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ABSTRACT

We investigate the shapes of γ -ray pulsar light curves using three-dimensional pulsar magnetosphere models
of finite conductivity. These models, covering the entire spectrum of solutions between vacuum and force-
free magnetospheres, for the first time afford mapping the GeV emission of more realistic, dissipative pulsar
magnetospheres. To this end we generate model light curves following two different approaches: (1) We employ
the emission patterns of the slot and outer gap models in the field geometries of magnetospheres with different
conductivity σ . (2) We define realistic trajectories of radiating particles in magnetospheres of different σ and
compute their Lorentz factor under the influence of magnetospheric electric fields and curvature radiation-reaction;
with these at hand we then calculate the emitted radiation intensity. The light curves resulting from these prescriptions
are quite sensitive to the value of σ , especially in the second approach. While still not self-consistent, these results
are a step forward in understanding the physics of pulsar γ -radiation.

Key words: gamma rays: stars – pulsars: general – stars: neutron

Online-only material: color figures

1. INTRODUCTION

The Fermi Gamma-Ray Space Telescope has had a major im-
pact on our understanding of pulsar physics with the discovery
of over 100 γ -ray pulsars comprising three populations: young
radio-loud pulsars, young radio-quiet pulsars, and millisecond
pulsars (Abdo et al. 2010). Studying γ -ray pulsars with such
a broad range of underlying physical parameters offers an op-
portunity of more deeply understanding the physics underlying
pulsar γ -ray emission and magnetic field geometry. A major
issue resolved early in the Fermi mission was the site of the
pulsar high-energy (GeV) emission. The cutoff of the Vela pul-
sar phase-averaged spectrum measured by the Fermi Large Area
Telescope (LAT; Abdo et al. 2009) ruled out at high significance
the super-exponential shape of magnetic pair production atten-
uation in polar cap cascades and established the location of the
γ -ray emission and particle acceleration in the outer magneto-
sphere.

Present models for pulsar high-energy emission assume a
vacuum retarded dipole (VRD; Deutsch 1955) field geometry,
which is expedient but fundamentally inconsistent. Such models
nevertheless have had some success in modeling Fermi pulsar
light curves (LCs). Both outer gap (OG; Cheng et al. 1986;
Romani & Yadigaroglu 1995; Hirotani 2008) and slot gap
(SG; Muslimov & Harding 2004) models derive regions of
E‖ bordering the last open field lines extending to the light
cylinder. The particles accelerating in these “gaps” produce
curvature radiation (CR) and inverse-Compton emission, with
their Lorentz factors limited by CR reaction forces that balance
E‖. The pattern of emission on the sky shows caustics that form
on the trailing edge of the open field region of each magnetic
pole as phase shifts due to dipole geometry, time-of-flight and
aberration nearly cancel, and photons from a large range of
altitudes arrive in phase (Morini 1983; Dyks & Rudak 2003).
Observers viewing at angles crossing the caustics will see one or
two narrow peaks that resemble the γ -ray LCs seen by Fermi.
Because the GeV emission in these models takes place in a

region near the pulsar’s last open field lines, the shape of the
model LCs is sensitive to, and thus a good diagnostic of, the
geometry of the pulsar magnetosphere near the light cylinder.

Fortunately, this can now be addressed in detail, thanks to
recent advances in numerical simulation of pulsar magneto-
spheres that model the high-altitude field structure critical to the
high-energy emission. The global structure of realistic pulsar
magnetospheres remains an unsolved problem. Until recently,
pulsar LC modeling has employed the magnetospheric geome-
tries of VRD and force-free electrodynamics (FFE; Contopoulos
et al. 1999; Spitkovsky 2006; Timokhin 2006; Kalapotharakos
& Contopoulos 2009). The effects of acceleration fields
(Hirotani 2007, 2008) and open-zone currents (Romani &
Watters 2010) on the LC have been explored, but these models
are not fully self-consistent. In all these models, the sweepback
of the magnetic field lines near the light cylinder, due to retarda-
tion and currents, causes an offset of the polar cap (PC; and of the
entire magnetosphere) in the direction opposite to the rotation,
which can affect the γ -ray LCs. Bai & Spitkovsky (2010) mod-
eled γ -ray LCs in FFE field geometry injecting photons along
tangents to the field direction of the separatrix. Contopoulos &
Kalapotharakos (2010) injected photons only in regions of the
FFE magnetosphere with J/ρc = 1, where J is the current and
ρ is the local charge density, as in these regions the electron
velocities are expected to be sufficiently close to c to lead to
GeV photon production. More recently, Harding et al. (2011)
assumed SG geometry to produce model LCs for the VRD and
FFE magnetospheres, concluding that the VRD geometry pro-
vides better fits to the observed LCs than the FFE geometry.
The FFE models present larger field-line sweepback and conse-
quently the corresponding LCs have larger phase lags relative
to the radio pulse which is not consistent with that of observed
Fermi LCs.

Most recently, resistive magnetosphere models have appeared
in the literature (Kalapotharakos et al. 2012, K12 hereafter; Li
et al. 2012), which drop the ideal-MHD requirement in favor
of an Ohms’ Law that relates the current to the E and B fields
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through a finite conductivity. These simulations reveal a range of
magnetic field structures, current distributions, and spin-down
power that lie between the VRD and the FFE solutions. Most
importantly, models of finite conductivity possess regions of E‖
which are potential locations of high-energy emission.

In this Letter, we explore for the first time the high-energy
emission that is generated in resistive magnetospheres, using
their magnetic field structure and E‖ to produce γ -ray LCs fol-
lowing two different approaches. First, we assume the emission
geometry of the SG and OG models and compute the result-
ing LCs for different values of conductivity to compare with
those of the VRD and FFE geometries. In the second approach,
we define approximate particle trajectories, and we calculate
the corresponding energies (including radiation losses) and CR
emission. While neither of these approaches is self-consistent,
in that particle motions should affect the fields, they are an im-
portant first step in relating the field structure and acceleration
dictated by global magnetosphere solutions to observations.

2. LIGHT CURVE MODELING

2.1. Pulsar Magnetosphere Models with Finite Conductivity

Dissipative magnetospheres are necessary for modeling pul-
sar LCs considering that neither the VRD nor the FFE solutions
are compatible with the emission of radiation: The VRD solu-
tions provide maximum accelerating field, E‖, but no charges
(ρ = 0), while the FFE solutions have a sufficiently large num-
ber of particles to guarantee the nulling of E‖. Herein, we use
the dissipative solutions presented recently by K12, which use
a phenomenological conductivity σ (in lieu of microphysical
processes) to relate the current density J to the fields E, B. Al-
though these solutions are still not self-consistent, they are an
improvement over those of VRD and FFE because, besides the
global field geometry, they also provide the distribution of E‖,
a quantity necessary to compute the acceleration of radiating
charges.

In the next sections we present model LCs using the structure
of magnetic and electric fields provided by dissipative solutions
of the perpendicular rotator (α = 90◦) which span the entire
solution space from VRD to FFE. These solutions are presented
in detail in K12 and have been produced adopting a very simple
prescription for the current density:

J = cρ
E × B

B2
+ σE‖ . (1)

In this case, the current density consists of two components,
namely a drift current and a component parallel to the magnetic
field. While some simulations explored models with a spatially
dependent σ , in this Letter we will use only those with constant
σ . As σ goes from 0 to ∞ the corresponding solution ranges
from VRD to FFE. The solutions we consider here correspond
to σ ≈ 0.08, 1.5, and 24Ω, where Ω is the angular frequency of
the star. The field structure of the solutions for σ ≈ 1.5Ω and
σ ≈ 24Ω are shown in the last rows of Figures 4 and 3 of K12,
respectively.

2.2. Geometric Approach

A simple method of generating pulsar LCs, used in many
previous studies (e.g., Dyks & Harding 2004; Watters et al.
2009; Venter et al. 2009), adopts the geometry of physical
emission models that have computed the shape of accelerator
gaps with assumed field structure and sources of charge. This

method can directly compare LCs from magnetospheres having
finite conductivity with LCs in VRD and FFE magnetospheres.
To explore how the magnetic field structure and offset PCs
influence γ -ray pulsar LCs, we have generated model LCs using
a geometrical version of the SG and OG models (e.g., Dyks &
Harding 2004; Watters et al. 2009; Venter et al. 2009). The SG
has its origin in PC pair cascades that screen the accelerating
parallel electric field E‖ over most of the open field except
in narrow gaps along the last open field lines (Arons 1983).
The electrons accelerate and radiate from the neutron star (NS)
surface to high altitude, and emission occurs throughout the
volume of the gap (Muslimov & Harding 2004; Harding et al.
2008). The OG is a vacuum gap that also forms adjacent to
the last open field line, above the null charge surface where the
corotation charge (Goldreich & Julian 1969) changes sign. The
gap width is determined by the screening of E‖ by pair cascades
and emission occurs in a thin region along the gap inner edge
(Wang et al. 2010).

Components of the magnetic field are determined from
analytic expressions for the VRD (see Dyks & Harding 2004)
and interpolated from numerical simulations for FFE and
resistive magnetospheres. The open field boundary on the NS
surface (the PC rim) was determined via bisection in magnetic
colatitude at fixed azimuth values. Open Volume radial and
azimuthal Coordinates (OVCs) were then defined inside the
open volume of each solution (Dyks & Harding 2004). We
assume that particles travel from the NS surface along open
field lines in OVCs and emit radiation tangent to field lines,
uniformly, in the corotating frame (CF). We assume that
emission is also uniform across an SG of width w = 0.05, as a
fraction of the open volume, on field lines originating between
rmin = 0.95 and rmax = 1.0 on the PC (in units of PC radius) and
in a thin layer at rmin � rmax = 0.95 in the OG. The minimum
and maximum spherical radii of emission are assumed to be
the NS surface and Rmax = 1.2 RLC, limited by a maximum
cylindrical radius of R

cyl
max = 0.95 RLC, for the SG, and the

null surface and Rmax = 1.5 RLC, limited by R
cyl
max = 0.97 RLC,

for the OG. The photon direction is assumed to be tangent
to the magnetic field in the CF, obtained through a Lorentz
transformation from the inertial observer’s frame (IOF; Bai &
Spitkovsky 2010). The emission direction is then transformed
to the IOF (aberration), time-delays are added, and the emission
is accumulated in sky maps in viewing angle ζ and phase φ
with respect to the pulsar rotation axis. LCs are then obtained
as slices through these maps at constant ζ .

2.3. Particle Trajectory Approach

An altogether different approach to produce LCs that takes
approximately into account the electric fields present in the
specific magnetospheric solution is the following: Since we
anticipate the velocity of any particle of the magnetosphere to be
very close to c, we decompose its motion into a drift component
and one parallel to the magnetic field. Thus, one can write for
the particle velocity:

u = E × B
B2

c + f
B
B

c. (2)

The sign and the absolute value of the factor f is chosen so that
the motion of the particle be outward and the total modulus
of the velocity u be c. This trajectory determination is similar
to those of Contopoulos & Kalapotharakos (2010) and Bai
& Spitkovsky (2010). Under this assumption we calculate the
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Figure 1. Geometric LCs for slot gap (left) and outer gap (right) emission in
VRD (black) and FFE (purple) solutions, and in resistive magnetospheres with
σ = 0.08Ω (red) and σ = 1.5Ω (green) for pulsar inclination angle α = 90◦.

(A color version of this figure is available in the online journal.)

trajectories passing through each magnetospheric point inside
a central cube of edge 3 RLC considering that in the dissipative
solutions the particles do not follow the field lines in the CF. So,
instead of open and closed field lines we determine open and
closed trajectories depending on whether they reach (or not)
2 RLC, assuming that the radiating particles follow only open
trajectories.4 This particle trajectory determination also allows
the calculation of the local radius of curvature Rcr at each point
of the magnetosphere. Moreover, assuming that each particle
starts at the stellar surface with a small γ value (γ � 100) we
can calculate its Lorentz factor γ along its trajectory from

dγ

dt
= f

qecE‖
mec2

− 2

3

q2
e γ

4

R2
crmec

, (3)

where qe and me are the electron charge and rest mass,
respectively. This approach allows us to have all the information
needed to calculate the CR intensity contributed by each point
of the magnetosphere and so the corresponding sky maps and
the LCs (see Section 2.2).

3. RESULTS

Figure 1 shows geometric LCs for SG (the left-hand column)
and OG (the right-hand column) emission in VRD (black) and
FFE (purple) solutions, and in resistive magnetospheres with
σ = 0.08Ω (red) and 1.5Ω (green) for a range of observer

4 Our field structures have E‖ in the closed zone, too; we believe that this is
due to approximations in our field computations and therefore we restrict
radiation by particles accelerated only by the E‖ of the open zone.

angles ζ . The resistive solutions of lowest σ are closest to the
VRD and indeed, the computed LCs look very similar. However,
there is a shift to larger phase and a slight broadening of the
peaks of the σ = 0.08Ω LCs. As σ increases, in both the
SG and OG cases, the peaks are shifted even more to larger
phase and the broadening is more pronounced, with the highest
σ -value being closest to the FFE solutions. Indeed, their LCs
look very similar, with only a slight shift in phase of the peaks but
no further broadening. Overall, there is a distinct progression in
the LC shapes as conductivity increases. The VRD LCs have the
narrowest peaks and the smallest phase lag from the magnetic
pole (phase = 0), with peak width and phase lag systematically
increasing with conductivity.

The LC changes with conductivity result from changes
in magnetic field structure. Magnetospheres with low σ are
“stiffer” and thus have less sweptback field lines and smaller
open field volume, while those with higher σ have more sweep-
back (Bai & Spitkovsky 2010). The increase of sweepback with
σ produces a larger shift of the PC which causes the larger phase
lag of the LC peaks. The increase in open volume of magne-
tospheres with large σ also causes the increase in peak width,
since the gap widths are assumed to be a fraction of the open
volume. Since peak width and phase lag are measurable char-
acteristics of observed γ -ray pulsar LCs, this study shows that
they could potentially be an important diagnostic of magneto-
spheric conductivity. Comparison of geometric LCs in VRD and
FFE magnetospheres has already indicated that VRD provides
a better match to observed LCs (Harding et al. 2011).

In Figure 2 we plot the LCs for solutions corresponding
to three different values of σ , taking into account the phys-
ical properties provided by each solution as we describe in
Section 2.3. The red, green, and blue colors correspond to
σ = 0.08Ω, 1.5Ω, and 24Ω, respectively. For these LCs we
assume that emission occurs only along all open trajectories
(i.e., those that reach at least up to 2 RLC). The emission is con-
sidered to be due to CR and is always proportional to γ 4 R−2

cr .
The γ -value is derived by Equation (3). The total emissivity can
also be weighted by the local charge density ρ (the left-hand
column of Figure 2). The general feature is that the broad-
est (narrowest) pulses seem to be those corresponding to the
middle (high) σ -value σ = 1.5Ω (σ = 24Ω). However, the
LCs for σ = 24Ω and for the low ζ -values exhibit high off-
pulse emission. This effect decreases when the charge density
ρ weighting is included. Moreover, near ζ = 90◦, the middle
σ -value (σ = 1.5Ω) pulses are weak,5 double, and narrow. The
general trend for the σ = 0.08Ω and σ = 1.5Ω solutions is
that the phase lag of the pulses with respect to the magnetic
poles (phase = 0) decreases with ζ although there are counter
examples. These phase lags start from values higher than 0.25
(for ζ = 45◦) and only for ζ near 90◦ can they reach close to
0.1–0.15. For the high σ value (σ = 24Ω) the corresponding
phase lags seem to be near the value 0.25 for most of the cases
implying a non-monotonic behavior with σ .

We checked also the assumption that the emitting particles
are mostly those that follow the high-voltage trajectories.6 This
approach is similar to the geometric one (Section 2.2) in the
sense that it is supposed that only a part of the magnetosphere
contributes to the emission. The difference here is that the active
region is traced by the high-voltage trajectories. Figure 3 is
similar to Figure 2 but only the 10% of the highest-voltage

5 This is not shown in the normalized LCs of Figure 2 but only in the
corresponding sky-maps.
6 The voltage is given by

∫
E · dl along a trajectory.
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Figure 2. LCs corresponding to the trajectory approach. The assumed emissivity
at each point of the magnetosphere is indicated in the figure. The red, green,
and blue colored lines correspond to σ = 0.08Ω, 1.5Ω, and 24Ω, respectively.

(A color version of this figure is available in the online journal.)

trajectories are considered to emit. In this case we observe
narrower pulses. However, only for the middle σ value (σ =
1.5Ω) do we have pulses corresponding to small phase lags. We
note also that the low σ value (σ = 0.08Ω) is observable only
from a relatively narrow range of ζ (ζ ≈ 45◦–60◦).

We derived also the LCs considering each point’s emissivity
∝ ρsγ

4R−2
cr , where ρs is the charge density on the star surface

at the point where each particle starts its journey. In this case
the results are similar to those of the right-hand columns of
Figures 2 and 3.

In Figure 4, we plot the points in the three-dimensional
magnetosphere that produce the pulses shown in the right-hand
column of Figure 2. In each of these cases, we have identified the
phases of the observed pulses for all ζ > 30◦ and we located the
points that contribute over 90% of the corresponding emission.
The emissivity of each point is represented by the indicated
color scale. In these figures we have also plotted the portion of
the magnetic field lines (in gray) that contribute to the emission

Figure 3. Similar to Figure 2 but only the 10% highest-voltage trajectories are
assumed to emit.

(A color version of this figure is available in the online journal.)

in the SG model presented in Figure 1. We see that there is
always a blob of points over the polar caps contributing to
the observed pulses. However, as we go toward high σ values
the volume of these blobs decreases and new points from the
outer magnetosphere are added. For σ = 0.08Ω and σ = 1.5Ω
the inner parts of the blobs coincide with only a subset of the
SG lines. This subset increases with σ and at σ = 24Ω the
largest part of the SG lines seem to follow the colored points.
Beyond the light cylinder, this region coincides with the current
sheet (Figure 4). This supports the result of Contopoulos &
Kalapotharakos (2010) where a significant part of the emission
is produced near the current sheet. The changes of the form of the
effective emitting regions, described above, make the sky map
evolution with σ complex. This makes the LCs (Figures 2 and 3)
evolve in a non-monotonic manner with increasing σ . However,
inspection of the full sky maps shows smooth evolution with
increasing conductivity.

Figures 1–4 show that the geometric LCs are less sensitive to
σ at high σ -values than those of the trajectory approach. This
indicates that the E‖ distribution changes more significantly
than the magnetic field structure at high σ .
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Figure 4. Regions of the magnetospheres that produce the peaks of the pulses shown in the right-hand column of Figure 2. The color scale indicates the corresponding
emissivity. For σ = 24Ω, a significant part of the emission comes from a region near the current sheet outside the light cylinder (gray surface in the right-hand panel).

(A color version of this figure is available in the online journal.)

4. DISCUSSION

We have presented a first implementation of dissipative
magnetospheres to model pulsar emission for direct comparison
with the fast accumulating pulsar phenomenology. We have
concentrated here on the pulsar γ -ray LCs; however, our models
could also address spectral features. With LC modeling alone,
we have just scratched the surface of the problem, since we have
used only one of the prescriptions discussed in K12 and only
one inclination angle α = 90◦. A more complex behavior is
expected for a variety of prescriptions and α.

The main goal of this Letter is to show that more realistic
pulsar magnetosphere models provide flexibility that allows
meaningful constraints on their parameters in direct comparison
with observations. While neither of the approaches employed
are self-consistent in that they take into account the effects
of the radiating particles on the magnetosphere itself, we
find a progression in the LC shape, with peak phase and
width increasing with σ in the SG and OG models. Observed
Fermi LAT LCs show an inverse correlation between the peak
separation Δ (in LCs with two peaks) and phase-lag δ of the first
peak relative to the radio-peak (thought to be near phase = 0;
Abdo et al. 2010). The first-peak phase lags (∼ 0.17–0.2) of high
σ model LCs are too large to account for the observed δ of many
LAT pulsars with Δ = 0.5. The LCs computed in the particle
trajectory approach can also produce narrow pulses, despite the
fact that they assume particle emission at every point of the
magnetosphere; however, their consistency with observations
may require specific values of ζ , α, and σ . Independently of
whether this is true or not, the final calculation of the LCs
depends also on the modulation by the local number of the
emitting particles, which is something that can be derived only in
fully self-consistent solutions. We plan to move in this direction
by introducing pair cascade mechanisms and the calculation of
the exact particle orbits (using the full equations of motion),
taking into account both CR and synchrotron losses, as well as
inverse-Compton radiation.

We expect that with the dissipative models at hand,
comparison of their model LC and spectral products with obser-

vations will allow us to find specific magnetospheric prescrip-
tions and model parameters that provide the working physics of
pulsar magnetospheres. All these will be the subject of future
work.

A.K.H. acknowledges support from the NASA Astrophysics
Theory and Fundamental Physics Program and the Fermi Guest
Investigator Program. We also thank the referee for constructive
comments.
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