

OPEN ACCESS

Towards designing Mn molecules with strong intramolecular exchange coupling

To cite this article: Anh Tuan Nguyen and Hieu Chi Dam 2011 Adv. Nat. Sci. Nanosci. Nanotechnol. 2 015011

View the article online for updates and enhancements.

You may also like

- <u>Luminescent Properties of a Cs₃AIF₆:Mn⁴⁺</u> Red Phosphor for Warm White Light-Emitting Diodes

Hong Ming, Junfei Zhang, Lili Liu et al.

- Review—On the Origin of Diminishing Radiative Lifetime of Mn⁴⁺ in Complex Fluoride Phosphors with Temperature Shirun Yan
- Progress in ferrimagnetic Mn₄N films and its heterostructures for spintronics applications

Zeyu Zhang and Wenbo Mi

IOP PUBLISHING

Towards designing Mn₄ molecules with strong intramolecular exchange coupling

Anh Tuan Nguyen¹ and Hieu Chi Dam^{1,2}

- ¹ Faculty of Physics, Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan District, Hanoi, Vietnam
- ² School of Materials Science, Japan Advanced Institute of Science and Technoloy, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan

E-mail: tuanna@hus.edu.vn

Received 10 October 2010 Accepted for publication 14 February 2011 Published 8 March 2011 Online at stacks.iop.org/ANSN/2/015011

Abstract

Distorted cubane Mn⁴⁺Mn³⁺, single-molecule magnets (SMMs) have been studied by first-principles calculations, i.e. $[Mn_4L_3X(OAc)_3(dbm)_3]$ (L = O; X = F, Cl, and Br; dbmH = dibenzoyl-methane). It was shown in our previous paper (Tuan et al 2009 Phys. Chem. Chem. Phys. 11 717) that the ferrimagnetic structure of Mn⁴⁺Mn³⁺, SMMs is dominated by π type hybridization between the d_{z^2} orbitals at the three high-spin Mn³⁺ ions and the t_{2g} orbitals at the Mn⁴⁺ ion. To design new Mn⁴⁺Mn³⁺₃ molecules having much more stable ferrimagnetic states, one approach is suggested. This involves controlling the Mn⁴⁺–L–Mn³⁺ exchange pathways by rational variations in ligands to strengthen the hybridization between the Mn ions. Based on this method, we succeed in designing new distorted cubane Mn⁴⁺Mn³⁺ molecules having Mn⁴⁺–Mn³⁺ exchange coupling of about 3 times stronger than that of the synthesized $Mn^{4+}Mn^{3+}_{\ 3}$ molecules. These results give some hints regarding experimental efforts to synthesize new superior Mn⁴⁺Mn³⁺₃ SMMs.

Keywords: single-molecule magnets, first-principles calculation, computational materials design

Classification numbers: 2.01, 3.02, 4.00, 5.02

1. Introduction

High-spin molecules that can function as magnets below their blocking temperature $(T_{\rm B})$ are being studied extensively due to their potential technological applications to molecular spintronics [1]. These molecules display slow magnetic relaxation below their $T_{\rm B}$, and such molecules have been called single-molecule magnets (SMMs) [2]. This behavior results from a high ground-state spin (S_T) combined with a large and negative Ising type of magnetoanisotropy, as measured by the axial zero-field splitting parameter (D). This combination leads to a significant barrier (U) to magnetization reversal, whose maximum value is given by $U = -DS_T^2$ for integer spin and $U = -D(S_T^2 - 1/4)$ for half integer spin.

SMMs consist of magnetic atoms connected and surrounded by ligands. The challenge of SMMs consists in tailoring their magnetic properties by specific modifications of the molecular units. As described above, S_T and D are the important parameters for the control of SMM behavior. The

D depends on designing the local anisotropies of the single ions, such as Mn³⁺ ion, and their vectorial addition to give a resulting anisotropy. The S_T results from local spin moments at TM ions (S_i) and exchange coupling between them (J_{ii}) effectively. Moreover, J_{ij} has to be important to separate the ground spin state from the excited states; the relative high values of U and $T_{\rm B}$ are dependent on them [3]. However, currently synthesized SMMs usually have weak J_{ij} , of the order of several tens of Kenvil or much smaller [4]. Therefore, seeking possibilities for the enhancement of J_{ij} will be very valuable in the development of SMMs.

In the framework of computational materials design, distorted cubane Mn⁴⁺Mn³⁺ SMMs are one of the most attractive SMM systems because their interesting geometric structure and important magnetic quantities can be estimated accurately from first-principles calculations [5, 6].

In experiment, much effort has been spent on $[Mn^{4+}Mn^{3+}]$ synthesizing distorted cubane $(\mu_3 - O^{2-})_3(\mu_3 - X^-)(O_2CR)_3^-(L1, L2)_3^-$] SMMs by varying

2043-6262/11/015011+08\$33.00

the core X group (X^- = an anionic ligand), the R group (R = a radical such as CH_3 or C_2H_5), or the peripheral-ligands group (L1,L2) = (py,Cl) or (dbm). However, with these variations, the exchange coupling parameters between Mn ions are still of the order of several ten Kenvil [7–15].

Among various distorted cubane $Mn^{4+}Mn^{3+}$ SMMs, the previous theoretical studies focused on $Mn^{4+}Mn^{3+}_{3}(\mu_{3}-O^{2-})_{3}(\mu_{3}-Cl^{-})(O_{2}CMe)_{3}^{-}(dbm)_{3}^{-}$ (hereafter Mn₄-dbm, with dbmH =dibenzoyl-methane) and the dimer $[Mn^{4+}Mn^{3+}_{3}(\mu_{3}-O^{2-})_{3}(\mu_{3}-Cl^{-})(O_{2}CEt)_{3}^{-}(py,Cl)_{3}^{-}]_{2}$ [5, 6]. Their electronic structures have been investigated. Also, their important magnetic parameters, such as the ground state spin and effective exchange-coupling parameters, have been calculated. In general, the previous calculated results were in good agreement with experiment. In particular, in our previous paper [5], by using first-principles calculations within generalized gradient approximation (GGA), we analyzed the basic mechanism in the antiferromagnetic (AFM) interaction between the Mn4+ ion and the three high-spin Mn³⁺ ions in Mn⁴⁺Mn³⁺ SMMs. The AFM $\mathrm{Mn^{4+}\text{-}Mn^{3+}}$ coupling (J_{AB}) is determined by the π type hybridization states among the d_{z^2} orbitals at the Mn³⁺ sites and the t_{2g} orbitals at the Mn⁴⁺ site through the p orbitals at the μ_3 -O²⁻ ions. Therefore, the strength of this coupling is expected to be sensitive to the change in $Mn^{4+}-\mu_3-O^{2-}-Mn^{3+}$ angle (α), and strongest with $\alpha \approx 90^{\circ}$. This finding shows that the Mn⁴⁺–Mn³⁺ coupling of distorted cubane Mn⁴⁺Mn³⁺, SMMs can be structurally controlled. Moreover, until now, synthesized Mn⁴⁺Mn³⁺, molecules have $\alpha \approx 95^{\circ}$ [7–15]. Therefore, seeking Mn⁴⁺Mn³⁺, molecules with $\alpha \approx 90^{\circ}$ is an effective way to develop new, superior Mn⁴⁺Mn³⁺, SMMs with strong intramolecular exchange coupling. This can be made by rational variations of ligands.

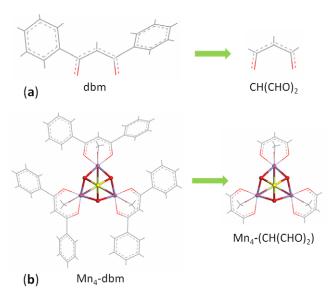
Here we present our exploration of the control of J_{AB} of distorted cubane $Mn^{4+}Mn^{3+}_{3}$ SMMs. By rational variations of the μ_3 -O, μ_3 -Cl, O₂CMe, and dbm groups of the synthesized Mn₄-dbm or $Mn^{4+}Mn^{3+}_{3}(\mu_3-O^{2-})_3(\mu_3-Cl^-)(O_2CMe)_3^-(dbm)_3^-$ molecule, 42 distorted cubane Mn⁴⁺Mn³⁺, molecules have been designed. Their geometric structure, electronic structure and J_{AB} were investigated by using DMol³ code based on density functional theory (DFT) [16]. Our calculated results show that significant changes in the exchange pathways between the Mn^{4+} and Mn^{3+} ions as well as J_{AB} can be made by substitutions of N-based ligands (NR', R' = a radical) for the bridging ligand μ_3 -O²⁻. By combining these ligand variations, J_{AB} can be enhanced by a factor of 3. This finding is very valuable, since it gives us a method to control exchange couplings of not only the specific system studied in this paper but also other transition metal complexes. Therefore, our results should facilitate the rational synthesis of new SMMs and, eventually, the preparation of technologically useful SMMs.

2. Computational method

All calculations have been performed by using DMol³ code with the double numerical basis sets plus polarization functional (DNP) [16]. For the exchange correlation terms, the generalized gradient approximation (GGA) RPBE functional

Figure 1. The schematic geometric structure of $[Mn^{4+}Mn^{3+}_{3}(\mu_3-O^{2-})_3(\mu_3-Cl^{-})(O_2CMe)_3^{-}(dbm)_3^{-}]$ molecules (the atoms in the distorted cubane $[Mn^{4+}Mn^{3+}_{3}(\mu_3-O^{2-})_3(\mu_3-Cl^{-})]$ core are highlighted in the ball).

was used [17]. An all-electron relativistic Hamiltonian was used to describe the interaction between the core and valence electrons [18]. The real-space global cutoff radius was set to 4.7 Å for all atoms. The spin-unrestricted DFT was used to obtain all results presented in this study. The atomic charge and magnetic moment were obtained by using the Mulliken population analysis [19]. For better accuracy, the octupole expansion scheme was adopted to resolve the charge density and Coulombic potential, and a fine grid was chosen for numerical integration. The charge density was converged to 1×10^{-6} a.u. in the self-consistent calculation. In the optimization process, the energy, energy gradient and atomic displacement were converged to 1×10^{-5} , 1×10^{-4} and 1×10^{-3} a.u., respectively. In order to determine the ground-state atomic structure of each Mn₄ SMM, we carried out total-energy calculations with full geometry optimization, allowing the relaxation of all atoms in molecules.


The exchange coupling parameters of Mn₄ molecules were calculated using the total energy difference method [5].

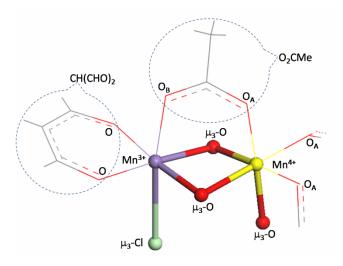
3. Results and discussion

The geometric structure of a synthesized [Mn⁴⁺Mn³⁺₃ $(\mu_3$ -O²⁻)₃ $(\mu_3$ -Cl⁻) $(O_2$ CMe)₃⁻ (dbm)₃⁻] molecule is depicted in figure 1. Previous experimental studies reported that each molecule has C_{3v} symmetry, with the C_3 axis passing through Mn⁴⁺ and X⁻ ions [12]. The [Mn⁴⁺Mn³⁺₃ $(\mu_3$ -O)₃ $(\mu_3$ -X)] core can be viewed simply as a 'distorted cubane', in which the four Mn atoms are located at the corners of a trigonal pyramid, with a μ_3 -O²⁻ ion bridging each of the vertical faces and a μ_3 -Cl⁻ ion bridging the basal face. Three carboxylate (O₂CMe) groups, forming three bridges between the A site (Mn⁴⁺ ion) and the B sites (Mn³⁺ ions), play an important role in stabilizing the distorted cubane geometry of the [Mn⁴⁺Mn³⁺₃ $(\mu_3$ -O²⁻)₃ $(\mu_3$ -Cl⁻)] core. Each dbm group forms two coordinate bonds to complete the distorted octahedral geometry at each B site.

Table 1. This table shows the stability of bond lengths (Å) and bond angles (deg) of the $[Mn^{4+}Mn_3^{3+}(\mu_3-O^{2-})_3(\mu_3-Cl^-)]$ core by substituting dbm with $CH(CHO)_2$. The relative changes (%) in bond lengths and bond angles are very small.

	Mn ₄ -dbm	Mn ₄ -CH(CHO) ₂	%
$Mn^{4+}-(\mu_3-O^{2-})-Mn^{3+}$	94.940	94.913	0.03
$Mn^{4+}-Mn^{3+}$	2.844	2.841	0.11
Mn^{4+} - $(\mu_3$ - $O^{2-})$	1.907	1.909	0.11
Mn^{3+} - $(\mu_3$ - $O^{2-})$	1.951	1.947	0.21

Figure 2. Schematic representation of the pruning procedure adopted for the Mn₄-dbm molecule.


3.1. Modeling Mn₄ molecules

In this study, new distorted cubane $\mathrm{Mn^{4+}Mn^{3+}_{3}}$ molecules were designed by rational variations in the μ_{3} -O, μ_{3} -Cl, O₂CMe, and dbm groups of the synthesized distorted cubane $\mathrm{Mn_{4}}$ -dbm molecule.

The Mn₄-dbm molecule contains three dbm groups [12]. Each dbm group, $(CH(COC_6H_5)_2)$, contains two C_6H_5 rings, as depicted in figure 2(a). When replacing each C₆H₅ ring with an isovalent H atom, i.e. substituting CH(COC₆H₅)₂ with CH(CHO)₂ (a procedure also known as 'hydrogen saturation'), the Mn₄-dbm molecule resizes to $Mn^{4+}Mn^{3+}_{3}(\mu_{3}-O^{2-})_{3}(\mu_{3}-Cl^{-})(O_{2}CMe)_{3}^{-}(CH(CHO)_{2})_{3}^{-}$ (hereafter Mn₄-CH(CHO)₂) molecule (see panel (b) of figure 2). Our calculated results show that, with this variation in the dbm groups, the geometric structure of the $[Mn^{4+}Mn^{3+}_{3}(\mu_{3}-O^{2-})_{3}(\mu_{3}-Cl^{-})]$ core is nearly unchanged, especially the geometric structure of the $Mn^{4+}-(\mu_3-O^{2-})-Mn^{3+}$ exchange pathways, as shown in table 1. Also, the calculated magnetic moments at the Mn⁴⁺ $(m_{\rm A})$ and Mn³⁺ $(m_{\rm B})$ ions, as well as the exchange coupling between them (J_{AB}) , are nearly constant with this variation in the dbm group, as shown in table 2. These results demonstrate that variation in the outer part of dbm groups is not so much an influence on the magnetic properties of Mn⁴⁺Mn³⁺, molecules. This finding is very helpful, since the computational cost can be significantly reduced. Next, new distorted cubane Mn⁴⁺Mn³⁺₃ will be designed based on the Mn₄-CH(CHO)₂ molecule instead of the Mn₄-dbm molecule.

Table 2. This table shows the stability of magnetic moments (in $\mu_{\rm B}$ unit) at Mn⁴⁺ ($m_{\rm A}$) and Mn³⁺ ($m_{\rm B}$) ions, as well as $J_{\rm AB}$ by substituting dbm with CH(CHO)₂. The relative changes (%) in magnetic moments and $J_{\rm AB}$ are very small.

	Mn ₄ -dbm	Mn ₄ -CH(CHO) ₂	%
m_{A}	-2.722	-2.717	0.18
$m_{ m B}$	3.874	3.891	0.44
$J_{\rm AB}/k_{\rm B}$ (K)	-71.33	-70.67	0.48

Figure 3. Schematic representation of the ligand configuration at the Mn³⁺ and Mn⁴⁺ sites of the Mn⁴⁺ $Mn^{3+}_3(\mu_3-O^{2-})_3$ $(\mu_3-Cl^-)(O_2CMe)_3^-(CH(CHO)_2)_3^-$ molecule (the atoms in the [Mn⁴⁺Mn³⁺₃ $(\mu_3-O^{2-})_3(\mu_3-Cl^-)$] core are highlighted in the ball).

In the Mn₄–CH(CHO)₂ molecule, the μ_3 -O atoms form Mn^{4+} – $(\mu_3$ - $O^{2-})$ – Mn^{3+} exchange pathways between the Mn^{4+} and Mn³⁺ ions, as shown in figure 3. Therefore, substituting μ_3 -O with other ligands will be an effective way to tailor the geometric structure of exchange pathways between the Mn⁴⁺ and Mn3+ ions, as well as the exchange coupling between them. To preserve the distorted cubane geometry of the core of Mn⁴⁺Mn³⁺₃ molecules and the formal charges of Mn ions, ligands substituted for the core μ_3 -O ligand should satisfy the following conditions: (i) to have the valence of 2; (ii) the ionic radius of these ligands should be not so different from that of O²⁻ ion. From these remarks, N based ligands, NR' (R' = a radical), should be the best candidates. Moreover, by varying the R' group, the local electronic structure as well as electronegativity at the N site can be controlled. As a consequence, the Mn-N bond lengths and the Mn⁴⁺-N-Mn³⁺ angles (α) , as well as delocalization of d_{z^2} electrons from the Mn^{3+} sites to the Mn^{4+} site and J_{AB} , are expected to be tailored. Also, by varying the core μ_3 -Cl ligand and the O₂CMe ligands, the local electronic structures at the Mn sites are also changed. Therefore, combining variations in μ_3 -O, μ_3 -Cl and O₂CMe ligands is expected to be an effective way to seek new superior Mn⁴⁺Mn³⁺₃ SMMs with strong J_{AB} , as well as to reveal magneto-structural correlations of $\mathrm{Mn^{4+}Mn^{3+}_{3}}$ SMMs. By combining variations in μ_{3} -O, μ_{3} -Cl and O₂CMe ligands, forty two new Mn⁴⁺Mn³⁺, molecules have been designed. These molecules have a general chemical formula $[Mn^{4+}Mn^{3+}_{3}(\mu_{3}-L^{2-})_{3}(\mu_{3}-X^{-})Z^{3-}(CH(CHO)_{2})_{3}^{-}]$ (hereafter Mn_4L_3XZ) with L = O, NH, NCH₃, NCH₂-CH₃, $NCH = CH_2$, $NC \equiv CH$, or NC_6H_5 ; X = F, CI, or Br; and

Table 3. The chemical formulae of Mn₄L₃XZ molecules and their ligands.

	L	X	Z	Chemical formula of Mn ₄ L ₃ XZ molecules
1 2 3	O	F Cl Br	Z1	$\begin{array}{c} Mn_4O_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4O_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4O_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
4 5 6		F Cl Br	Z2	$\begin{array}{l} Mn_4O_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3\\ Mn_4O_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3\\ Mn_4O_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \end{array}$
7 8 9	NH	F Cl Br	Z1	$\begin{array}{l} Mn_4(NH)_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NH)_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NH)_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
10 11 12		F Cl Br	Z2	$\begin{array}{l} Mn_4(NH)_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3\\ Mn_4(NH)_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3\\ Mn_4(NH)_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \end{array}$
13 14 15	NCH ₃	F Cl Br	Z1	$\begin{array}{l} Mn_4(NCH_3)_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NCH_3)_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NCH_3)_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
16 17 18		F Cl Br	Z 2	$\begin{array}{l} Mn_4(NCH_3)_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NCH_3)_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NCH_3)_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \end{array}$
19 20 21	NCH ₂ -CH ₃	F Cl Br	Z1	$\begin{array}{l} Mn_4(NC_2H_5)_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NC_2H_5)_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NC_2H_5)_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
22 23 24		F Cl Br	Z2	$\begin{array}{l} Mn_4(NC_2H_5)_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NC_2H_5)_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NC_2H_5)_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2) \end{array}$
25 26 27	$NCH = CH_2$	F Cl Br	Z1	$\begin{array}{l} Mn_4(NC_2H_3)_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NC_2H_3)_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NC_2H_3)_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
28 29 30		F Cl Br	Z2	$\begin{array}{l} Mn_4(NC_2H_3)_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NC_2H_3)_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NC_2H_3)_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \end{array}$
31 32 33	NC≡CH	F Cl Br	Z1	$\begin{array}{l} Mn_4(NCH)_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NCH)_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NCH)_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
34 35 36		F Cl Br	Z2	$\begin{array}{l} Mn_4(NCH)_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3\\ Mn_4(NCH)_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3\\ Mn_4(NCH)_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \end{array}$
37 38 39	NC ₆ H ₅	F Cl Br	Z1	$\begin{array}{l} Mn_4(NC_6H_5)_3F(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NC_6H_5)_3Cl(O_2CMe)_3(CH(CHO)_2)_3 \\ Mn_4(NC_6H_5)_3Br(O_2CMe)_3(CH(CHO)_2)_3 \end{array}$
40 41 42		F Cl Br	Z2	$\begin{array}{l} Mn_4(NC_6H_5)_3F(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NC_6H_5)_3Cl(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \\ Mn_4(NC_6H_5)_3Br(MeC(CH_2NOCMe)_3)(CH(CHO)_2)_3 \end{array}$

 $Z1 = (O_2CMe)_3$, $Z2 = MeC(CH_2NOCMe)_3$.

 $Z = (O_2CMe)_3$ or $MeC(CH_2-NOCMe)_3$. These 42 Mn_4L_3XZ molecules are labeled 1 to 42, and their chemical formulae are given in table 3.

3.2. The geometric and electronic structures

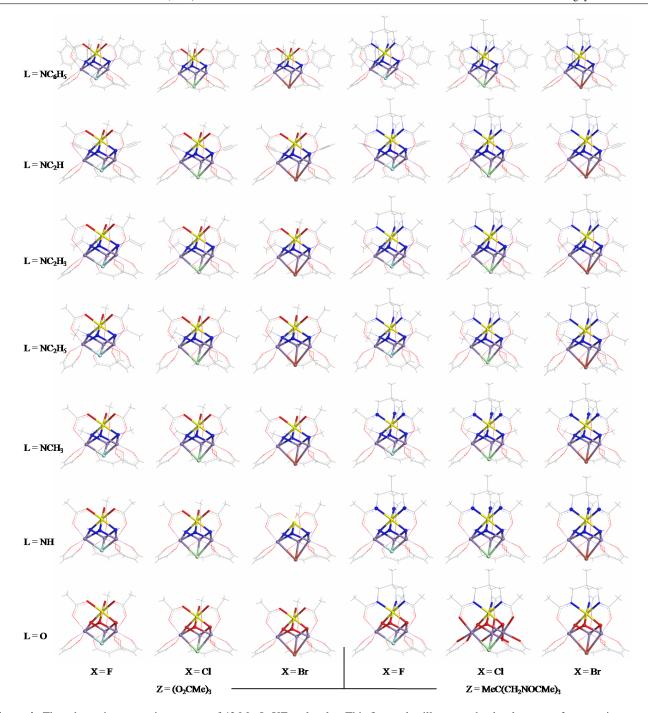
To determine exactly the magnetic ground state of Mn_4L_3XZ molecules, the same computational method as in our previous paper was used [5]. In this method, all possible spin configurations of Mn_4L_3XZ molecules are probed, which are imposed as an initial condition of the structural optimization procedure. The number of spin configurations should be considered depending on the charge state of manganese ions.

In terms of the octahedral field, Mn^{4+} ions could, in principle, have only the high-spin state with the configuration $d^3(t_{2g}^3, e_g^0)$, in which three d electrons occupy three different t_{2g} orbitals. The possible spin states of the Mn^{3+} ion are the high-spin (HS) state with configuration $d^4(t_{2g}^3, e_g^1)$ and the low-spin (LS) state with configuration $d^4(t_{2g}^4, e_g^0)$. Additionally, the magnetic coupling between the Mn^{4+} ion at the A site and Mn^{3+} ions at the B site can be ferromagnetic (FM) or antiferromagnetic (AFM). Therefore, there are four spin configurations that should be considered for each Mn_4L_3XZ molecule, including (i) AFM-HS, (ii) AFM-LS, (iii) FM-HS and (iv) FM-LS. Our calculated results show that the most magnetic stable state of all $42 \ Mn_4L_3XZ$ molecules is the AFM-HS. This means that

Table 4. Selected important magnetic and geometric parameters of 42 Mn₄L₃XZ molecules, the effective exchange coupling parameter between the Mn⁴⁺ and Mn³⁺ ions (J_{AB}/k_B in K), the magnetic moment at Mn sites (m_A and m_B in μ_B), the strength of delocalization of 3d electrons $\Delta m_A = 3 - |m_A|$, the exchange coupling angle A-L-B (α in degree), the distance between the Mn⁴⁺ and Mn³⁺ ions (d_{AB} in Å), the Mn³⁺O_B and Mn³⁺O bond lengths (d_Z and d_{XY} in Å), and the distortion factor of B sites (f_{dist} in %).

	L	X	Z	m_{A}	m_{B}	$\Delta m_{ m A}$	$J_{ m AB}/k_{ m B}$	α	$d_{ m AB}$	$d_{\rm Z}$	d_{XY}	$f_{ m dist}$
1 2 3	0	F Cl Br	Z1	-2.692 -2.717 -2.719	3.907 3.891 3.876	0.308 0.283 0.281	-75.15 -70.67 -69.72	95.06 94.91 94.83	2.840 2.841 2.841	1.994 1.992 1.992	2.195 2.193 2.193	10.1 10.1 10.1
4 5 6		F Cl Br	Z2	-2.674 -2.681 -2.675	3.890 3.871 3.855	0.326 0.319 0.325	-75.16 -73.21 -73.28	95.21 95.47 95.36	2.854 2.864 2.864	2.007 2.005 2.005	2.142 2.134 2.127	6.7 6.4 6.1
7 8 9	NH	F Cl Br	Z1	-2.719 -2.768 -2.763	3.919 3.915 3.901	0.281 0.232 0.237	-86.29 -62.64 -61.17	94.35 94.58 94.43	2.876 2.888 2.885	2.016 2.011 2.011	2.231 2.222 2.217	10.7 10.5 10.2
10 11 12		F Cl B	Z2	-2.616 -2.655 -2.655	3.888 3.886 3.875	0.384 0.345 0.345	-122.09 -93.64 -88.64	94.04 94.50 94.58	2.869 2.889 2.892	2.027 2.026 2.025	2.173 2.155 2.149	7.2 6.4 6.1
13 14 15	NCH ₃	F Cl Br	Z1	-2.566 -2.609 -2.627	3.917 3.911 3.900	0.434 0.391 0.373	-161.40 -134.85 -125.10	91.24 91.33 91.39	2.820 2.828 2.831	2.028 2.029 2.026	2.255 2.235 2.239	11.2 10.2 10.5
16 17 18		F Cl Br	Z2	-2.419 -2.490 -2.492	3.884 3.886 3.873	0.581 0.510 0.508	-209.07 -163.09 -155.39	91.06 91.72 91.71	2.819 2.843 2.845	2.040 2.040 2.039	2.187 2.170 2.163	7.2 6.4 6.1
19 20 21	$NCH_2 - CH_3$	F Cl Br	Z1	-2.543 -2.629 -2.651	3.909 3.910 3.899	0.457 0.371 0.349	-174.47 -134.93 -124.27	89.77 90.02 90.32	2.798 2.816 2.823	2.032 2.031 2.028	2.252 2.246 2.244	10.9 10.6 10.6
22 23 24		F Cl Br	Z2	-2.396 -2.503 -2.527	3.878 3.886 3.877	0.604 0.497 0.473	-214.79 -162.12 -149.50	89.69 90.43 90.57	2.802 2.830 2.836	2.045 2.044 2.043	2.177 2.170 2.168	6.5 6.2 6.1
25 26 27	$NCH = CH_2$	F Cl Br	Z1	-2.615 -2.676 -2.691	3.990 3.988 3.975	0.385 0.324 0.309	-108.46 -83.18 -75.81	91.30 91.59 91.65	2.860 2.874 2.878	2.027 2.026 2.025	2.232 2.221 2.217	10.1 9.7 9.5
28 29 30		F Cl Br	Z2	-2.531 -2.590 -2.603	3.969 3.969 3.957	0.469 0.410 0.397	-135.92 -104.50 -96.38	91.30 91.87 92.00	2.868 2.890 2.895	2.036 2.037 2.038	2.176 2.148 2.152	6.9 5.4 5.6
31 32 33	$NC \equiv CH$	F Cl Br	Z1	-2.809 -2.887 -2.903	4.018 4.011 3.999	0.191 0.113 0.097	-63.23 -41.73 -36.77	93.05 93.34 93.37	2.944 2.959 2.963	2.009 2.008 2.007	2.207 2.198 2.196	9.9 9.5 9.4
34 35 36		F Cl Br	Z2	-2.625 -2.720 -2.730	3.983 3.988 3.976	0.375 0.280 0.270	-102.53 -70.38 -64.43	92.27 93.27 93.41	2.926 2.961 2.967	2.019 2.017 2.018	2.136 2.130 2.125	5.8 5.6 5.3
37 38 39	NC ₆ H ₅	F Cl Br	Z1	-2.469 -2.558 -2.573	3.966 3.974 3.965	0.531 0.442 0.427	-163.25 -127.51 -116.75	88.84 89.41 89.63	2.831 2.853 2.861	2.035 2.030 2.035	2.191 2.196 2.191	7.7 8.2 7.7
40 41 42		F Cl Br	Z2	-2.416 -2.505 -2.524	3.943 3.957 3.951	0.584 0.495 0.476	-178.58 -134.77 -122.58	88.90 90.04 90.31	2.845 2.888 2.898	2.042 2.042 2.042	2.140 2.129 2.125	4.8 4.3 4.1

 $Z1 = (O_2CMe)_3$, $Z2 = MeC(CH_2NOCMe)_3$.


the three $\mathrm{Mn^{3+}}$ ions at the B sites exist in the HS state with configuration $d^4(t_{2\mathrm{g}}^3, e_{\mathrm{g}}^1)$, and the exchange coupling between the three $\mathrm{Mn^{3+}}$ ions and the $\mathrm{Mn^{4+}}$ ion is AFM, resulting in the ferrimagnetic structure in $\mathrm{Mn_4L_3XZ}$ molecules with the large S_{T} of 9/2.

Note that the HS state with configuration $d^4(t_{2g}^3, e_g^1)$ relates to the appearance of Jahn–Teller distortions at Mn³⁺ ions. Our calculated results confirm that each of three Mn³⁺ sites is an elongated octahedron along the Mn³⁺O_B axis. Here,

the distortion factor of the B sites is measured by

$$f_{\text{dist}} = \frac{d_Z - d_{XY}}{d_{XY}} \cdot 100\%,\tag{1}$$

where d_Z is the interatomic distance between the Mn³⁺ and O_B sites, as labeled in figure 3. The d_{XY} is the average interatomic distance between the Mn³⁺ site and the two O sites of the CH(CHO)₂ group, as shown in figure 3. The value of f_{dist} is given in table 4, in which molecule 13 with [L, X, Z] = [NCH₃, F, (O₂CMe)₃] has the highest value of

Figure 4. The schematic geometric structure of $42 \text{ Mn}_4\text{L}_3\text{XZ}$ molecules. This figure also illustrates the development of geometric structure of $\text{Mn}_4\text{L}_3\text{XZ}$ molecules by variations in L, X and Z ligands. Color codes: Mn^{3+} (violet), Mn^{4+} (yellow), O (red), N (blue), C (grey), F (light turquoise), Cl (light green) and Br (brown).

 $f_{\rm dist} = 11.2\%$, the molecule **42** with [L, X, Z] = [NC₆H₅, Br, and MeC(CH₂-NOCMe)₃] has the smallest value of $f_{\rm dist} = 4.1\%$. The HS spin state as well as the elongated Jahn-Teller distortions at Mn³⁺ ions is known as one of the origins of the axial anisotropy in Mn SMMs [20–22]. These results demonstrate that all 42 Mn₄L₃XZ molecules must have axial anisotropy. Therefore, they are high-spin anisotropic molecules. Next, we will present in detail about the geometric structure and magnetic properties of these 42 Mn₄L₃XZ molecules. The geometric structures corresponding to the most stable states of these 42 Mn₄L₃XZ molecules are depicted in figure 4. Figure 4 also illustrates the development

of geometric structure of Mn_4L_3XZ molecules by variations in L, X and Z ligands. Our calculations confirm that the C_{3v} symmetry of Mn_4L_3XZ molecules, with the C_{3v} axis passing through the A and X sites, is preserved even if the L, X and Z ligands are changed. Also, the distorted cubane geometry of the Mn_4L_3X core is preserved. However, their bond angles and interatomic distances are various, in which the exchange coupling angle (α) and the Mn^{3+} – Mn^{4+} interatomic distance (d_{AB}) are changed in the ranges of 88.84° – 95.47° and 2.798–2.967 Å, respectively, as shown in table 4. As expected, the J_{AB} is also various, as shown in table 4. The calculated results confirm the expectation that

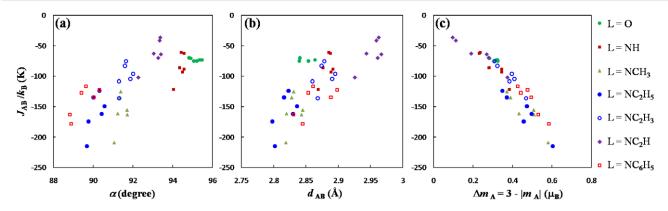


Figure 5. From left to right: (a) the α dependence of J_{AB} , (b) the d_{AB} dependence of J_{AB} , and (c) the Δm_A dependence of J_{AB} .

 $J_{\rm AB}$ tends to become stronger when the α reaches around 90°, as demonstrated in figure 5(a), due to the enhancement of hybridization between 3d orbitals at Mn sites and ligand orbitals at L sites. The molecule 22 with L = NC₂H₅ has the highest $J_{\rm AB}/k_{\rm B}$ of -214.79 K, corresponding to $\alpha=89.69^{\circ}$. This value is about three times larger than that of molecules 1–6 with L = O. Also, the $J_{\rm AB}$ tends to become stronger with a decrease in $d_{\rm AB}$, which can be attributed to an increase in direct overlap between 3d orbitals at the A and B sites, as shown in figure 5(b).

The α and d_{AB} dependence of J_{AB} demonstrates that, in the space of $88^{\circ} \leqslant \alpha \leqslant 92^{\circ}$ and $d_{AB} \leqslant 2.850 \,\text{Å}$ (hereafter the strong J_{AB} space), the J_{AB} of Mn_4L_3XZ molecules is at least about twice as strong as that of synthesized Mn_4 SMMs (or Mn_4 molecules with L=O). Here it is noted that, in the strong J_{AB} space, there are many Mn_4L_3XZ molecules with L being N-based ligands, such as $L=NCH_3$, NC_2H_5 and NC_6H_5 , while Mn_4L_3XZ molecules with L=O is far from this space. These results demonstrate the advantages of using N-based ligands instead of oxygen to form exchange pathways between Mn ions. N-based ligands give us possibilities of designing new superior $Mn^{4+}Mn^{3+}$ molecules with a strong J_{AB} .

3.3. Relation between Mn–Mn exchange coupling and delocalization of 3d electrons

As discussed above, J_{AB} can be described pretty well by the geometric parameters α and d_{AB} . However, as discussed in our previous paper [5], the basic mechanism of exchange coupling between the Mn⁴⁺ and Mn³⁺ ions in distorted cubane $Mn^{4+}Mn^{3+}$ molecules results from delocalization of the d_{z^2} electrons from the Mn³⁺ ions to the Mn⁴⁺ ion, which can be evaluated by a difference between the formal magnetic moment and calculated magnetic moment of the Mn⁴⁺ ion, $\Delta m_{\rm A} = 3 - |m_{\rm A}|$ (where $m_{\rm A}$ is the calculated magnetic moment of the Mn⁴⁺ ion). The values of Δm_A of 42 Mn₄L₃XZ molecules are given in table 4. It is expected that the larger $\Delta m_{\rm A}$, the stronger $J_{\rm AB}$. The $\Delta m_{\rm A}$ dependence of $J_{\rm AB}$ of Mn₄L₃XZ molecules, which is plotted in figure 5(c), confirms this expectation. As illustrated in figure 5(c), our calculated results demonstrate a very linear relation between Δm_A and J_{AB} ,

$$J_{AB}/k_B = -350.68\Delta m_A + 20.23,$$
 (2)

with the coefficient of determination $R^2 = 0.87$. This finding suggests an effective way to predict J_{AB} of distorted cubane $\mathrm{Mn^{4+}Mn^{3+}}_3$ molecules. A comparison among figures 5(a)-(c) shows that Δm_{A} is a much better parameter to describe J_{AB} than α and d_{AB} .

4. Conclusion

By rational variations in the μ_3 -O, μ_3 -Cl, O₂CMe and dbm groups of synthesized distorted cubane $Mn^{4+}Mn^{3+}_{3}(\mu_{3}-O^{2-})_{3}(\mu_{3}-Cl^{-})(O_{2}CMe)_{3}^{-}(dbm)_{3}^{-}$ molecules, 42 new anisotropic high-spin distorted cubane Mn⁴⁺Mn³⁺, (Mn₄L₃XZ) molecules have been designed with ferrimagnetic structures between the Mn^{4+} and Mn^{3+} ions resulting in S_T of 9/2. These 42 Mn₄L₃XZ molecules having the Mn⁴⁺–L–Mn³⁺ exchange coupling angle (α) and the Mn³⁺–Mn⁴⁺ interatomic distance (d_{AB}) are various in the ranges of $88.84^{\circ}-95.47^{\circ}$ and 2.798-2.967 Å, respectively. The calculated results demonstrate that, J_{AB} tends to become stronger when α reaches around 90°. The molecule 22 has the highest J_{AB}/k_{B} of $-214.79 \,\mathrm{K}$ corresponding to $\alpha = 89.69^{\circ}$. This value is about three times larger than that of synthesized Mn₄ SMMs. The J_{AB} also tends to become stronger when d_{AB} decreases. These magnetostructural correlations demonstrate that the condition for a $\mathrm{Mn^{4+}Mn^{3+}}_3$ molecule to have strong J_{AB} is that this $Mn^{4+}Mn^{3+}$ molecule has to have α around 90° and short enough d_{AB} . Our calculated results show that, in the space of $\{88^{\circ} \leqslant \alpha \leqslant 92^{\circ} \text{ and } d_{AB} \leqslant 2.850 \text{ Å}\}, J_{AB} \text{ of}$ Mn₄L₃XZ molecules under study is at least about twice as strong as that of synthesized Mn⁴⁺Mn³⁺₃ SMMs. In this space, there are many Mn₄L₃XZ molecules with L being N-based ligands, such as NCH₃, NC₂H₅ and NC₆H₅, while there is no Mn_4L_3XZ molecule with L=0 in this space. These results demonstrate the advantages of using N-based ligands to form exchange pathways between manganese ions. N-based ligands give us possibilities of designing new superior $Mn^{4+}Mn_{3}^{3+}$ molecules with strong J_{AB} . A new magnetic parameter that can depict delocalization of 3d electrons between Mn sites, $\Delta m_A = 3 - |m_A|$, has been introduced. The $\Delta m_{\rm A}$ dependence of $J_{\rm AB}$ demonstrates a very linear relation. We hope that these results will give some hints for synthesizing not only new superior Mn⁴⁺Mn³⁺₃ SMMs but also other SMM systems.

Acknowledgments

We thank the Vietnam's National Foundation for Science and Technology Development (NAFOSTED) for funding this work within project 103.01.77.09. The computations presented in this study were performed at the Information Science Center of Japan's Advanced Institute of Science and Technology, and the Center for Computational Science of the Faculty of Physics, Hanoi University of Science, Vietnam.

References

- [1] Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
- [2] Friedman J R, Sarachik M P, Tejada J and Ziolo R 1996 Phys. Rev. Lett. 76 3830
 - Thomas L, Lionti L, Ballou R, Gatteschi D, Sessoli R and Barbara B 1996 *Nature* 383 145
- [3] Saitoh, Miyasaka H, Yamashita M and Clérac R 2007 J. Mater. Chem. 17 2002
 - Marvaud V, Herrera J M, Barilero T, Tuyeras F, Garde R, Scuiller A, Decroix C, Cantuel M and Desplanches C 2003 *Monatshefte für Chem.* **134** 149
 - Milios C J, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes S P, Christou G and Brechin E K 2007 J. Am. Chem. Soc. 129 2754
- [4] Inglis R, Taylor S M, Jones L F, Papaefstathiou G S, Perlepes S P, Datta S, Hill S, Wernsdorfer W and Brechin E K 2009 Dalton Trans. 42 9157
 - Ako A M, Mereacre V, Hewitt I J, Clérac R, Lecren L, Anson C E and Powell A K 2006 *J. Mater. Chem.* 16 2579
- [5] Tuan N A, Katayama S and Chi D H 2009 Phys. Chem. Chem. Phys. 11 717
- [6] Tuan N A, Katayama S and Chi D H 2008 Comput. Mater. Sci. 44 111
 - Han M J, Ozaki T and Yu J 2004 Phys. Rev. B 70 184421

- Park K, Pederson M R, Richardson S L, Alcalde N A and Christou G 2003 *Phys. Rev.* B **68** 020405
- Park K, Pederson M R and Bernstein N 2004 J. Phys. Chem. Solids 65 805
- [7] Bashkin J S, Chang H, Streib W E, Huffman J C, Hendricson D N and Christou G 1987 J. Am. Chem. Soc. 109 6502
- [8] Wang S, Filting K, Streib W E, Schmitt E A, McCusker J K, Hendrickson D N and Christou G 1991 Angew. Chem., Int. Ed. Engl. 30 305
- [9] Hendrickson N et al 1992 J. Am. Chem. Soc. 114 2455
- [10] Li Q, Vincent J B, Libby E, Chang H, Huffman J C, Boyd P D W, Christou C and Hendrickson D N 1988 Angew. Chem., Int. Ed. Engl. 27 1731
- [11] Wemple M W, Tsai H, Folting K, Hendrickson D N and Christou G 1993 *Inorg. Chem.* 32 2025
- [12] Wang S, Tsai H, Libby E, Folting K, Streib W E, Hendrickson D N and Christou G 1996 *Inorg. Chem.* 35 7578
- [13] Andres H, Basler R, Güdel H, Aromí G, Christou G, Büttner H and Rufflé B 2000 J. Am. Chem. Soc. 122 12469
- [14] Aubin S M J, Dilley N R, Pardi L, Krzystek J, Wemple M W, Brunel L, Maple M B, Christou G and Hendrickson D N 1998 J. Am. Chem. Soc. 120 4991
- [15] Wernsdorfer W, Aliaga-Alcalde N, Hendrickson D N and Christou G 2002 Nature 416 406
- [16] Delley B 1990 J. Chem. Phys. 92 508
- [17] Hammer B, Hansen L B and Norskov J K 1999 *Phys. Rev.* B **59** 7413
- [18] Delley B 1998 Int. J. Quantum Chem. 69 423
- [19] Mulliken R S 1955 J. Chem. Phys. 23 1833 Mulliken R S 1955 J. Chem. Phys. 23 1841
- [20] Sessoli R, Tsai H L, Schake A R, Wang S, Vincent J B, Folting K, Gatteschi D, Christou G and Hendrickson D N 1993 J. Am. Chem. Soc. 115 1804
- [21] Yang C I, Wernsdorfer W, Lee G H and Tsai H L 2007 J. Am. Chem. Soc. 129 456
- [22] Miyasaka H, Madanbashi T, Sugimoto K, Nakazawa Y, Wernsdorfer W, Sugiura K, Yamashita M, Coulon C and Clérac R 2006 Chem. Eur. J. 12 7028