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ABSTRACT

A strong indication that fast reconnection regimes exist within resistive magnetohydrodynamics was given by the
proof that the Sweet–Parker current sheet, maintained by a flow field with an appropriate inflow–outflow structure,
could be unstable to a reconnecting instability which grows without bound as the Lundquist number, S, tends to
infinity. The requirement of a minimum value for S in order for the plasmoid instability to kick in does little to
resolve the paradoxical nature of the result. Here we argue against the realizability of Sweet–Parker current sheets
in astrophysical plasmas with very large S by showing that an “ideal” tearing mode takes over before current sheets
reach such a thickness. While the Sweet–Parker current sheet thickness scales as ∼S−1/2, the tearing mode becomes
effectively ideal when a current sheet collapses to a thickness of the order of ∼S−1/3, up to 100 times thicker than
S−1/2, when (as happens in many astrophysical environments) S is as large as 1012. Such a sheet, while still diffusing
over a very long time, is unstable to a tearing mode with multiple x-points: here we detail the characteristics of
the instability and discuss how it may help solve the flare trigger problem and effectively initiate the turbulent
disruption of the sheet.
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1. INTRODUCTION

Recently, both numerical simulations and linear instability
analyses have confirmed the possibility of fast reconnection
within the framework of resistive magnetohydrodynamics. As
commented by Biskamp (1986), the Sweet–Parker (hereafter
SP) stationary reconnecting current sheet (Sweet 1958; Parker
1957) is unstable to an extremely fast super-tearing, or plasmoid,
instability even when taking into account the stabilizing effect
of the reconnection outflows (Bulanov et al. 1978). This was
studied in detailed by Loureiro et al. (2007), who showed how
outflows effectively introduce a critical value for the Lundquist
number S = LVA/ηm ∼ 104–105 for this fast instability to
occur (here L is the current sheet length or breadth, which we
take to be equivalent and macroscopic, VA the Alfvén speed
based on the equilibrium field far from the sheet, and ηm is the
magnetic diffusivity). For large values of S a growth rate scaling
as γ τA ∼ S1/4, with τA = L/VA the ideal Alfvèn timescale,
was found. Lapenta (2008) carried out simulations showing the
spontaneous development of a fast reconnection mechanism
on macroscopic scales. A two-dimensional (2D) current sheet
evolved through two different stages: an initial slow stage with
the development of a very elongated Sweet–Parker type layer
was followed by a rapid transition to a fast chaotic reconnection
process, without the need for anomalous resistivity or driven
flows to undergo this evolution. This was also confirmed in other
numerical simulations (see, e.g., Bhattacharjee et al. 2009).

From the linear point of view, the existence of instabilities
with a growth rate that increases with increasing Lundquist
number is problematic. In ideal MHD, magnetic reconnection
is prohibited, and finding an “infinitely unstable” mode in
the limit of an infinite Lundquist number points to a strong
singularity in the behavior of the MHD equations. Diffusive
terms change the order of the equations, even for the linearized
equations, and although it would not be too surprising to find
a different physical behavior between systems described by
ideal MHD and those described by the resistive equations
with S → ∞, the presence in the latter case of infinitely
fast growing instabilities has only one possible interpretation:

the impossibility of constructing the corresponding equilibrium
configurations (one could also argue that an infinite growth
rate is non-causal and unphysical). This Letter describes how to
resolve this dilemma, by showing that in the asymptotic S → ∞
regime an effectively “ideal” tearing mode survives, in the sense
that its growth rate does not depend on the Lundquist number.
The instability also defines a maximum critical aspect ratio (or a
ratio between the current sheet’s length and width) L/a ∼ S1/3,
above which any current configuration must be intrinsically
unstable and turbulent and for which it is impossible to obtain a
laminar configuration.

2. THE TEARING MODE ON CURRENT SHEETS
WITH AN ASPECT RATIO DEPENDENT ON S

The SP current sheet has an inverse aspect ratio a/L ∼ S−1/2

and this dependence is such that, in the absence of a convective
flow keeping the configuration stationary, it would diffuse on the
ideal timescale τA. For this reason, an inflow–outflow velocity
field must be in place to keep the sheet in a steady state and a
meaningful study of the stability of the SP current sheet therefore
requires consideration of this flow. The stability study of the
SP sheet is different from that usually performed for resistive
instabilities, where the sheet thickness or aspect ratio does not
scale with the Lundquist number. In the SP case, however, the
equilibrium scaling with the Lundquist number is at the heart
of the paradoxical result of diverging growth rates. A study
of scaling approaching the ideal limit must therefore allow the
current sheet thickness to scale with the Lundquist number,
but allowing for a different dependence of the inverse aspect
ratio on S. Imagine therefore the formation of a current sheet
characterized by an intermediate scaling of the inverse aspect
ratio with respect to the Lundquist number

a

L
∼ S−α. (1)

In this case the diffusion time scale for the magnetic field
generated by the sheet is

τD � τAS1−2α (2)
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so we see that as long as α < 1/2, i.e., as long as the inverse
current sheet aspect ratio is greater than the one defined by the
SP scaling, it makes sense to study the stability of such a sheet
in the absence of flows—especially if we are looking for a fast
instability—because τD/τA → ∞ when S → ∞.

Recall that for the tearing mode the typical length scale, which
is used to define both the Lundquist number as well as the Alfvén
crossing time, is the current sheet thickness a, rather than the
current sheet length L, so that the classic tearing mode dispersion
relation is written in terms of S∗ = aVA/ηm, and growth rates
are normalized to τ ∗

A = a/VA. The growth rate depends on
the Lundquist number as well as the wavenumber of the mode
along the direction of the equilibrium magnetic field outside the
current sheet k; the well-known result for the maximum growth
rate is (Furth et al. 1963; Velli & Hood 1989):

γ τ ∗
A ∼ S∗−1/2

, kaS∗1/4 � 1. (3)

Translating this to the Lundquist numbers and Alfvén times
defined by the macroscopic length L now yields

γ τA ∼ L

a
S∗−1/2 =

(L

a

)3/2(LVA

η

)−1/2
=

(L

a

)3/2
S−1/2. (4)

Consider then current sheets with inverse aspect ratios a/L
defined by Equation (1): the expected growth rate becomes

γ τA ∼ S−1/2S3α/2. (5)

One sees that for values of α greater than α = 1/3, the growth
rate tends to diverge with increasing S (and for the SP sheet
the γ τA ∼ S1/4 scaling is confirmed). On the other hand, if we
make the minimal request that the growth rate becomes at most
independent of S at large S one finds that current sheets can
at most become as thin as a/L ∼ S−1/3. In other words, as
a current sheet thins from a macroscopic thickness, we can
imagine it as evolving through a set of α growing from 0:
the growth rate, which for α < 1/3 decreases with increasing
Lundquist number and is negligible for large S, quickly grows
and becomes “ideal,” i.e., independent of S, once α reaches
the value α = 1/3. Any larger value of α will never be
attained, as the instability becomes so fast that the corresponding
equilibrium would be impossible to form. In other words
α = 1/3 is a critical exponent separating slowly unstable
sheets from a reconnection instability growing on an ideal time
scale. From Equation (3), we correspondingly expect that the
wavenumber of this ideally fast tearing mode should scale as
kL ∼ S1/6, leading to the formation of a large number of islands
for large Lundquist numbers.

We now verify this conjecture by resolving the tearing mode
equations for the Harris current sheet equilibrium, with a
magnetic field aligned with the x-direction and dependent only
on the y coordinate (the equilibrium is maintained either by an
appropriate pressure structure or by a component in the field in
the direction orthogonal to both the x and y directions):

B(y) = B(y)î = B0 tanh
(y

a

)
î. (6)

Starting from the incompressible MHD equations, we expand
to first order, and write the linearized equations in terms of the
y components of both the magnetic field perturbation, b, and of
the velocity perturbation, v, where fluctuations are written as

v(x, y, t) = v(y)eikx+γ t (7)

and similarly for b.

The equations are non-dimensionalized by normalizing the
magnetic field and its perturbation in terms of the mean field
B0, the wavenumber k with a−1, and we introduce the non-
dimensional displacement ξ = iv/(γ a). The growth rate is
normalized to the macroscopic Alfvén time τA = L/VA where
the Alfvén speed is defined by (ρ is the plasma density)
VA = B0/

√
4πρ. Consider now that the equilibrium current

sheet aspect ratio is taken to scale as a/L ∼ S−α: we therefore
also define a new independent variable z = y/a = (y/L)Sα ,
and denote derivatives with respect to z with ′. The tearing mode
equations become:

{
γ 2 S−2α(ξ ′′ − k2ξ ) = −k[B(z)(b′′ − k2b) − B ′′(z)b ] (8a)

b = kB(z)ξ + 1
γ
S(2α−1)(b′′ − k2b). (8b)

The system of Equations (8) is a fourth order two-point
eigenvalue problem which develops a boundary layer around
the x-axis for large S. Here we solve the system numerically
using the Lentini–Pereyra method (Lentini & Pereyra 1974).
Because the solution to the equations outside the boundary
layer may be found analytically (see Velli & Hood 1989),
boundary conditions are applied well outside the current sheet by
imposing the corresponding values of the asymptotic solutions,
their derivatives, and a normalization condition (the overall
amplitude of the perturbed magnetic field). A well-known
instability criterion stems from the resolution of the simplified
equation which is valid outside the boundary layer (obtained
by setting the right-hand side of the momentum equation (8a)
to zero). The solution to this equation for b which vanishes at
±∞ presents a discontinuity of the derivative at the origin: the
jump in derivative normalized with the current sheet width, a,
and the value b(0) is known as Δ′ and the instability criterion,
Δ′ > 0, does not depend directly on the value of α but only on the
a-normalized wavevector k, in terms of which it may be written
as 0 < k < 1.

3. RESULTS

The system depends on three parameters, S, k, and α, and
as mentioned instability is found only for 1 > k > 0. As α
is varied we find maximal growth rates following the power
law Equation (5) for increasing values of the Lundquist number
S, (which we explore all the way up to values S � 1013). In
particular, when α < 1/3, we find that the maximal growth rate
is a decreasing function of the Lundquist number, while larger α
lead to diverging growth rates. Figure 1 shows the growth rate as
a function of the a-normalized wavevector k, for different values
of the Lundquist number S for α = 1/3. As one can see, each
individual curve grows at small k, reaches a maximum, and then
decreases again for increasing k. In addition, for increasing S, the
maximums shift to decreasing k, as expected from the estimate
of Equation (3) which, when corrected for the redefinition of
S, leads to the scaling of the maximum ka ∼ S−1/6. The
fundamental result however is that the peak growth rate for
increasing S shows only a very slight increase for S ∼ 108–109

and tends to an asymptotic value at greater S, which we find to
be γmaxτA � 0.623.

Integration of the tearing mode equations therefore confirms
that a critical scaling with the Lundquist number exists which
provides a limiting current sheet aspect ratio above which
the instability becomes faster than ideal, so that it would be
impossible to realize in a natural system, and this aspect ratio is
significantly smaller than that of the SP sheet for large S.
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Figure 1. Growth rate γ τA as a function of a-normalized k for different Lundquist numbers and a current sheet the inverse aspect ratio of which scales as a/L ∼ S−1/3.
As the value of S increases, individual dispersion relation curves shift to the left, i.e., have a maximum at lower ka, but the maximal growth rate reaches an asymptotic
limit γ τA � 0.623 as shown by the dashed line.
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Figure 2. Growth rate of the tearing mode for current sheets with variable inverse
aspect ratios (a/L, for S = 107 and S = 1012) at wavenumbers k corresponding
to maximal growth rates. As the aspect ratio increases, the scaling in Equation (5)
is recovered.

From the physical point of view it is also very interesting to
inspect how the growth rate actually changes as the current sheet
aspect ratio changes due to whatever driving mechanism is in
place. This is shown in Figure 2 where the growth rate of the
fastest tearing mode as a function of the inverse current sheet
aspect ratio is plotted for two different values of the Lundquist
number S = 107 (blue) and S = 1012 (red). As the inverse
aspect ratio decreases, both follow the scaling Equation (5),
namely γ τA ∼ (a/L)−3/2, very well. Consider now the slow
rise of a prominence in the solar corona, or the gradual shearing
of magnetic fields due to entraining by the solar wind (in the
magnetosphere). In the case of a prominence eruption, one could
imagine a multiple time scale evolution related to the evolution
of the current sheet transitioning from slow to fast tearing (in
this regard it would be appropriate to re-examine, for example,
the details of x-point collapse as examined, e.g., in Cassak &
Drake 2009). In our interpretation the triggering of flare-like

phenomena would be associated with the growth rate reaching
values close to the asymptotic ideal value as the critical sheet
thickness is approached (corresponding to the maximal values
in Figure 2). Another case is that associated with field line
tangling by photospheric motions (as in the nanoflare scenario
for heating coronal loops, Rappazzo et al. 2007, 2008). The
dynamics in these cases could be different, depending on the
time scale associated with current sheet formation and thinning.
It has been shown recently that the current sheet collapse itself
may occur on an ideal time scale once a threshold in magnetic
perturbation is reached (Rappazzo & Parker 2013). In this case,
the existence of “ideal tearing” would seem to provide a firmer
foundation for the nanoflare scenario of coronal heating: the
formation of tangential discontinuities as envisioned by Parker
(1972) would end up in fast tearing of the corresponding current
sheets and consequent complex dynamics.

Let us return to the physical significance of the SP aspect
ratio. As is well known, the tearing mode has a singular layer
structure, where the antisymmetric ideally diverging velocity
eigenfunction ξ (perfectly antisymmetric only in the case of
a completely symmetric current sheet) breaks and decelerates
into the stagnation point at the center of the sheet. We plot in
Figure 3 the thickness of this internal layer δ/L as a function
of Lundquist number S for α = 1/3. The straight line through
the points corresponds to the power law scaling δ/L ∼ S−1/2,
i.e., the tearing mode singular layer for the critical thickness
current sheet has an aspect ratio scaling as SP. Though this
might seem a coincidence at first sight, the meaning is quickly
understood: because the tearing mode now has an ideal growth
rate, it must be capable of locally diffusing the field in the center
of the layer where the advecting velocity stagnates on an ideal
time-scale. The requirement τD = τA on the scale δ then reads
δ2/ηm = L/VA or (δ/L)2 = ηm/(LVA) = 1/S, corresponding
precisely to the aspect ratio of a SP current sheet.

The “ideal tearing” instability on the critical current sheet may
still be called a super-tearing or plasmoid instability; the number
of islands that develop is smaller, however, than based on super-
critical SP sheets, for in the latter case the number of islands
scales as N ∼ S3/8 whereas in our case from Equation (3) we
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Figure 3. Scaling of the inverse aspect ratio of the tearing mode singular layer
δ/L as a function of the Lundquist number S for the critical α = 1/3.

have N ∼ S1/6. Subsequent evolution of the instability leads to
a turbulent picture of collapsing x-points and coalescing islands,
with differences between 2D and 3D related to differing modes
dominating subsequent secondary instabilities depending on the
presence or absence of a guide field (Landi et al. 2008; Landi &
Bettarini 2012). Very large S simulations are required to follow
the complete evolution of such a system and many reconnection
simulations based on the original SP sheet configuration, and
corresponding parameter studies and scaling laws (Cassak &
Shay 2012; Cassak & Drake 2013; Daughton & Roytershteyn
2012), most probably need to be revisited in light of the above
results.

Because of the greater thickness of the a/L ∼ S−1/3 current
sheet, the “ideal” tearing mode may be triggered at least in
some contexts without invoking kinetic effects. Such effects
will however play a role in defining the dynamics of the internal,
singular layer. Take for example the case of the solar corona,
with a 100 G magnetic field, a density of around 109 cm−3,
and temperatures around 106 K. For a current sheet of length
L ∼ 104 km, S � 5 1013, the ratio of our critical current sheet
aspect ratio to the SP aspect ratio becomes a/δ � 200, so that
the critical “ideally” tearing sheet would have a thickness of
the order of 300 m, while its inner, singular layer, would have
a thickness of 1.5 m, in between the ion skin depth (12 m)
and Larmor radius (10 cm). It therefore remains to be explored
whether reconnection at the onset of instability is collisionless
or not.

We have shown in this Letter that in astrophysical plasma with
large Lundquist numbers (i.e., S � 107) there is a critical aspect
ratio for current sheets at which an ideally growing tearing mode
intervenes to stop further laminar thinning, and that this critical

thickness can be orders of magnitude thicker than SP current
sheets. The inner diffusion region of the “ideal” tearing mode
on the other hand follows the SP scaling. The persistence of an
“ideal” tearing mode in the limit of large Lundquist numbers
provides a solution to the paradoxical nature of diverging
growth rates at high S, when one knows that in ideal MHD
reconnection is prohibited. The existence of an ideal growth
rate in the limit of infinite S is allowed by the singular nature
of the diffusive term in the induction equation. In this Letter
we have studied the stability of 1D current sheet configurations,
in the sense that the equilibrium sheet was a function of only one
coordinate. A generalization of our scaling study to families of
2D equilibrium configurations including inflows and outflows,
generalizing the SP case, would be interesting and relevant to
better understand the appearance of critical Lundquist numbers.
Because resistive MHD is scale-free, direct application of the
“ideal tearing” result to the physics of solar and stellar coronae
requires observational inputs on the characteristic length-scale
of current sheet formation, for example the length of the loops
involved in reconnection, and this in turn will determine the
extent to which kinetic effects are relevant at the linear level.
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