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ABSTRACT

We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in
the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections by using the
uniform asymptotic approximation method to its third order, at which the upper error bounds are 0.15% and
accurate enough for the current and forthcoming cosmological observations. Then, using the Planck, BAO, and
supernova data, we obtain the tightest constraints on quantum gravitational effects from LQC corrections and find
that such effects could be well within the detection of the current and forthcoming cosmological observations.
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1. INTRODUCTION

Quantization of gravity has been one of the main driving
forces in physics in the past decades (Kiefer 2012), and various
approaches have been pursued, including string/M-Theory
(Becker et al. 2007), loop quantum gravity (Rovelli &
Vidotto 2015), and more recently the Horava–Lifshitz theory
(Hořava 2009). However, it is fair to say that our under-
standing of it is still highly limited, and none of the
aforementioned approaches is complete. One of the main
reasons is the lack of evidence of quantum gravitational effects
due to the extreme weakness of gravitational fields.

This situation has been dramatically changed recently,
however, with the arrival of the era of precision cosmology
(Kiefer & Kramer 2012; Krauss & Wilczek 2014;
Woodard 2014). In particular, cosmic inflation (Guth 1981),
which is assumed to have taken place during the first moments
of time, provides the simplest and most elegant mechanism to
produce the primordial density perturbations and gravitational
waves. The former is responsible for the formations of the
cosmic microwave background (CMB) and the large-scale
structure of the universe (Baumann 2009). Current measure-
ments of CMB (Komatsu et al. 2011; BICEP2/Keck & Planck
Collaborations 2015; Planck Collaboration 2015) and observa-
tions of the large-scale distributions of dark matter and galaxies
in the universe (Eisenstein et al. 2005; Tegmark et al. 2006;
Beutler et al. 2011; Blake 2011) are in stunning agreement with
it. On the other hand, since inflation is extremely sensitive to
Planckian physics (Baumann 2009; Brandenberger & Martin
2013; Burgess et al. 2013), it also provides opportunities to get
deep insight into the physics at the energy scales that cannot be
reached by any man-made terrestrial experiments in the near
future. In particular, it provides a unique window to explore
quantum gravitational effects from different theories of
quantum gravity, whereby one can falsify some of these
theories with observational data that have uncomprehended
accuracy (Abazajian et al. 2015) and obtain experimental
evidence and valuable guidelines for the final construction of
the theory of quantum gravity.

In this Letter, we study the quantum gravitational effects of
loop quantum cosmology (LQC) in inflation (Bojowald 2005;
Ashtekar & Singh 2011; Barrau et al. 2014) and show
explicitly that these effects could be well within the detection
of the current and forthcoming cosmological experiments
(Abazajian et al. 2015). Such effects can be studied by
introducing appropriate modifications at the level of the
classical Hamiltonian, very similar to those studied in solid
state physics (Bojowald 2005; Ashtekar & Singh 2011; Barrau
et al. 2014). It was found that there are mainly two kinds of
quantum corrections: the holonomy (Mielczarek 2008, 2009,
2014; Grain et al. 2010; Mielczarek et al. 2010, 2012; Li &
Zhu 2011; Cailleteau et al. 2012a, 2012b) and inverse-volume
corrections (Bojowald & Hossain 2007, 2008a, 2008b; Bojo-
wald et al. 2009, 2010, 2011a, 2011b; Bojowald &
Calcagni 2011; Amoros et al. 2014). These corrections modify
not only the linear perturbations, but also the space–time
background.
In particular, for a scalar field ϕ with its potential V ( )f , the

holonomy corrections modify the Friedmann and Klein–Gordon
equations to the forms
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where a denotes the expansion factor, a aº ¢ , and a prime
denotes the derivative with respect to the conformal time

dt a t( ( ))òh º . cr is a constant and characterizes the energy

scale of the holonomy corrections, with a(2 )2 2r f= ¢ +f

V ( )f . Clearly, the Big Bang singularity normally appearing at
r = ¥f is now replaced by a big bounce occurring at cr r=f .

In the infrared, we have 1cr rf  , and Equation (1) reduces
to that of general relativity. The evolutions of the anomaly-free
cosmological scalar and tensor perturbations are described by
the mode function ( )km h , satisfying the equation (Cailleteau
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et al. 2012a, 2012b)
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where k( ) ( )k
2 2w h h= W with ( ) 1 2 ch r rW º - . The back-

ground-dependent function z ( )h is given by z a( )S fº ¢  for

the scalar perturbations and z a( )T º W for the tensor ones.
To the first order of the slow-roll parameters and

( 1)H cd r rº  , the inflationary spectra and spectral indexes
with the holonomy corrections have been recently obtained by
further assuming that the slow-roll parameters and Hd are all
constants (Mielczarek 2014).

With the inverse-volume corrections, on the other hand, the
Friedmann and Klein–Gordon equations are modified to the
forms (Bojowald & Calcagni 2011)
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in which p a2º , ( )1 0 Pl Pl
2a a d dº + +  , 1 0 PlJ J dº + +

( )Pl
2d , and aPld µ s- , where ,0 0a J , and σ are constants.

(Note that here we use ϑ instead of ν adopted in Bojowald &
Calcagni 2011 and reserve ν for other uses.) The values of 0a
and σ are currently subject to quantization ambiguities, while
the magnitude of Pld is unknown, as so far we have no control
over the details of the underlying full theory of quantum
gravity (Bojowald & Calcagni 2011). However, when σ takes
values in the range 0 6s< ⩽ , the size of Pld does not depend
on 0a and 0J and can be written in the form a a( )Pl Pld º s,
where aPl is another arbitrary constant. The constant 0J is
related to 0a and σ via the consistency relation

( 3)( 6) 3 ( 6) 00 0J s s a s- + - - = . However, to make
the effective theory viable, we shall assume ( ) 1Pld h  at
any given moment, so we can safely drop off all the second-
and high-order terms of ( )Pld h . This assumption also
guarantees that the slow-roll conditions can be imposed, even
after the inverse-volume corrections are taken into account.

With the above assumption, Bojowald and Calcagni (BC;
Bojowald & Calcagni 2011) studied the scalar and tensor
perturbations with the inverse-volume corrections and found
that the corresponding mode function ( )km h can be also cast in
the form (3), but now with

( )k( ) 1 2 ( ) (6)k
2

0 Pl
2w h a d h= +

for tensor, and

( )k( ) 1 2 ( ) (7)k
2

0 Pl
2w h b d h= +

for scalar, where ( 6) 36 (15 ) 120 0 0b sJ s a sº + + - .
With such modified dispersion relations, BC calculated the
corresponding power spectra and spectral indexes to the first
order of the slow-roll parameters, from which, together with
Tsujikawa, they found (Bojowald et al. 2011a, 2011b) that the
LQC effects are distinguishable from these of the noncommu-
tative geometry or string, as the latter manifest themselves in

small scales (Tsujikawa et al. 2003; Calcagni & Tsujikawa
2004; Piao et al. 2004), while the former mainly at large scales.
To find explicitly the observational bounds on the inverse-
volume quantum corrections, they considered the CMB
likelihood for the potentials V ( ) n

nf l f= and V ( )f =
V e0

klf- by using the WMAP 7 year data together with the
large-scale structure, the Hubble constant measurement from
the Hubble Space Telescope, SNe Ia, and Big Bang
nucleosynthesis (Burles & Tytler 1998; Kowalski et al. 2008;
Riess et al. 2009; Reid et al. 2010; Komatsu et al. 2011), the
most accurate data available to them by then, and they obtained
various constraints on k( )d for different values of σ at the
pivots k 0.002 Mpc0

1= - and k 0.05 Mpc0
1= - , where

k k( ) ( )0 Pld a d= for 3s ¹ and k k( ) ( )0 Pld J d= for 3s = .
An interesting feature is that the constraints are very sensitive
to the choice of the pivots k0, especially when σ is large
( 2)s ⩾ but insensitive to the forms of the potential V ( )f .

In this Letter, our goals are two-fold. First, we calculate the
scalar and tensor power spectra, spectral indexes, and the ratio r
to the second order of the slow-roll parameters for both of the
holonomy and inverse-volume corrections so that they are
accurate enough to match with the accuracy required by the
current and forthcoming experiments (Abazajian et al. 2015).
This becomes possible due to the recent development of the
powerful uniform asymptotical approximation method (Habib
et al. 2002; Zhu et al. 2014a, 2014b, 2014c, 2014d), which is
designed specially for the studies of inflationary models after
quantum gravitational effects are taken into account. Up to the
third-order approximations in terms of the free parameter ( 1l- )
introduced in the method, which is independent of the slow-roll
inflationary parameters mentioned above, the upper error
bounds are less than 0.15% (Zhu et al. 2014d). Second, we
shall use the most recent observational data to obtain new
constraints on k( )0d for the power-law potential V ( ) n

nf l f= ,
where n is chosen so that r 0.1 . With such constraints, we
shall prove explicitly that the quantum gravitational effects
from the inverse-volume corrections are within the range of the
detection of the forthcoming experiments, especially of the
Stage IV ones (Abazajian et al. 2015).

2. INFLATIONARY SPECTRA AND SPECTRAL INDEXES

To apply the uniform asymptotic approximation method, we

first rewrite Equation (3) as g y q y yˆ ( ) ( ) ( )
d y

dy k
( ) 2k

2

2
l m= é
ëê + ù

ûú
m

,

where y khº - and the parameter λ is a large constant to be
used to trace the order of approximations. The reason to
introduce two functions, g yˆ ( ) and q(y), instead of only one, is
to use the extra degree of freedom to minimize the errors (Zhu
et al. 2014a). For example, with the holonomy corrections, we
have g y q y z k zˆ ( ) ( ) ( ) ( )2 2l h+ =  - W . Then, minimizing the
error control function defined explicitly in Zhu et al. (2014a),
we find that in this case q(y) must be taken as
q y y( ) 1 (4 )2= - . Once q(y) is determined, g yˆ ( ) is in turn
uniquely fixed. Then, the corresponding approximate analytical
solution will depend on the number and nature (real or
complex) of the roots of the equation g yˆ ( ) 0= (Zhu
et al. 2014a, 2014b, 2014c). In the quasi–de Sitter background,
it can be shown that g yˆ ( ) currently has only one real root. In
this case, the general expressions of the mode function, power
spectra, and spectral indexes up to the third-order

2

The Astrophysical Journal Letters, 807:L17 (6pp), 2015 July 1 Zhu et al.



approximations (in terms of 1l- ) were given explicitly in Zhu
et al. (2014d). Applying them to the case with the holonomy
corrections, we find (T. Zhu et al. 2015, in preparation)
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where A H e1, 181 (72 )H c s
2 3 2

1d r r pº ºf  
  , At º

H181 2
 / e(36 )3 2p , D 67 181 ln 3p = - , D 10 27 ln 3n = - ,

1
485296

98283 2

2

D = - p , 2
9269

589698
D = , and å denotes quantities

evaluated at horizon crossing a H k( ) ( ) ( )h h h= W   . n

denotes the slow-roll parameters, defined as H H˙1
2º - and

H n˙ ( ) ( 1)n n n1 º+ ⩾   . Note that in the above expressions

we have ignored terms at the orders higher than ( , )H
3 2d   .

To the first order, it can be shown that our results are consistent
with those presented in Mielczarek (2014).

In the case with the inverse-volume corrections, we have
g y q y k z zˆ ( ) ( ) ( ( ))k

2 2 2l w h+ =  -- , where ( )k
2w h is given

by Equation (6), with z a( ) ˙ [1 ( 2 ) ]s
1

2 0 0 Plh j a J dº + - and
z a( ) (1 2)t 0 Plh a dº - , respectively. To minimize the errors,
q(y) must also be chosen as in the last case, and then it can be
shown that g yˆ ( ) 0= has only one real root, and as a result, the
general expressions of the mode function, power spectra, and
spectral indexes given in Zhu et al. (2014d) are also applicable
to this case, which yield (T. Zhu et al. 2015, in preparation)
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Note that we parameterize a k a y( ) ( ) ( )Pl Pld h h= -s s s- with
a k( )Pl Plº s , k a( )hº - s- . In Table 1, we list the values of the

coefficients s
1
( )

- , s
1
( )

- , t
0

( ) , and t
0

( ) for different values of σ,
as they represent the dominant contributions. The rest of the
terms appearing in the above expressions are subdominant and
will not be given here, but they are given explicitly in T. Zhu
et al. (2015, in preparation). When 3s = , s

1
( )

- and s
1
( )

-

vanish, so one has to consider contributions from s
0

( ) and s
0

( ) ,

which are given by s
0

( ) 513

11584 0J= p and s
0

( ) 9

64 0J= - p . We
emphasize that the modified power spectra and also the spectral
indices are now explicitly scale dependent because of kPl ~ s- .
Before considering the observational constraints, let us first

note that in Bojowald & Calcagni (2011) and Bojowald et al.
(2011a, 2011b) the observables n n,s t, and r were calculated
up to the first order of the slow-roll parameters. Comparing
their results with ours, after writing all expressions in terms of
the same set of parameters, say, M V V[ ( ) 2]V Pl

2
,

2º f ,

M V V[ ]V Pl
2

,h º ff , and M V V V ]V
2

Pl
4

, ,
2x = f fff , we find that

our results are different from theirs. A closer examination
shows that this is mainly due to the following. (a) In Bojowald

Table 1
Values of Coefficients s

1
( )

- , s
1
( )

- , Q t
0

( ) , and K t
0

( ) for Different Values of σ

σ 1 2 3 4 5 6
s
1
( )

-
6

0
p
a 2

3
0a 0 1616

1629
0a

- 475

2896
0pa

10512

905
0a

s
1
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-

6
0

p
a- 4

3
0a- 0 320

81
0a 125

144
0pa-

352

5
0a-

t
0

( ) 725

2172
0

p
a-

244

543
0a- 0 11728

8145
0a

8165

5792
0

p
a

13920

1267
0a

t
0

( )

3
0

p
a 8

9
0a 0 2368

405
0a-

1025

144
0

p
a-

6976

105
0a-

3
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& Calcagni (2011), the horizon crossing was taken as k = .
However, due to the quantum gravitational effects, the
dispersion relation is modified to the form (6), so the horizon
crossing should be at kw = . (b) In Bojowald & Calcagni
(2011), the mode function was first obtained at two limits,
k   and k  , and then matched together at the horizon
crossing where k  . This may lead to huge errors (Joras &
Marozzi 2009; Ashoorioon et al. 2011), as neither km  nor

km  is a good approximation of the mode function km at the
horizon crossing. The above arguments can be seen further by
considering the exact solution of km :

c ia

a
i a k( ) WW

4
,

2
, , (10)k 2

1 1

2
2

2 2m h
h

n
h=
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è
çççç
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for the case 2s = , where b b zWW( , , )1 2 denotes the
WhittakerW function, a m a m1 , 2 , ( )1 Pl 2 0 Plk b k hº - º 

is the coefficient of ( )Pld h in the definition
z

zk y

1 1 4
2

2

2
-


= +n -

m

y Pl2
d , and 3 2 21 2n = + +  for the scalar perturbations,

and 3 2 1n = +  for the tensor. Matching it to the Bunch–
Davies vacuum solution at k  , we find that

( )c e ka21 2
1 4a

a
1

8 2= - p
. With the above mode function, the

power spectra and spectral indexes can be calculated and are
found to be the same as those given here, but are different from
those of Bojowald & Calcagni (2011) and Bojowald et al.
(2011a, 2011b). For more details, see T. Zhu et al. (2015, in
preparation).

3. DETECTION OF QUANTUM GRAVITATIONAL
EFFECTS

The contributions to the inflationary spectra and spectral
indices from the holonomy corrections are introduced through
the parameter Hd , which are of the order of 10−12 for typical
values of the parameters (Mielczarek 2014). Then, with the
current and forthcoming observations (Abazajian et al. 2015),
it is very difficult to detect such effects.

On the other hand, for the inverse-volume corrections, let us
consider the power-law potential V ( ) n

nf l f= , for which we
find that n n n n n2( 1) , 4( 1)( 2)V V V V

2 2 2h x= - = - -  ,

where M n (2 )V Pl
2 2 2f= . Thus, without the inverse-volume

corrections ( 0Pld = ), we have n n ( )s s V=  and r r ( )V=  , and
up to the second order of V , the relation (Creminelli
et al. 2014)
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n s s
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2
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+
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+
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holds precisely. The results from Planck 2015 are
n 0.968 0.006s =  and r 0.110.002 < (95% CL; Komatsu
et al. 2011; BICEP2/Keck & Planck Collaborations 2015;
Planck Collaboration 2015), which yields n 1 . In the
forthcoming experiments, especially the Stage IV ones, the
errors of the measurements on both ns and r are 10 3-⩽
(Abazajian et al. 2015), which implies ( ) 10n

3s G -⩽ . On the
other hand, when the inverse-volume corrections are taken into
account ( 0Pld ¹ ), we have n n ( , )s s V Pl=   and

r r ( , )V Pl=   , and Equation (11) is modified to

n r
k

( , ) ( )
( )

, (12)n s
V

s
d

G = 


where k H( ) 0 Pld aº s and ( ) (1)s   (T. Zhu et al. 2015,
in preparation). Clearly, the right-hand side of the above
equation represents the quantum gravitational effects from the
inverse-volume corrections. If it is equal to or greater than

(10 )3- , these effects shall be well within the detection of the
current or forthcoming experiments. It is interesting to note that
the quantum gravitational effects are enhanced by an order V

1- ,
which is absent in Bojowald & Calcagni (2011).
In the following, we run the Cosmological Monte Carlo code

(Gong et al. 2008) with the Planck (Ade 2014), BAO
(Anderson et al. 2012), and Supernova Legacy Survey (Conley
et al. 2011) data for the power-law potential with n = 1, which
can be naturally realized in the axion monodromy inflation
motivated by string/M theory (Silverstein & Westphal 2008;
McAllister et al. 2010). To compare our results with those
acquired in Bojowald et al. (2011b), we shall carry out our
CMB likelihood analysis as close to theirs as possible. In
particular, we assume the flat cold dark matter model with the
effective number of neutrinos N 3.046eff = and fix the total
neutrino mass m 0.06 eVS =n . We vary the seven parameters:
(i) baryon density parameter, hb

2W ; (ii) dark matter density
parameter, hc

2W ; (iii) the ratio of the sound horizon to the
angular diameter, θ; (iv) the reionization optical depth τ; (v)

k( ) V0d  ; (vi) V ; and (vii) k( )s
2

0D . We take the pivot
wavenumber k 0.05 Mpc0

1= - used in Planck to constrain
k( )0d and V . In Figure 1, the constraints on Vd  and V are

given, respectively, for 1s = and 2s = . In particular, we find
that k( ) 6.8 100

5d ´ - (68% CL) for 1s = and
k( ) 1.9 100

8d ´ - (68% CL) for 2s = , which are much
tighter than those given in Bojowald et al. (2011b). The upper
bound for k( )0d decreases dramatically as σ increases
(Bojowald et al. 2011b; T. Zhu et al. 2015, in preparation).
However, for any given σ, the best-fitting value of V is about
10−2, which is rather robust when comparing with the case
without the gravitational quantum effects (Ade 2014). It is
remarkable to note that despite the tight constraints on k( )0d ,
because of the V

1- enhancement of Equation (12), such effects
can be well within the range of the detection of the current and
forthcoming cosmological experiments (Abazajian et al. 2015)
for 1s . Note that small values of σ are also favorable
theoretically (Bojowald & Calcagni 2011).

4. CONCLUSIONS

Using the uniform asymptotic approximation method
developed recently in Zhu et al. (2014a, 2014b, 2014c,
2014d), we have accurately computed the power spectra, the
spectral indices, and the ratio r of the scalar and tensor
perturbations of inflation in LQC to the second order of the
slow-roll parameters after the corrections of the holonomy
(Mielczarek 2008, 2009, 2014; Grain et al. 2010; Mielczarek
et al. 2010; Cailleteau et al. 2012a, 2012b) and inverse-volume
(Bojowald & Hossain 2007, 2008a, 2008b; Bojowald
et al. 2009, 2010, 2011b; Bojowald & Calcagni 2011; Li &
Zhu 2011; Mielczarek et al. 2012; Amoros et al. 2014) are
taken into account. The upper error bounds are 0.15% , which
is accurate enough for the current and forthcoming experiments
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(Abazajian et al. 2015). Utilizing the most accurate CMB,
BAO, and supernova data currently available publicly (Conley
et al. 2011; Ade 2014; Anderson et al. 2012), we have carried
out the CMB likelihood analysis and found constraints on

k( ( ), )V0d  , the tightest ones obtained so far in the literature.
Even with such tight constraints, the quantum gravitational
effects due to the inverse-volume corrections of LQC can be
well within the range of the detection of the current and
forthcoming cosmological experiments (Abazajian et al. 2015),
provided that 1s .

It should be noted that in our studies of the holonomy
corrections, the effects of bouncing of the universe are
insignificant by implicitly assuming that inflation occurred
long after the bouncing. This is the same as those considered in
Mielczarek (2008, 2009, 2014), Grain et al. (2010), Mielczarek
et al. (2010, 2012), Li & Zhu (2011; Mielczarek et al. 2012),
and Cailleteau et al. (2012a, 2012b). Thus, it is expected that
quantum gravitational effects from these corrections are
negligible. However, when the whole process of the bouncing
is properly taken into account, such effects may not be small at
all (Grain & Barrau 2009; Barrau & Grain 2014). It would be
very interesting to reconsider the observational aspects of these
effects, although cautions must be taken, as Equation (1) was
derived only for small potentials. Without this condition, there
would be additional quantum corrections that are neither of
holonomy nor of inverse-volume type.
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