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ABSTRACT

Classical Sweet–Parker models of reconnection predict that reconnection rates depend inversely on the resistivity,
usually parameterized using the dimensionless Lundquist number (S). We describe magnetohydrodynamic (MHD)
simulations using a static, nested grid that show the development of a three-dimensional (3D) instability in the
plane of a current sheet between reversing field lines without a guide field. The instability leads to rapid
reconnection of magnetic field lines at a rate independent of S over at least the range S3.2 10 3.2 103 5 ´ ´
resolved by the simulations. We find that this instability occurs even for cases with S 104 that in our models
appear stable to the recently described, two-dimensional, plasmoid instability. Our results suggest that 3D, MHD
processes alone produce fast (resistivity independent) reconnection without recourse to kinetic effects or external
turbulence. The unstable reconnection layers provide a self-consistent environment in which the extensively
studied turbulent reconnection process can occur.
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1. INTRODUCTION

During magnetic reconnection, magnetic field lines change
topology, resulting in the conversion of magnetic energy into
both thermal energy and kinetic energy of bulk flows and non-
thermal particles. The rate at which this process occurs in the
classical Sweet–Parker picture (Parker 1957, Sweet 1958)
depends on the Lundquist or magnetic Reynolds number
S v LA h= , where vA is the Alfvén speed, L a characteristic
length of the system, and η the resistivity. The Sweet–Parker
rate is orders of magnitude too slow to explain the fast
reconnection seen in low resistivity plasmas during solar flares
and sawtooth crashes in tokamaks (Yamada et al. 2010).
Because it is a fundamental plasma process, reconnection is
thought to be important in astrophysical environments as
diverse as the heliosphere (e.g., Edmondson et al. 2010) and
microquasars (Khiali et al. 2015).

The identification of the two-dimensional (2D) plasmoid
instability 1(Biskamp 1986; Loureiro et al. 2007; Huang &
Bhattacharjee 2013), a super-Alfvénic, small-scale instability,
has provided a mechanism to greatly speed up Sweet–Parker
reconnection. However, this instability has primarily been
studied in 2D, assuming symmetry in the plane of the current
sheet. The reason for this dimensional reduction is that the
reconnection process is inherently multi-scale, with a large
separation between the global scale of the reconnection layer
and the resistive length where the instability grows. Even 2D
simulations tax state of the art computational resources if
uniform grids are used.

Lazarian & Vishniac (1999) argued that reconnection in the
presence of any sort of turbulence would be fast, because the
turbulence would drive many points of contact between the
opposed field lines. This idea has been put on a rigorous
mathematical basis (Eyink et al. 2011) as reviewed by Lazarian
et al. (2015b) and Lazarian et al. (2015a). Indeed, recent
modeling suggests that turbulent reconnection may be
responsible for the radio and gamma-ray emission from
accreting black holes (Singh et al. 2015). However, these

ideas all require that reconnection proceed at a large fraction of
vA. Numerical models examining reconnection in forced
turbulence support this theory, starting with (Kowal
et al. 2009). In this work, we demonstrate that turbulent
reconnection proceeds in a very similar fashion when the
turbulence is self-generated from an instability of the
reconnection layer itself.
Here, we describe a set of nested grid simulations that model

the reconnection layer in three dimensions over a broad range
of S, without any forcing or a guide field. These simulations
show that a startlingly fast, three-dimensional (3D) instability
occurs in the plane of the current sheet, which was assumed to
be uniform in the 2D simulations. This instability drives a large
increase in the rate of reconnection, which we show remains
independent of S over two orders of magnitude of variation in
the resistivity.
Boozer (2012b, 2013) has argued that reconnection requires

a point geometry to proceed, so that it is an inherently 3D
process. The work we describe here demonstrates that such a
3D geometry naturally arises even from 2D initial conditions,
resulting in fast reconnection apparently independent of S.
Previous work in this field has shown 3D instability, but has

not provided a clear demonstration of the independence of the
reconnection rate from S. Dahlburg et al. (2003, 2005) focused
on the case of a current sheet with a strong guide field, and
found a 3D instability set in for a weak enough guide field,
which they called a secondary instability. However, they did
not measure the scaling of the reconnection rate with S.
Lapenta & Bettarini (2011) reported the breakdown of an
initially 2D Harris sheet into a fully 3D reconnection region
with a greatly enhanced reconnection rate. A magnetohydro-
dynamic (MHD) kink instability on a central plasmoid was
followed by a Rayleigh–Taylor instability driven by the
reconnection jet interacting with the plasmoids at the ends of
the layer. However, again, no test of the dependence on S was
performed. Another numerical experiment has shown that thin,
3D, current layers are unstable to infinitesimal perturbations
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and reconnect at a rate apparently independent of Lundquist
number S (Beresnyak 2013), but only a factor of three variation
in S was explored. Edmondson et al. (2010) studied the
formation of coronal current sheets due to photospheric forcing
in a global, 3D, AMR simulation. They concluded that the
dynamics of the current sheet were 3D, allowing a steady rather
than the bursty reconnection rate found by 2D models of the
plasmoid instability. Finally, 3D reconnection in the collision-
less limit has been explored by Daughton et al. (2011) and
Pritchett (2013). That work largely focused on particular
kinetic effects that drive dissipation at the smallest scales.

In Section 2 we describe our computational methods, while
in Sections 3 and 4 we present our results. Finally, we discuss
the implications in Section 5.

2. METHODS

We use the mesh refinement code Enzo, which solves the
compressible, adiabatic, resistive, MHD equations (Bryan
et al. 2014). We use static refinement to focus computational
effort on the current sheets. Our computations are performed
within a cubic, 3D volume, with periodic boundary conditions
in all three dimensions. From the available algorithmic options,
we choose piecewise linear reconstruction, the HLLD Riemann
shock-capturing solver, and constrained transport (Gardiner &
Stone 2005) to ensure B· 0 = to machine precision (Collins
et al. 2010). We performed all analyses using the yt toolkit
(Turk et al. 2011).

Our initial condition is a pair of oppositely directed, parallel
current sheets to accommodate the periodic boundary condi-
tions, each perturbed following the GEM Reconnection
Challenge (Birn et al. 2001) to initiate Sweet–Parker
reconnection. All but two of our runs are initialized with
low-amplitude, 3D velocity perturbations with mean Alfvèn
Mach number v v 4.3 10A

5á ñ ~ ´ - . These perturbations have
a spectrum v kk

4µ - with wavenumbers ranging from
k k kmin max⩽ ⩽ . We choose k 2 10min p = and k 2max p 15= ,
except for run C+, which has k 2 30min p = and k 2 35max p = .
We do not continue to force the velocity field during the
simulation. We normalize all lengths to the size of the box
L = 1, densities to the initial density at the center of the sheets

10r = , and times to the Alfvén crossing time of each sheet

t vA 0 Ad= where v B 4 3.2A 0 pr= ¥  is the Alfvén speed
of the upstream plasma. 0.020d = is the scale length of the
initial current sheet. Table 1 lists the parameters of our runs.
A minimum resolution requirement for reconnection is the

proper resolution of the Sweet–Parker current layer, which has
a width of L SSPd  , where L is the length of the layer.5 We
define two grid refinement regions covering the entire plane of
the current sheet x y(0 [ , ] 1)r r< < with a height z 12.5r 0d~
centered on each of the initial current sheets. These refined
regions have two levels of refinement atop a 1283 base grid,
leading to an effective resolution of 5123 in the current sheet
centers, except for run A*, which has three levels of
refinement, for an effective 10243 resolution.
Figure 1 shows SPd of the initial Sweet–Parker current sheet

at t t75 A= , long before any unstable perturbations have grown
to significant amplitudes. All runs with S 105< have current
sheet widths that agree well with the Sweet–Parker prediction,
because they are resolved by 10 zones across the sheets. The
run with S 3.2 105= ´ demonstrates the effects of marginal
resolution, while the run with S 3.2 106= ´ is only resolved
by ∼3 zones, and is a factor of four too thick. We do not use
this last run (run J) in our subsequent analysis, although it
serves as an important limit on the numerical resistivity of
our code.

3. FIELD DYNAMICS

Reconnection in our models begins at the Sweet–Parker rate
expected for a stable field reversal, as shown by the width of
the current sheet. This leads to the initial slow decline of the
volume integrated magnetic energy for all simulations
(Figure 2), as well as the low values of integrated kinetic
energy. Instability along the plane of the current sheet then sets
in, driving far faster reconnection, and transferring energy from
the magnetic field into the flow, as shown by the sudden drop
in magnetic energy and the corresponding rise in kinetic
energy. The morphology of the onset and growth of the
instability is shown in the middle panels of Figure 3, while the
final panel shows its saturated state.
The development of the 3D instability results in the buckling

of the current sheet in the y–z plane, with a characteristic
wavenumber k 2 12z p ~ (third panel of Figure 3). The

Table 1
Run Data

Run Sa ηb γc Notes

A 3.2 × 105 10−5 −3.2 × 10−3 K
A* 3.2 105´ 10−5 3.3 10 3- ´ - double resolution
B 3.2 104´ 10−4 5.6 10 3- ´ - K
C 1.6 104´ 2 10 4´ - 4.8 10 3- ´ - K
C+ 1.6 104´ 2 10 4´ - 1.8 10 3- ´ - k 2 30min p =

perturbation
D 8.0 103´ 4 10 4´ - 2.1 10 3- ´ - K
E 3.2 103´ 10−3 1.4 10 3- ´ - K
F 3.2 102´ 10−2 K stable to 3D instability
G 3.2 103´ 10−3 K no initialperturbations
H 3.2 105´ 10−5 K no initial perturbations
J 3.2 106´ 10−6 K underresolved,

unanalyzed

a Lundquist number.
b Resistivity in code units.
c Decay rate of magnetic energy (see the text).

Figure 1. Width SPd in units of box size of the current sheet during quiescent
reconnection at t t75 A= , prior to the onset of instability. The circles show
simulations with varying Lundquist number S, the solid line gives the Sweet–
Parker scaling, and the triangle shows run A* at double resolution. The dotted–
dashed line shows a resolution of 10 zones for standard (5123-equivalent) runs,
while the dotted line shows 10 zones for our high resolution (10243-
equivalent) run.

5 A popular alternative is to use δ to represent the half-width of the current
sheet, but in that case, L is the half-length as well.
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simulations of Lapenta & Bettarini (2011) can be seen to show
similar behavior, though it is not emphasized in their paper.
They used a thin box in the third dimension, so they only had
two wavelengths in that direction. Ours is a factor of six deeper
in the z direction than theirs.6 Thus, our results give a
wavenumber consistent with that shown in their figures.

We find that resistivity stabilizes the 3D instability for
S 103 . Run D with S 3.2 103= ´ shows the instability
clearly through the growth of kinetic energy, although the total
amount of reconnection driven by the turbulence is small,
because the large resistivity has already allowed significant
laminar reconnection to occur.

When S 104> , the transition from laminar to turbulent
reconnection begins with the rapid growth of kinetic energy
apparently driven by a kink-type instability along the plasmoids
in the z direction. However, this is not a classical kink
instability, as the interior of the plasmoids is a demagnetized
reconnection region, rather than a column of current-carrying
plasma surrounded by vacuum as would be true in the classical
case. The growth of kinetic energy and decay of magnetic
energy must be due to reconnection occurring where field lines

are driven together by these instabilities rather than a simple
rearrangement of the horizontal field by them.
It appears from our models that the 3D instability may

actually grow independently of the 2D plasmoid instability.
Run E with S 104 lacks evidence for the growth of the 2D
plasmoid instability seen at higher Lundquist numbers by
ourselves and previous authors (Loureiro et al. 2007, 2012;
Samtaney et al. 2009; Huang & Bhattacharjee 2010, 2013;
Uzdensky et al. 2010), but nonetheless shows the growth of the
3D instability, albeit with a delay in onset of rapid growth
(Figure 2).
This delay occurs because growth of the 2D plasmoid

instability triggers secondary Richtmyer–Meshkov instability
(Richtmyer 1960; Meshkov 1969) that accelerates onset of the
3D instability, but is not required for 3D instability to occur.
The acceleration of a flow across the density contrast between
the plasmoid and the surrounding current sheet along the x axis
drives the Richtmyer–Meshkov instability (analogous to the
Rayleigh–Taylor instability that occurs in a gravitational field).
This instability begins when weak transient shocks from the
formation of the plasmoids at the sides of the domain
(x 0.5, 0.5= - ) pass over the density gradient produced by
the first plasmoid to form around the initial X line at
x y( , ) (0, 0.5)= . The secondary instability drives weak, initial
mixing along the X line.
We examined three numerical issues with further runs. First,

to determine if resolution affects our major result, we run our
marginally resolved run A at twice the resolution (run A*).
This run results in essentially identical growth rate γ.
Second, we checked that the instability is not purely

numerical by performing Runs G and H, identical to the
unstable Runs E and B, respectively, except without any initial
perturbations. The instability did not grow in either of these
runs. In Run G, which has S 3.2 103= ´ and is thus stable to
the 2D plasmoid instability, the entire 3D volume settled down
into a steady, laminar reconnection at the Sweet–Parker rate,
with a sheet width of L1.72 10SP

2d d = ´ - . Run H, on the
other hand, is unperturbed in the y–z plane, but is unstable to
the plasmoid instability. In this case, we find a vigorous
plasmoid instability that is entirely symmetric along the z axis,
demonstrating that our code is sufficiently stable to recover the
2D results in 3D if there are no explicit 3D perturbations.
Third, run C+ was performed at standard resolution with

smaller scale perturbations k( 2 30)min p = . We find the growth
rate is higher by a factor of ∼3 for the lower k perturbations,
suggesting a wavenumber dependence for the underlying
instability. We will pursue a formal stability analysis of the
instability in a separate paper, and this wavenumber depen-
dence represents an important test for that work.

4. SCALING

Figures 2 and 3 show three phases of reconnection: the slow,
Sweet–Parker phase while linear instabilities grow, a rapid
exponential phase in which 3D effects dominate reconnection,
and finally a saturated, MHD turbulent phase. The Sweet–
Parker reconnection rate is S 1 2µ - , implying far slower than
observed reconnection at the large values of S typical of Solar
and space plasmas. Figure 4 shows the decay rate γ during the
rapid reconnection phase as a function of S. While S runs over
two orders of magnitude, γ varies by a factor of only about
three, with no discernible functional relationship to S. Thus, the
3D instability offers a fast reconnection mechanism that occurs

Figure 2. (Upper) volume integrated kinetic and magnetic energies in the
simulation domain as a function of time for several values of Lundquist number
S. Letters in the legend give the run name in Table 1, and the gray tickmarks on
the central axis give the times of the four panels in Figure 3. (Lower) current
sheet width Δ as a function of time for run A*. The light line shows a linear fit
to the unstable period, giving a layer growth rate of d dt v3 10 3

AD ~ ´ - .

6 Note that the Lapenta & Bettarini (2011) box is oriented so their y axis
corresponds to our z axis.
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at a rate apparently independent of S, without appeal to either
kinetic effects or anomalous resistivity.

Once the instability saturates, the current sheet thickens
considerably (see the right panel of Figure 3), and the picture
of a steady flow of fresh field from upstream (i.e., from the y
direction above and below the layer) no longer holds in our
simulations. At the end of our simulation, there is still plenty of
field left to reconnect. The turbulence self-consistently driven
in the reconnection layer allows stochastic reconnection to
occur (Lazarian & Vishniac 1999; Eyink et al. 2011, 2013).
The thickening of the reconnection layer we see is consistent
with their model: the diffusion of the large-scale magnetic
fields controls the ultimate reconnection rate. Our periodic
boundary conditions, similar to those of Beresnyak (2013), do
not allow for a self-consistent steady state to occur. However,
during the rapid, resistivity-independent phase of the instabil-
ity, the reconnection region grows.

5. DISCUSSION

We have shown that for Lundquist numbers S 3.2 103> ´ ,
current sheets become turbulent in the direction perpendicular
to the field along the sheet, leading to fast, 3D, magnetic
reconnection (i.e., decay rate of magnetic energy independent
of resistivity η). At high S, individual 2D plasmoids rapidly
lose their identities, as the current sheet splits into filaments
parallel to the field direction. These 3D effects, driven by
rapidly growing instabilities along current sheets, appear
essential to understanding reconnection. This provides strong
support to the geometric ideas advanced by Boozer (2012a,
2012b, 2013) as well as the turbulent reconnection model

developed by Lazarian, Vishniac, and coworkers (Lazarian &
Vishniac 1999; Lazarian et al. 2015a, 2015b). To demonstrate
the latter point, in the bottom panel of Figure 2 we show the
reconnection layer width Δ as a function of time. During the
rapid growth phase, tD µ , in pleasing agreement with the
theory described in Lazarian et al. (2015b). We find that the
layer expansion velocity is d dt v3 10 3

AD ~ ´ - , roughly a
factor of four to five smaller than that reported by Beresnyak
(2013). We suspect the discrepancy is due to the fact that his
simulations include a guide field, although the lower diffusivity
of his pseudo-spectral code could also play a role. Never-
theless, the agreement on the linear form of the growth rate
despite our different setups and codes supports the turbulent
reconnection model.
As a result of the 3D instability, the initial current sheet

develops into a thick region of MHD turbulence. Lazarian et al.
(2015b) speculate that the growth in the plane perpendicular to
the reconnection (i.e., along the z direction in our simulations)
could be due to Kelvin–Helmholz instability. Once the
turbulent state is reached, the decay of magnetic energy in
our model slows dramatically, back to a rate comparable to the
initial Sweet–Parker rate. However, we stress that the state of
the system after the rapidly reconnecting, unstable phase is
radically different from the state before it, and the slow
subsequent reconnection may depend on the geometry we
chose for our simulations, which does not continue to force the
system on large scales, unlike, for example Solar flares Dudík
et al. (2014). However, this turbulence naturally produces the
conditions required for fast stochastic reconnection (Lazarian
& Vishniac 1999; Eyink et al. 2011, 2013).
Future work employing deeper grid hierarchies, adaptive

resolution elements placed in regions of high J , and
simulations with large-scale forcing through inflow boundary
conditions will clarify the outcomes of the instability and its
role in understanding reconnection in astrophysical environ-
ments. Specifically, by removing periodic boundary conditions
(or isolating them via deep AMR hierarchies), we will be able
to make a more detailed study of a key prediction of the
Lazarian & Vishniac (1999) model, the rate of broadening of
reconnection layer.
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Figure 3. Slices of current density J∣ ∣ at four times in run A, with S 3.2 105= ´ . Each panel shows the lower current sheet in our simulation box (the upper sheet
looks morphologically similar at each time). Note that the instability grows in both the y–z and x–z planes at roughly the same time.

Figure 4. Decay rate γ of the magnetic energy as a function of Lundquist
number S. Over two orders of magnitude in S, γ varies by less than a factor of
three, non-monotonically. The triangle almost superposed on the highest S
model shows the result for our double resolution run A*, demonstrating the
excellent convergence we have achieved.
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