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ABSTRACT

Anisotropy of MHD turbulence has been studied extensively for many years, most prominently by measurements
in the solar wind and high-resolution simulations. The spectrum parallel to the local magnetic field was observed to
be steeper than the perpendicular spectrum, typically -k 2, consistent with the widely accepted Goldreich & Sridhar
model. In this Letter, I looked deeper into the nature of the relation between parallel and perpendicular spectra and
argue that this -k 2 scaling has the same origin as the w-2 scaling of the Lagrangian frequency spectrum in strong
hydrodynamic turbulence. This follows from the fact that Alfvén waves propagate along magnetic field lines. It has
now became clear that the observed anisotropy can be argued without invocation of the “critical balance” argument
and is more robust that was previously thought. The relation between parallel (Lagrangian) and perpendicular
(Eulerian) spectra is an inevitable consequence of strong turbulence of Alfvén waves, rather than a conjecture
based on the uncertainty relation. I tested this using high-resolution simulations of MHD turbulence, in particular, I
verified that the cutoff of the parallel spectrum scales as a Kolmogorov timescale, not lengthscale.
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1. INTRODUCTION

Astrophysical and space plasmas are well conductive and
can be described as a magnetohydrodynamic fluid, which is
usually turbulent (Armstrong et al. 1995; Biskamp 2003;
Beresnyak & Lazarian 2014). At the same time, high-quality
measurements in the solar wind have been available for more
than two decades (Goldstein et al. 1995). The presence of a
large-scale magnetic field is expected to change the dynamics
dramatically. Analytic weak turbulence theory (Galtier
et al. 2000) found that a turbulent cascade proceeds in the
direction perpendicular to the mean field, resulting in stronger
turbulence, which should eventually break down weak
turbulence on sufficiently small scales. Earlier similar qualita-
tive arguments lead Goldreich & Sridhar (1995) to suggest that
the inertial range of MHD turbulence will be strong turbulence.
They also argued that such turbulence will be “critically
balanced,” or marginally strong, with the linear propagation
term always contributing comparably with the nonlinear
interaction term, predicting the ~ ^k k 2 3 anisotropic cascade,
which has found support in numerics (e.g., Cho &
Vishniac2000; Maron & Goldreich2001). The ^

-k 5 3 perpen-
dicular spectrum and the ~ ^k k 2 3 anisotropy results in a -

k
2

parallel spectrum. One observation is paramount for our
understanding of this parallel spectrum. While Goldreich &
Sridhar (1995) suggested a closure model predicting the

~ ^k k 2 3 anisotropy in the frame associated with the global
mean field, it was not observed in Cho & Vishniac (2000);
rather, this anisotropy was observed in the structure function
measurement performed in the frame associated with the local
magnetic field. Similarly, Horbury et al. (2008) observed the
-
k

2 parallel scaling using the wavelet technique and associat-
ing parallel direction to the direction of the local field.

Given the importance of the parallel spectrum for a variety of
phenomena, e.g., resonant scattering of solar energetic
particles, the measurement of the parallel spectrum in the solar
wind attracted considerable attention (see, e.g., Horbury et al.
2008; Osman & Horbury2009; Podesta2009; Luo &

Wu2010; Wicks et al.2010, 2011). These measurements
followed the prescription of the local field direction and
generally confirmed the -

k
2 scaling; however, the debate

surrounding the critical balance argument and the nature of
anisotropy continued in Grappin & Müller (2010) and Grappin
et al. (2013).
In this Letter, I will argue that there is a conceptually simpler

way to look at the MHD anisotropy, namely, as a relation
between Lagrangian and Eulerian spectra. I will also introduce
the statistically averaged one-dimensional spectrum along the
field line and show that high-resolution numerics support steep
parallel spectra, consistent with -

k
2, just like in the solar wind

measurements.

2. STRONG TURBULENCE AND THE LAGRANGIAN
SPECTRUM

Strong turbulence was suggested to be scale-local and self-
similar in Kolmogorov (1941), which led to his -k 5 3 Eulerian
power spectrum of velocity perturbations. Another basic
spectrum of hydrodynamic turbulence is called the Lagrangian
frequency spectrum, which statistically evaluates how the
velocity of the fluid element changes with time. Assuming that
the dot product of the total time derivative of the velocity and
the velocity vector itself is work done upon a fluid element, one
could estimate d d tt tv v· as the turbulence energy cascade rate
per unit mass ϵ, measured in -cm s2 3, also known as the
dissipation rate. More precisely, in stationary turbulence, the
second-order structure function of velocity should satisfy

t t t= + - » v vt tSF( ) ( ( ) ( )) (1)2

in the inertial range, where v t( ) is a velocity of a given fluid
element. Such a time structure function is dual to the frequency
spectrum of w w= -E ( ) 2 (Landau & Lifshitz 1944; Corr-
sin 1963; Tennekes & Lumley 1972). The cutoff of this
spectrum is associated with the timescale of critically viscously
damped eddies—the Kolmogorov timescale t n=h ( )1 2,
which has a different dependence on the Reynolds number
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n= vLRe compared to the Kolmogorov lengthscale
h n= ( )3 1 4—the cutoff of the Eulerian spectrum.

Magnetized dynamics is qualitatively different from hydro-
dynamics in that locally there is always a propagating wave
characteristic. In particular, following a fluid element, we may
find oscillations associated with the wave train that propagates
though this fluid element in the direction of the local mean
magnetic field, which makes the classic Lagrangian measure-
ment of limited value. Therefore, the Lagrangian evolution in
MHD takes on a different meaning. The Alfvén perturbations
can be decomposed into Elsässer components

r= w v B π4 , each of which propagate either along or
against the local field direction, i.e., along the magnetic field
line. The functional dependence of such perturbations will take
the form f s v t( )A in the absence of interaction, where s is a
distance along the field line. If the nonlinear interaction is
present, the trajectory = s v tA would act as an analogy to
hydrodynamic fluid element trajectory if we want to study
Lagrangian dynamics in MHD.

The above argument suggests that following the evolution of
+w and -w along the field line in fixed time and in the positive

direction in s would be equivalent to following the evolution of
+w backward in time and -w forward in time. This simple

argument already has been fruitful in explaining the asym-
metric Richardson diffusion of magnetic field lines (Beres-
nyak 2013). As far as the frequency spectrum goes, the sign of
time is unimportant, and any measurement of the power
spectrum along the field line of either v B, or w will be
analogous to the Lagrangian frequency spectrum with fre-
quency f replaced by wavenumber f vA: ~ - -

 E k v k( ) A
1 2.

The spatial structure function will be expressed correspond-
ingly as = -

 l lvSF ( ) A
1.

Another way to argue the -
k

2 parallel scaling is the
dimensional argument using the Alfvén symmetry of reduced
MHD in Beresnyak (2012). Indeed, this symmetry dictates that
changing vA while keeping k vA constant leaves equations
unchanged. Therefore, one must keep energy  E k dk( )
constant under such transformation, which requires that

~ -
E k v( ) A

1. Using scale-locality, i.e., assuming that the
spectrum can only depend on v ,A and k , we arrive at

= - -
  ( )E k C v k , (2)A

1 2

where C is dimensionless constant. Logically, this dimensional
argument is a restatement of the Lagrangian spectrum
argument. Note that the parallel second-order spectrum scales
linearly with the dissipation rate ϵ, similar to the third-order
Eulerian scaling and not to  2 3 scaling of the second-order
Eulerian spectrum.

Unlike reduced MHD, full MHD has no exact Alfvén
symmetry. The arguments in favor of using it in the inertial
range are still quite compelling (Beresnyak 2012). It is
interesting to check if the parallel spectrum still follows
Equation (2) not only in Alfvénic MHD but in the general
MHD case. Especially interesting is the case with zero mean
magnetic field where the vA will be determined only by local
fluctuations.

3. NUMERICS

The first half of the numerical data is from my DNS of strong
reduced MHD turbulence (Beresnyak 2014), which are well-

resolved, statistically stationary driven simulations intended to
precisely calculate averaged quantities. Note that reduced
MHD, i.e., Alfvén dynamics, does not depend on plasma
pressure and can be applied to situations with different values
of plasma β, from zero to infinity. I list the most important
parameters of these simulations in code units in Table 1 under
rows M1-3 and M1H-3H. The only difference between rows
M1-3 and M1H-3H was that the latter were performed with
higher-order diffusivities. Additionally, I performed simula-
tions of statistically isotropic driven incompressible MHD
turbulence with zero mean field with parameters presented in
Table 1, rows MHD1-2. For all cases, I have calculated the
spectra along the magnetic field line, and for the reduced MHD
cases, I additionally have calculated the one-dimensional
spectra along the x direction, which was the global mean field
direction.
Three dimensional numerics have modest Re and are are

always affected by the finite Re effects. I used a rigorous
scaling study method, fairly common in the analysis of
experimental data and DNS (Sreenivasan 1995; Gotoh
et al. 2002; Kaneda et al. 2003; Beresnyak 2012, 2014), which
compares spectra from simulations with several different Re
values on the same plot with dimensionless axes. The parallel
spectrum was plotted versus dimensionless wavenumber thkvA

and compensated by -k vA
2 1 to see how the scaling is

consistent with (2). This measurement is presented in Figure 1.
For the reduced MHD case, the spectra collapsed on the
dissipation scale, corresponding to an overall scaling of -k 2.
Given that reduced MHD has precise Alfvén symmetry and

the requirement of turbulence to be strong on the outer scale
assumes a certain value of ϵ, it does not allow us to check the
linear scaling with ϵ in Equation (2), as I could not vary ϵ in
M1-3. I used statistically isotropic MHD simulations with zero
mean field MHD1-2, for which Alfvén symmetry is absent and
the inertial range scaling (2) can not be rigorously argued
based on units. Despite that, the standard argumentation,
introduced by Iroshnikov (1964) and Kraichnan (1965) is that
the rms magnetic field can play the role of the local mean field
and this could still be regarded as the strong mean field limit. I
conjecture that the parallel spectrum will still follow Equa-
tion (2) in the inertial range in this case as well. In the MHD
case, I used simulations with different ϵ and substituted the rms
field instead of vA in Equation (2). Figure 1 demonstrates that
there is an inertial range convergence to -k 2 even in this zero
mean field case. The linear scaling with ϵ, not  2 3, is also
confirmed.

Table 1
Three-dimensional MHD and RMHD Simulations

Run N3 Dissipation vA ϵ η thvA

MHD1 15363 - ´ - k5 10 10 4 0.73 0.091 0.0021 0.026
MHD2 15363 - ´ - k6.2 10 10 4 1.53 0.728 0.0018 0.025

M1 10243 - ´ - k1.75 10 4 2 1 0.06 0.0031 0.044
M2 20483 - ´ - k7 10 5 2 1 0.06 0.00155 0.028
M3 40963 - ´ - k2.78 10 5 2 1 0.06 0.00077 0.017

M1H 10243 - ´ - k1.6 10 9 4 1 0.06 0.0030 0.045
M2H 20483 - ´ - k1.6 10 10 4 1 0.06 0.00152 0.029
M3H 40963 - ´ - k1.6 10 11 4 1 0.06 0.00076 0.018
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Another possible spectral measurement is with respect to the
global mean field. We do not expect such scalings to deviate
significantly from the perpendicular scalings for the following
reason: Alfvén waves propagate along the local field direction
that deviates by an angle of dB BL 0 from B0, while the angular
anisotropy in this frame is dB Bl 0, with inertial range values of
dBl much smaller than the outer scale value of dBL. It follows
that the anisotropy will be washed out. Figure 2 presents a
measurement of the spectrum along the x–global mean field
direction. It is grossly consistent with -5 3, i.e., the
perpendicular spectral scaling observed in Beresnyak (2014).

4. DISCUSSION

Critical balance refers to the interaction parameter
x d l l= ^v vA being around unity in strong MHD turbulence.
It was first argued based on the uncertainty relation between the
wave frequency and the cascade timescale in Goldreich &
Sridhar (1995) and had been restated in various forms,
including the decorrelation argument by Gruzinov (Maron &
Goldreich 2001). While plausibility arguments like this are
certainly useful in qualitative understanding, their apparent
generality is problematic. For example, the decorrelation
argument does not explicitly refer to nonlinear interaction;
however, it could not be generally valid, as pure propagating
solutions with x  1, strong Alfvénic waves, do exist. The
naive application of the uncertainty relation argument fails,
e.g., in imbalanced turbulence, where it predicts that the
anisotropy of the stronger Elsässer component should be higher
than the anisotropy of the weaker component, while in reality
the opposite is true (Beresnyak & Lazarian 2008, 2009b). The
new argument, presented in this Letter, circumvents this
problem by noticing that the energy cascade is manifested
both in space and time domains, also the parallel direction is
equivalent to the time domain. Therefore, the well-known
anisotropy relation ~ ^k k 2 3 is simply the correspondence
between space domain (Eulerian) and frequency domain
(Lagrangian) spectra. The old arguments required that the

average ξ must be close to unity, while the new argument only
requires that the average ξ is a dimensionless, scale-
independent quantity, i.e., a constant similar to the Kolmo-
gorov constant.
Most observational data from the solar wind have been

pointing to the -k 2 parallel spectrum. For example, Horbury
et al. (2008) used a wavelet technique to follow the local field
direction and obtained -k 2. This has been further improved in
Wicks et al. (2010, 2011) and compared with the global
Fourier spectra. Podesta (2009) obtained similar results with
wavelets and demonstrated scale-dependent anisotropy. The
structure function measurement in Luo & Wu (2010) again
confirmed the same scaling. Multi-spacecraft measurements
allowing better coverage of k space (Osman & Horbury 2009)
also confirmed -k 2. Earlier measurements in the global frame
(e.g., Matthaeus et al. 1990) reported scale-independent
anisotropy, which, as I argued above, is consistent with theory
and numerics as well. As far as numerics go, the measurements
along the local field direction gave the -k 2 slope (see, e.g., Cho
& Vishniac2000; Maron & Goldreich2001; Beresnyak &
Lazarian 2009a, 2009b; Chen et al. 2011; Beresnyak2012),
while the measurements in the global frame gave scale-
independent anisotropy (see, e.g., Grappin & Müller2010 or
my Figure 2). The robustness of the critical balance with a
properly defined nonlinear timescale has recently been
discussed in Mallet et al. 2014.
Recently, the debate on the parallel spectrum has been

revived, in particular, Turner et al. (2012) measured the quasi-
isotropic spectrum in the solar wind after filtering out
discontinuities, while Grappin et al. (2012, 2013) suggested a
new model with a “ricochet” cascade that effectively fills
parallel direction and results in the same slope, as in
perpendicular direction, citing Grappin & Müller (2010) and
Turner et al. (2012) as motivation. My numerical data strongly
disfavor this model, as the observed - ¸ -2.0 1.9 parallel
spectral slope is much steeper than either -5 3 or the −1.5
suggested in Grappin et al. (2012, 2013). It is also not clear
why global measurements (Grappin & Müller 2010) should
support the alternative model or whether or not filtering in
Turner et al. (2012) interferes with the local field direction
enough to destroy the weaker -k 2 parallel spectrum.
Measurements of the Lagrangian frequency spectrum in

hydrodynamics has been performed by many authors (see, e.g.,
Yeung et al.2006 and references therein) and has showed
correspondence with the theoretical w-2. The first direct
measurement of the Lagrangian frequency spectrum in
statistically isotropic MHD turbulence has been performed in
Busse et al. (2010) and tentatively has confirmed the w-2

Figure 1. Energy spectrum along the magnetic field line compensated by the
theoretical scaling -

k
2 (2). Solid, dashed, and dashed–dotted lines are spectra

from 40963, 20483, and 10243 simulations, respectively, on the upper plot. The
M1-3H has been multiplied by a factor of two to separate the curves. On the
lower plot, the dashed and solid lines are MHD1 and MHD2, respectively.

Figure 2. Spectra along the global mean field in M1-3 and M1-3H. The M1-3H
spectra have been multiplied by a factor of two. This plot demonstrates that this
energy spectrum scaling is consistent with -5 3, i.e., the same as the
perpendicular scaling.
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scaling, but the results from simulations with a strong mean
field were less clear. The connection between the Lagrangian
frequency spectrum and the parallel spatial spectrum has not
been made in Busse et al. (2010); also, as I argued above, the
classic Lagrangian measurement could be meaningless in MHD
as high-frequency perturbations cross the fluid element causing
oscillatory velocity changes not associated with the energy
cascade. In this Letter, I argued that the measurement of the
spectrum along the magnetic field line is similar to the
measurement of the Lagrangian frequency spectrum; therefore,
the Goldreich & Sridhar (1995) scale-dependent anisotropy is a
simple relation between the Eulerian and Lagrangian spectra.

Using the scaling study argument, I found that the best
convergence corresponds to -k 2; however, the deviation around
0.1 in the scaling exponent on medium scales is evident in
Figure 1 and is somewhat interesting from a theoretical
viewpoint as a long-range finite-Re effect. It is clear that the
−1.9 slope on the medium scales in Figure 1 is still much
steeper than the Eulerian - » -5 3 1.7, but what is the nature
of this deviation? First, the prediction of the models with so-
called dynamic alignment modifies only the perpendicular
spectrum, leaving the parallel spectrum unchanged at the
expense of higher anisotropy (Boldyrev 2005, 2006). Second,
even if such modification was suggested by some inertial-range
theory, it would be inconsistent with my numerics, as the 0.1
correction is not universal and disappears with higher Re
measurements.

In the past several years, various spectral scalings, deviations
from theoretically predicted scalings, and alignment measures
have been studied in some detail (Beresnyak &
Lazarian 2009a; Beresnyak 2011, 2012). The overall picture
seems to be that while moderate Re shows a scale dependency
of several alignment measures, normally in the range of
0.1–0.2, in the higher Re measurements, these alignment
measures flatten out and their slopes are fairly close to zero
(see, e.g., Figure 3). Similarly, the deviation from the expected
perpendicular −1.7 slope is around ∼0.2 in the medium scales,
but disappeared when higher-resolution data became available.
The ∼0.1 deviation of the parallel slope fits nicely into this
tendency. We see that the deviations from theoretical scalings
had been observed so far only within around an order of

magnitude in scale from the driving scale, and modifications of
theory of the inertial range, such as in Chandran et al. (2014),
are probably excessive at this point. Further solar wind
measurements with better statistics and/or larger-scale numerics
will help to shed light on this problem.
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