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ABSTRACT

Fluctuation dynamos are generic to astrophysical systems. The only analytical model of the fluctuation dynamo
is the Kazantsev model which assumes a velocity field that is delta-correlated in time. We derive a generalized
model of fluctuation dynamos with finite correlation time, τ , using renovating flows. For τ → 0, we recover the
standard Kazantsev equation for the evolution of longitudinal magnetic correlation, ML. To the next order in τ ,
the generalized equation involves third and fourth spatial derivatives of ML. It can be recast to one with at most
second derivatives of ML using the Landau–Lifschitz approach. Remarkably, we then find that the magnetic power
spectrum remains the Kazantsev spectrum of M(k) ∝ k3/2, in the large k limit, independent of τ .
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1. INTRODUCTION

Magnetic fields are ubiquitously present in most astrophysical
systems from stars to galaxies and galaxy clusters. They could
be generated by dynamo amplification of weak seed fields. A
particularly generic dynamo is the fluctuation or small-scale dy-
namo (Kazantsev 1967; Molchanov et al. 1985; Zeldovich et al.
1990; Kulsrud & Anderson 1992; Subramanian 1997, 1999;
Rogachevskii & Kleeorin 1997; Brandenburg & Subramanian
2005; Cho et al. 2009; Federrath et al. 2011; Tobias et al. 2011;
Sur et al. 2012; Brandenburg et al. 2012; Bhat & Subramanian
2013). Here, turbulence in a conducting plasma, with even a
modest magnetic Reynolds number (RM > Rcrit ∼ 30–500),
leads to the amplification of magnetic fields on the fast eddy
turnover timescale, usually much smaller than the age of the
astrophysical system (Haugen et al. 2004; Schekochihin et al.
2004, 2005; Malyshkin & Boldyrev 2010; Schober et al. 2012).
(Here RM = u/(qη) with u and q, respectively, indicating the
characteristic velocity and wavenumber of the flow and η repre-
senting the resistivity.) The Rcrit depends on PM = ν/η, where ν
is the viscosity and the Rcrit upper limit corresponds to PM � 1.
The fast growth rate implies that fluctuation dynamos are crucial
for the early generation of magnetic fields in primordial stars,
galaxies, and galaxy clusters. It is therefore important to have a
clear understanding of the fluctuation dynamo.

The only analytical treatment of the fluctuation dynamo is that
due to Kazantsev (1967), where the velocity field is assumed
to be delta-correlated in time (correlation time, τ → 0). In
this case, one derives a partial differential equation describing
the evolution of the longitudinal magnetic correlation function,
ML(r, t). From its solutions, Kazantsev also predicted that
the magnetic power spectrum for a single scale or a large
PM turbulent flow scales asymptotically as M(k) ∝ k3/2, for
q � k � kη, with kη, the wavenumber where resistive
dissipation becomes important. This spectrum is known as
the Kazantsev spectrum. Also, in the same limit, Chertkov
et al. (1999) extended analytic considerations to multi-point
correlators, in a random smooth (linear) flow.

Finite-τ effects have been derived for the magnetic energy
growth (Chandran 1997), and single point PDF in the ideal
limit (Schekochihin & Kulsrud 2001). Kleeorin et al. (2002)
considered a finite-τ correction to the two-point correlator
evolution, but seem to have kept only a subset of the terms
we derive here. Mason et al. (2011) show that solutions to
the Kazantsev equation can be made to agree with simulations

involving finite-τ velocity flows if the diffusivity spectrum is
appropriately filtered out at small scales. However, an analytic
understanding of the magnetic spectrum at finite-τ is still
lacking.

In this Letter, we give an analytic generalization of the results
of Kazantsev (1967) to flows with a finite correlation time, τ ,
by modeling the velocity as a renovating flow. We recover the
Kazantsev evolution equation for ML in the τ → 0 limit and
derive the complete evolution equation for ML to the next order
in τ . We show for the first time an intriguing result that the
Kazantsev spectrum is in fact preserved even for such finite-τ .

2. FLUCTUATION DYNAMO IN RENOVATING FLOWS

Consider the induction equation for magnetic field (B)
evolution in a conducting fluid with velocity u,

∂ B
∂t

= ∇ × (u × B − η∇ × B) . (1)

We assume u to have zero mean and a random component, which
renovates every time interval τ (Dittrich et al. 1984; Gilbert &
Bayly 1992). It is given in the form assumed by Gilbert & Bayly
(1992, GB),

u(x) = a sin(q · x + ψ), (2)

with a · q = 0 for an incompressible flow. In each time
interval [(n − 1)τ, nτ ], (1) ψ is chosen to be uniformly random
between 0 to 2π , (2) q is uniformly distributed on a sphere
of radius q = |q|, and (3) for every fixed q̂ = q/q, the
direction of a is uniformly distributed in the plane perpendicular
to q. Specifically, for computational ease, we modify the GB
ensemble by choosing ai = PijAj , where A is uniformly
distributed on a sphere of radius A, and Pij (q̂) = δij − q̂i q̂j

projects A to the plane perpendicular to q. Then 〈a2〉 = 2A2/3.
This modification in ensemble does not affect any result using
the renovating flows. Condition (1) on ψ ensures statistical
homogeneity, while (2) and (3) ensure statistical isotropy of
the flow.

The magnetic field evolution in any time interval
[(n − 1)τ, nτ ] is

Bi(x, nτ ) =
∫

Gij (x, x0)Bj (x0, (n − 1)τ ) d3x0, (3)

where Gij (x, x0) is the Green’s function of Equation (1). To
obtain Gij (x, x0) in the renovating flow, we use the method
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introduced by GB. The renovation time, τ , is split into two equal
sub-intervals. In the first sub-interval τ/2, resistivity is neglected
and the frozen field is advected with twice the original velocity.
In the second sub-interval, u is neglected and the field diffuses
with twice the resistivity. This method, plausible in the τ → 0
limit, has been used to recover the standard mean field dynamo
equations in renovating flows (Gilbert & Bayly 1992; Kolekar
et al. 2012).

In the first sub-interval τ/2 = t1 − t0, from the advective part
of Equation (1), we obtain the standard Cauchy solution,

Bi(x, t1) = ∂xi

∂x0j

Bj (x0, t0) ≡ Jij (x(x0))Bj (x0, t0). (4)

Here Bj (x0, t0) is the initial field, which is propagated from x0
at time t0, to x at time t1 = t0 + τ/2. The phase Φ = q · x + ψ
in Equation (2) is constant in time as dΦ/dt = q · u = 0, from
incompressibility. Thus dx/dt = 2u can be integrated to give
at time t1 = t0 + τ/2,

x = x0 + τu = x0 + τa sin(q · x0 + ψ), (5)

with the Jacobian

Jij (x(x0)) = δij + τaiqj cos(q · x0 + ψ). (6)

It will be more convenient to work with the field in Fourier
space,

B̂i(k, t1) =
∫

Jij (x(x0))Bj (x0, t0)e−ik·xd3x. (7)

In the second sub-interval (t1, t = t1+τ/2), where only diffusion
operates with resistivity 2η,

B̂i(k, t) = Gη(k, τ )B̂i(k, t1) = e−(ητ k2
)B̂i(k, t1), (8)

where Gη is the resistive Greens function. To derive the evolu-
tion equation for the magnetic two-point correlation function,
we combine Equation (7) and Equation (8) to get

〈B̂i(k, t)B̂∗
h( p, t)〉 = e−ητ (k2

+ p2)
∫

〈Jij (x0)Jhl( y0)

× e−i(k·x− p· y)〉〈Bj (x0, t0)Bl( y0, t0)〉d3xd3 y. (9)

Here 〈·〉 denotes an ensemble average over the random velocity
field and ∗ a complex conjugate. We have split the averaging
between the initial two-point correlation of the magnetic field
and the rest of the integral, as the initial field at t0 is uncorrelated
with renovating flow in the next interval t1 − t0 = τ/2.

We use Equation (5) to transform from (x, y) to (x0, y0)
in Equation (9). The Jacobian of this transformation is unity,
due to incompressibility of the flow. Also, the initial statistical
homogeneity and isotropy of the magnetic field are preserved
at any time step. Thus 〈Bj (x0, t0)Bl( y0, t0)〉 = Mjl(|r0|, t0),
where r0 = x0 − y0. Let us also write k · x0 − p · y0 =
k · r0 + y0 · (k − p) in Equation (9), transform now from (x0, y0)
to a new set of variables (r0, y0

′ = y0), and integrate over
y0

′. This leads to a delta function in (k − p) and Equation (9)
becomes

〈B̂i(k, t)B̂∗
h( p, t)〉 = (2π )3δ3(k − p)M̂ih( p, t),

M̂ih( p, t) = e−2ητ p2
∫

〈Rijhl〉Mjl(r0, t0)e−i p·r0d3r0

〈Rijhl〉 = 〈
Jij (x0)Jhl( y0)e−iτ (a· p)(sin A−sin B)〉 , (10)

where A = (x0 · q + ψ) and B = ( y0 · q + ψ). We will see
explicitly that 〈Rijhl〉 is only a function of r0 as it should be
from statistical homogeneity.

3. THE GENERALIZED KAZANTSEV EQUATION

It is difficult to evaluate 〈Rijhl〉 exactly. However, we motivate
a Taylor series expansion of the exponential in 〈Rijhl〉 for
a small Strouhl number St = q|a|τ = qaτ as follows.
First, (sin A − sin B) = sin(q · r0/2) cos(ψ + q · R0), where
R0 = (x0 + y0)/2. Also for the kinematic fluctuation dynamo,
the magnetic correlation function peaks around the resistive
scale r0 = |r0| ∼ 1/(qR1/2

M ), or the spectrum peaks around
p ∼ (qR1/2

M ). (Here p = | p| and RM ∼ a/(qη) 
 1.) Thus,
qr0 � 1 and hence sin(q · r0) ∼ q · r0. Subsequently, the
phase of the exponential in Equation (10) is of the order of
(paτqr0) ∼ qaτ = St . Thus, for St � 1, one can expand the
exponential in Equation (10) in τ . We do this retaining terms up
to τ 4 order; keeping up to τ 2 terms in Equation (10) gives the
Kazantsev equation, while the τ 4 terms give finite-τ corrections.
We get

〈Rijhl〉 =
〈
Hijhl

[
1 − iτσ − τ 2σ 2

2!
+

iτ 3σ 3

3!
+

τ 4σ 4

4!

]〉
, (11)

where σ = (a · p)(sin A − sin B) and Hijhl = Jij (x0)Jhl( y0)
contains terms up to order τ 2. (We note that Kleeorin et al.
(2002) seem to have kept only up to p2 terms in Equation (11).)
To calculate 〈Rijhl〉, we average over ψ , â, and q̂. Terms that
are proportional to sin(· · · + nψ) or cos(· · · + nψ) become
zero upon averaging over ψ . Survival of such terms that
depend explicitly on x0, y0, or R0 would break the statistical
homogeneity. Naturally, surviving terms are those that depend
on the relative coordinate r0 or are constant. For example,
〈sin A cos A〉 = 〈sin(2q·x0+2ψ)〉/2 = 0, while 〈sin A cos B〉 =
〈sin(x0 + y0 + 2ψ)〉/2 + 〈sin(q · r0)〉/2 = 〈sin(q · r0)〉/2. Next,
we average over â by using ai = Pij (q)Aj and averaging
independently over A. The remaining qi dependent terms can be
written in terms of either 〈cos(q · r0)〉, 〈cos(2q · r0)〉 or its spatial
derivatives. Consider a simple example of the turbulent diffusion
tensor, Tij = (τ/2)〈ui(x0)uj ( y0)〉 = (τ/2)〈aiaj sin(A) sin(B)〉,
which arises upon averaging terms proportional to τ 2. Note that
in the τ → 0 limit, τ in Tij is kept finite to recover the Kazantsev
equation. This is the reason for multiplying the velocity two-
point correlator by τ . We have

Tij = τ

4
〈AlAmPilPjm cos(q · r0)〉 = A2τ

12
〈Pij cos(q · r0)〉

= a2τ

8

[
δij +

1

q2

∂2

∂r0i r0j

]
j0(qr0). (12)

Here we have used the fact that for the isotropically distributed
vector A, 〈AiAj 〉 = A2δij /3 and the average over directions of
q gives 〈cos(q · r0)〉 = j0(qr0).

The averages of terms that are of the order of τ 4 also introduce
the fourth-order velocity correlators,

T
x2y2

mnih = τ 2〈um(x)un( y)ui(x)uh( y)〉,
T

x3y

mnih = τ 2〈um(x)un(x)ui(x)uh( y)〉,
T x4

mnih = τ 2〈um(x)un(x)ui(x)uh(x)〉. (13)

Again, we multiply the fourth-order velocity correlators by τ 2,
as we envisage that Tijkl will be finite even in the τ → 0 limit,
behaving like products of turbulent diffusion. Note that the
renovating flow is not Gaussian random, and hence higher order
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correlators of u are not the product of two-point correlators.
Interestingly, we find that the terms from Equation (11) of the
order of τ 3 become 0 when averaging.

Similarly, we expand the exponential in the resistive Greens
function in Equation (10), e−2ητ p2 = 1−2ητ p2 . . . and consider
only the leading order term in η, relevant in the independent
small η (or RM 
 1) limit.

On combining these steps, we find that the integrand deter-
mining the magnetic spectral tensor M̂ih( p, t), is of the form
G( p)Fih(r0, t0), where G( p) is a polynomial up to fourth or-
der in pi. This allows for a simple inverse Fourier transform of
M̂ih( p, t), in Equation (10) back to configuration space and then
magnetic field correlation function is

Mih(r, t) =
∫

G( p)Fih(r0, t0)ei p·(r−r0)d3r0
d3 p

(2π )3
. (14)

The various powers of pi in G( p) above can be written as
derivatives with respect to ri. The integral over p then simply
gives a delta function δ3(r − r0) and this makes the integral over
r0 trivial. Carrying out these steps, the magnetic correlation
function can be written in the form

Mih(r, t) = Mih(r, t0) + τ 2fih(r, t0) + τ 4gih(r, t0). (15)

We then divide Equation (15) by τ , take the limit of τ → 0, and
write (Mih(r, t) − Mih(r, t0))/τ = ∂Mih/∂t . The remaining
τ multiplying the term fih, is absorbed into keeping Tij finite,
while τ 2 multiplying the term gih, is absorbed into Tijkl, leaving
one remaining τ as a small effective finite time parameter. The
resulting equation for Mih is given by

∂Mih(r, t)
∂t

= 2(−[TihMjl],j l + [TjhMil],j l + [TilMjh],j l

− [TjlMih],j l) + (2TL(0) + 2η)∇2Mih + τ

×
(

[T̃mnihMjl],mnjl − 2[T̃mnrhMil],mnrl

+

[(
T̃mnrs +

T x4

mnrs

12

)
Mih

]
,mnrs

)
, (16)

where T̃mnih = T
x2y2

mnih/4 − T
x3y

mnih/3, TL(r) = r̂i r̂j Tij with
r̂i = ri/r . The first two lines in Equation (16) contain exactly
the terms which give the Kazantsev equation, while the last two
lines contain the finite-τ corrections. We write these latter terms
as the fourth derivative of the combined velocity and magnetic
correlators; however, as both the velocity and magnetic fields
are divergence free, each spatial derivative only acts on one or
the other.

Note that for a statistically homogeneous, isotropic, and
nonhelical magnetic field, the correlation function Mih =(
δih − r̂i r̂h

)
MN(r, t) + r̂i r̂hML(r, t). Here ML(r, t) = r̂i r̂hMih

and MN (r, t) = (1/2r)[∂(r2ML)/∂r] are, respectively, the lon-
gitudinal and transversal correlation functions of the magnetic
field. Upon contracting Equation (16) with r̂i r̂h we obtain the
dynamical equation for ML(r, t), the generalized Kazantsev
equation,

∂ML(r, t)

∂t
= 2

r4

∂

∂r

(
r4ηtot

∂ML

∂r

)
+ GML

+ τM
′′′′
L

(
T L +

T L(0)

12

)
+ τM

′′′
L

(
2T

′

L +
8T L

r
+

2T L(0)

3r

)

+ τM
′′
L

(
5T

′′

L

3
+

11T
′

L

r
+

8T L

r2
+

2T L(0)

3r2

)

+ τM
′
L

(
2T

′′′

L

3
+

17T
′′

L

3r
+

5T
′

L

r2
− 8T L

r3
− 2T L(0)

3r3

)
. (17)

Here, ηtot = η+TL(0)−TL(r) and G = −2(T
′′
L + 4T

′
L/r). Also, a

prime denotes ∂/∂r . Furthermore, T L(r) = (T
x2y2

L /4−T
x3y

L /3),
with

T
x2y2

L = r̂mr̂nr̂i r̂hT
x2y2

mnih = −24

(
3∂2zj0(2z)

(2z)3
+

j0(2z)

(2z)2

)

T
x3y

L = r̂mr̂nr̂i r̂hT
x3y

mnih = −24

(
3∂zj0(z)

z3
+

j0(z)

z2

)
, (18)

where z = qr and the derivatives ∂z and ∂2z are derivatives with
respect to z and 2z, respectively. These latter equalities give
the explicit expressions of these fourth-order correlators for the
renovating flow. Again, in the limit τ → 0, we recover exactly
the Kazantsev equation for ML. Equation (17) allows eigen
solutions of the form ML(z, t) = M̃L(z)eγ t̃ , where t̃ = tηtq

2,
with ηt = TL(0) = a2τ/12 = A2τ/18, and γ is the growth rate.
Boundary conditions are given as M ′

L(0, t) = 0, ML → 0 as
r → ∞. Implications of the higher spatial derivative terms are
discussed below.

4. KAZANTSEV SPECTRUM AT
FINITE CORRELATION TIME

We will solve Equation (17) numerically in our follow up
paper (P. Bhat & K. Subramanian, in preparation). However, to
derive both the standard Kazantsev spectrum in the large k limit,
and its finite-τ modifications, it suffices to go to the limit of small
z = qr � 1. Expanding the Bessel functions in Equations (12)
and (18) in this limit, and substituting ML(z, t) = M̃L(z)eγ t̃ ,
Equation (17) becomes

γ M̃L(z) =
(

2η

ηt

+
z2

5

)
M̃

′′
L +

(
8η

ηt

+
6z2

5

)
M̃

′
L

z
+ 2M̃L

+
9τ̄

175

(
z4

2
M̃

′′′′
L + 8z3M̃

′′′
L + 36z2M̃

′′
L + 48zM̃

′
L

)
,

(19)

where τ̄ = τηtq
2 = (St)2/12 and prime is now z-derivative.

Close to the origin, where z � √
η/ηt , we can write

M̃L(z) = M0(1 − z2/z2
η). Using Equation (19), zη = qrη =

[240/(2 − γ )]1/2[RM (St)]−1/2. The τ̄ dependent terms, which
are small because both z and τ̄ are small, do not affect this result.
Thus, for RM 
 1, the resistive scale rη � 1/q, although one
has to go to sufficiently large RM 
 240/((2 − γ )St) for this
conclusion to obtain.

Now consider the solution for zη � z � 1. In this
limit, Equation (19) is scale free, as scaling z → cz leaves
it invariant. Thus, Equation (19) has power-law solutions of
the form M̃(z) = M̄0z

−λ. The appearance of higher order
(third and fourth) spatial derivatives in Equation (19) (or
in Equation (17)), when going to finite-τ , implies that in
this case, ML evolution becomes nonlocal, determined by an
integral type equation whose leading approximation for small
τ̄ is Equation (19). However, for small τ̄ or St , these higher
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derivative terms only appear as perturbative terms multiplied
by the small parameter τ̄ . Thus it is possible to make the
Landau–Lifshitz-type approximation, used in treating the effect
of radiation reaction force in electrodynamics (see Landau &
Lifshitz 1975 Section 75). In this treatment, one first ignores
the perturbative terms proportional to τ̄ , which gives basically
the Kazantsev equation for M̃L, and uses this to express M̃

′′′
L

and M̃
′′′′
L in terms of the lower order derivatives M̃

′′
L and M̃

′
L.

This gives for z 
 zη, z3M̃
′′′
L = −8z2M̃

′′
L − z(16 − 5γ0)M̃

′
L

and z4M̃
′′′′
L = (56 + 5γ0)z2M̃

′′
L + 10(16 − 5γ0)zM̃

′
L. Here γ0

is the growth rate obtained for the Kazantsev equation in the
τ → 0 limit. Substituting these expressions back into the full
Equation (19) we get

M̃
′′
Lz2

(
τ̄ γ0

9

70
+

1

5

)
+ M̃

′
Lz

(
τ̄ γ0

27

35
+

6

5

)
+ (2 − γ )M̃L = 0.

(20)
Remarkably, the coefficients of the perturbative terms in
Equation (19) are such that all perturbative terms that do not
depend on γ0 cancel out in Equation (20)! Also interesting
is the nature of the power-law solution M̃L(z) = M̄0z

−λ to
Equation (20). One gets for λ,

λ2 − 5λ +
5(2 − γ )

1 + 9
14γ0τ̄

= 0; so λ = 5

2
± iλI , (21)

where λI = [20(2 − γ )/(1 + 9γ0τ̄ /14) − 25]1/2/2, and impor-
tantly, the real part of λ is λR = 5/2, independent of the value
of τ̄ ! We can also get the approximate growth rate, assuming
RM 
 1, following the argument from Gruzinov et al. (1996);
that one evaluates γ by substituting into Equation (21), the
value of λ = λm where dγ /dλ = 0. This gives γ0 ≈ 3/4 and
γ ≈ (3/4)(1 − (45/56)τ̄ ), which also implies λI ≈ 0. (Includ-
ing the effects of resistivity gives λI , a small positive non-zero
value ∝ 1/(ln(RM )) as will be shown in our detailed follow up
paper (P. Bhat & K. Subramanian, in preparation)). The γ0 we
obtain agrees with that of Kulsrud & Anderson (1992), which is
obtained from looking at the evolution of M(k, t). We also note
that the growth rate is reduced for a finite τ̄ . Such a reduction
is found in simulations that directly compare with an equivalent
Kazantsev model (Mason et al. 2011).

From Equation (21), for zη � z � 1, ML is then given by

ML(z, t) = eγ t̃ M̃0z
−5/2 cos (λI ln(z) + φ) , (22)

where M̃0 and φ are constants. Thus, in this range, ML varies
dominantly as z−5/2, modulated by the weakly varying cosine
factor (as λI is small). Note that the magnetic power spectrum
is related to ML by

M(k, t) =
∫

dr(kr)3ML(r, t)j1(kr). (23)

The spherical Bessel function j1(kr) peaks around k ∼ 1/r ,
and a power-law behavior of ML ∝ z−λR for a range of
zη � z = qr � 1, translates into a power law for the
spectrum M(k) ∝ kλR−1 in the corresponding wavenumber
range q � k � q/zη. From the solution given in Equation (22),
we see that in the range zη � z � 1, ML dominantly varies
as a power law with λR = 5/2, independent of τ . This implies
remarkably that the magnetic spectrum is of the Kazantsev form
with M(k) ∝ k3/2 in k space, independent of τ ! This is the main
result of this Letter.

5. DISCUSSION AND CONCLUSIONS

Fluctuation dynamos are important as they ubiquitously
lead to a rapid generation of magnetic fields in astrophysical
systems. However, their only analytical treatment, the Kazantsev
model, assumes a delta-correlated velocity field. Here, we have
generalized the Kazantsev model to finite correlation time, τ ,
using a velocity field that renovates every time period τ . We
have shown that the Kazantsev equation for ML is recovered
when τ → 0 and have extended it to the next order in τ . In
order to treat the resulting higher order (third and fourth) spatial
derivatives of ML perturbatively, we use the Landau–Lifshitz
approach, which was earlier used to treat the effect of the
radiation reaction force. An asymptotic treatment shows first
that the fluctuation dynamo growth rate is reduced due to finite
τ̄ . More important is the novel and remarkable result that the
Kazantsev spectrum of M(k) ∝ k3/2, is preserved even at
finite-τ .

The finite-τ evolution equation for Mih (Equation (16)) or
ML (Equation (17)). is cast in terms of the general velocity
correlators Tij and Tijkl and matches exactly with the Kazantsev
equation for the τ → 0 case. Moreover, the forms of Tij
and Tijkl at r � (1/q) are expected to be universal due to
their symmetries and divergence-free properties. These features
indicate that our result on the spectrum could have a more
general validity than the context (of a renovating velocity) in
which it is derived. It would be very interesting to see if such a
result also holds for St ∼ 1 and to extend the finite-τ result to
helical renovating flows, issues which we hope to address in the
future.
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