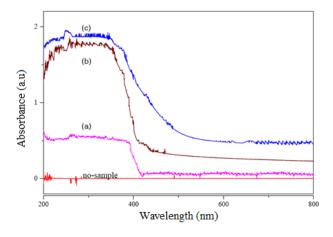
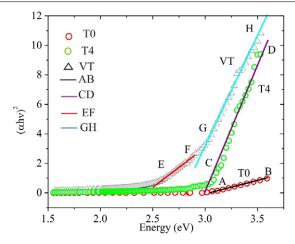


Figure 2. UV–Vis absorption spectra of TiO₂: (a) T0, (b) T4, (c) V_2O_5/TiO_2 (VT) nanoparticle and V_2O_5 .

So the grinding time chosen to synthesis V_2O_5/TiO_2 sample was 4 h. In the case of V_2O_5/TiO_2 , the BET specific surface area increased noticeably (20.8 m² g⁻¹) when compared with TiO₂ which was also ground for 4 h (15.12 m² g⁻¹).


There is no peak of vanadium in XRD pattern of V_2O_5/TiO_2 sample. This phenomenon was like that in [9]. There was also no peak of vanadium oxide in the XRD patterns but x-ray absorption spectroscopy (XAS) analysis indicating V⁴⁺ instead of V⁵⁺ implied that vanadium either substituted Ti⁴⁺ site or embedded in the vacancy of TiO₂ structure. Therefore, either vanadium was incorporated in the crystalline of TiO₂ or vanadium oxide was very small and highly dispersed.

3.2. UV–Vis absorption spectra and band gap energy calculation

To study the light absorption ability of materials, we determined UV–Vis absorption spectra of TiO_2 and V_2O_5/TiO_2 samples. The results are given in figure 2.

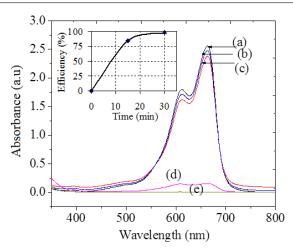
Figure 2 shows that the sample T0 absorbs light having wavelength below 420 nm, while the samples T4 and VT absorb light at longer wavelengths and induce red-shift. The samples T4 and VT can absorb mostly at the region below 480 and 570 nm, respectively, with much higher absorption coefficients. These samples show even the absorption at the longer wavelength regions. The reason perhaps is the difference in particle size of the same sample. In the case of VT, the interaction between V_2O_5 and TiO₂ is the explanation for its red-shift and for the increase in its absorption coefficient.

In figure 2 we can see that the UV–Vis absorption spectrum of V_2O_5/TiO_2 (figure 2(c)) is really spectrum of

Figure 3. Curves of $(\alpha h\nu)^2$ versus $h\nu$ for T0, T4 and VT samples.

a composite of TiO₂ and V₂O₅ but not that of separated TiO₂ (figure 2(b)) or V₂O₅ (we can find the absorption spectrum of V₂O₅ in [9]). This evidence demonstrates the interaction between V₂O₅ and TiO₂ after grinding and V₂O₅ may incorporate into the lattice of TiO₂ rutile.

On the other hand, as we know, the bulk TiO₂ crystal is an indirect semiconductor, its absorption index $\alpha(h\nu)$ should closely correlate with the behavior of the form $(h\nu - E_g)^{3/2}$. Normally nanomaterials exhibit an absorption spectrum such as that of the direct band gap semiconductor, and its absorption coefficient $\alpha(h\nu)$ follows the $(h\nu - E_g)^{1/2}$ law [14]. Based on the absorption data (from 400 to 800 nm) presented in figure 2 we plot the curves of $(\alpha h\nu)^2$ in dependence on energy $h\nu$ in figure 3.


It is shown that the T0 and T4 curves contain AB and CD linear lines, respectively. The prolongations of these lines cut the *x*-axis at 3.04 and 2.99 eV, respectively. These energy values approximate to the band gap energy value of TiO₂ rutile (3.0 eV). Similarly, the VT curve includes the EF and GH linear lines that the *x*-axis intersects at 2.43 and 2.79 eV, respectively. The former value 2.43 eV is close to the band gap energy value of TiO₂ doped by vanadium. This value is between the band gap energy values of TiO₂ rutile and V₂O₅. Doping vanadium could result in the 3d orbital of vanadium changing the band gap of titania. Thus, the optical absorption edge of TiO₂ is narrower than that of TiO₂ [15].

4. Photocatalytic activity of the V₂O₅/TiO₂ material

As above, V_2O_5/TiO_2 material can absorb the light not only in the ultraviolet region but also in the visible region. In order to determine photocatalytic activity of the V_2O_5/TiO_2 material, we carried out degradation of methylene blue on VT under solar light.

A weight 0.1 g of catalyst powder was suspended in 20 ml of 5.10^{-5} M methylene blue (MB) aqueous solution and the mixture was stirred under solar light at room temperature. The concentration changes of MB were determined by the UV–Vis spectrometer Jasco 630.

Figure 4 shows the absorption spectra of MB with concentration 5.10^{-5} M (a), of the degraded MB by T0 (b),

Figure 4. UV–Vis spectra of methylene blue 5.10^{-4} M (a), degraded by T0 (b), by T4 (c) and by VT after 15 min (d), after 30 min (e).

T4 (c) and VT after 15 min (d) and by VT after 30 min (e). Whereas TiO₂ material with large particle size mostly shows inactivity in reaction with methylene blue under solar light, the TiO₂ milled in 4 h has smaller size and exhibits some more photocatalytic activity. The degradation of methylene blue on VT was very fast and most of the methylene blue was degraded after 30 min (curve (e) in figure 4). So, the obtained V_2O_5/TiO_2 material has high photocatalytic activity in degradation of methylene blue due to the good combination of V_2O_5 and TiO₂ in the nano crystalline lattice. These results open the way for a new application in environmental treatment.

The photocatalytic activity of present vanadium-doped TiO_2 rutile could be compared to that of some TiO_2 anatase and TiO_2 rutile which had been published previously by the author groups of Anpo *et al* [8] and Liu *et al* [12], respectively.

5. Conclusions

The grinding reactive method exhibits successful technique to synthesize vanadium-doped titania rutile TiO₂. By this route,

we can obtain nano composite particles of metal-doped TiO₂ rutile without controlling the calcination procedure or using expensive starting chemicals.

The vanadium-doped titania rutile shows a red-shift in the UV–Vis spectra due to the small size of nano rutile particles (with BG more than that of anatase TiO_2) and promotion of vanadium.

The results of methylene blue photocatalytic degradation indicate that the nano vanadium-doped TiO_2 rutile obtained has remarkable higher activity than that of pure nano TiO_2 rutile under solar light at room temperature.

Acknowledgments

This work is partially financially supported by Vietnam Academy of Science and Technology. The authors are thankful to Professor Acad. Nguyen Van Hieu for his help and encouragement.

References

- [1] Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1
- [2] Fujishima A, Zhang X and Tryk D A 2008 Surf. Sci. Rep. 63 515
- [3] Carp O, Huisman C L and Reller A 2004 Prog. Solid State Chem. 32 33
- [4] Chen X and Mao S S 2007 Chem. Rev. 107 2891
- [5] Lui G, Wang L, Yang H G, Cheng H M and Lu G Q 2010 J. Mater. Chem. 20 831
- [6] Zhang J, Wu Y, Xing M, Leghari S A K and Sajjad S 2010 Energy Environ. Sci. 3 715
- [7] Wu J C-S and Chen C-H 2004 J. Photochem. Photobiol. A 163 509
- [8] Anpo M, Ichihashi Y, Takeuchi M and Yamashita H 1998 Res. Chem. Intermediates 24 143
- [9] Nguyen V H and Nguyen B H 2012 Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 023001
- [10] Anpo M and Takeuchi M 2003 J. Catal. 216 505
- [11] Klosek S and Raffery D 2001 J. Phys. Chem. B 105 2815
- [12] Liu H and Giao L 2004 J. Chem. Lett. 33 730
- [13] Kaliaguine S et al 2001 Appl. Catal. A: Gen. 209 345
- [14] Ly N T et al 2012 Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 045009
- [15] Li H, Zhao G, Han G and Song B 2007 Surf. Coat. Technol. 201 7615