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ABSTRACT

There is mounting evidence in solar wind observations and in numerical simulations that kinetic and magnetic
energies are not in equipartition in magnetohydrodynamic (MHD) turbulence. The origin of their mismatch, the
residual energy Er = Ev − Eb, is not understood well. In the present work this effect is studied analytically in the
regime of weak MHD turbulence. We find that residual energy is spontaneously generated by turbulent dynamics,
and it has a negative sign, in good agreement with the observations. We find that the residual energy condenses
around k‖ = 0 with its k‖-spectrum broadening linearly with k⊥, where k‖ and k⊥ are the wavenumbers parallel
and perpendicular to the background magnetic field, and the field-perpendicular spectrum of the residual energy
has the scaling Er (k⊥) ∝ k−1

⊥ in the inertial interval. These results are found to be in agreement with numerical
simulations. We propose that residual energy plays a fundamental role in Alfvénic turbulence and it should be taken
into account for the correct interpretation of observational and numerical data.
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1. INTRODUCTION

Turbulence plays an important role in a variety of astro-
physical phenomena, including amplification of magnetic fields
in planetary and stellar interiors, magnetization and angular
momentum transport in accretion disks, scattering of cos-
mic rays, formation of small-scale density structures in
the interstellar medium, and heating of the solar corona
and the solar wind. Theoretical description of magnetized
plasma turbulence is a complicated task. Valuable guid-
ance for phenomenological modeling has been provided by
high-resolution numerical simulations (e.g., Brandenburg &
Nordlund 2011; Kritsuk et al. 2011). On the analytical
side, significant progress has been made in the limit of
weak turbulence, that is, turbulence consisting of weakly
interacting linear waves (e.g., Newell et al. 2001; Galtier et al.
2000, 2002), which provides a test bed for fundamental ideas
in the theory of turbulence, such as scale invariance, locality of
interactions, energy cascades, and anisotropy. Weak magneto-
hydrodynamic (MHD) turbulence is also interesting on its own
as it may play a role in the interstellar medium, in the solar
corona and the solar wind, and in planetary and stellar magneto-
spheres (e.g., Bhattacharjee & Ng 2001; Saur et al. 2002; Luo &
Melrose 2006; Rappazzo et al. 2008; Chandran 2010; Chandran
et al. 2010).

In the present Letter we address the problem of mismatch
between kinetic and magnetic energies recently reported in ob-
servations of the solar wind turbulence. Our interest is also
motivated by a similar mismatch found in recent numerical sim-
ulations of MHD turbulence, suggesting that the phenomenon
may, in fact, have a fundamental nature rather than reflect a pos-
sible non-universality of solar wind turbulence. By employing
the framework of weak MHD turbulence we present the first di-
rect analytical derivation of residual energy generation in MHD
turbulence. We demonstrate that kinetic–magnetic equipartition
gets spontaneously broken by interacting random Alfvén waves,
even if it is present initially. Our results indicate that this effect

plays a fundamental role in the energy cascade and it should
be taken into account in phenomenological modeling of MHD
turbulence.

For our analysis we write the incompressible MHD equations
in terms of the Elsasser variables:(

∂

∂t
∓ vA · ∇

)
z± +

(
z∓ · ∇)

z± = −∇P, (1)

where the Elsasser variables are defined as z± = v ± b. v is
the fluctuating plasma velocity, b is the fluctuating magnetic
field normalized by

√
4πρ0, vA = B0/

√
4πρ0 is the Alfvén

velocity corresponding to the uniform magnetic field B0, P =
(p/ρ0 + b2/2) includes the plasma pressure p and the magnetic
pressure, ρ0 is the constant mass density, and we neglected the
terms describing viscous and resistive dissipation. One observes
that when z∓(x, t) ≡ 0, an arbitrary function z±(x, t) =
F±(x ± vAt) is an exact solution of (1), which represents
a non-dispersive Alfvén wave propagating parallel or anti-
parallel to B0 with the Alfvén speed. Nonlinear interactions
are the result of collisions between counterpropagating Alfvén
wave packets. This qualitative picture plays a central role in
phenomenological models of MHD turbulence; comprehensive
reviews of recent analytical and numerical results can be found
in, e.g., Galtier (2009), Sridhar (2010), Mininni (2011), Newell
& Rumpf (2011), and Tobias et al. (2011).

The ideal MHD system (1) conserves the two independent
Elsasser energies, E± = 〈|z±|2〉/4, related to the total energy
and cross-helicity, E = E+ + E− and Hc = E+ − E−,
respectively. In a turbulent state, when energy is supplied to
the system at large scales, both energies E± cascade toward
small scales where they are converted into heat by viscosity
and resistivity. Theories and numerical simulations of MHD
turbulence address the Fourier spectra of the energies E±(k) in
the inertial range of scales, that is, scales much smaller than the
forcing scales and much larger than the dissipation scales.

In the picture of counterpropagating Alfvén modes it is often
assumed that energy spectra are the same for both kinetic and
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magnetic fluctuations, since such energy equipartition holds for
individual Alfvén wave packets. However, recent solar wind
observations demonstrate contradictions to this assumption: the
Fourier energy spectra of magnetic and velocity fluctuations
appear to have different slopes in the inertial interval (Podesta
et al. 2007; Salem et al. 2009; Tessein et al. 2009; Chen
et al. 2011a, 2011b; Wicks et al. 2011; Li et al. 2011). This
is somewhat similar to the mismatch in the spectra found in
numerical simulations of strong MHD turbulence (Müller &
Grappin 2005; Boldyrev et al. 2011). Most intriguing, however,
is the fact that a significant difference between magnetic and
kinetic energies was detected in numerical studies of weak
MHD turbulence (Boldyrev & Perez 2009) consisting of mostly
independent Alfvén waves for which equipartition between
magnetic and kinetic energies holds exactly.

The mismatch between magnetic and kinetic energies, the
so-called residual energy Er (k) = Ev(k) − Eb(k), was noted
in previous works (e.g., Grappin et al. 1983; Zank et al. 1996;
Müller & Grappin 2005), however, it has not been fully explored
in models of MHD turbulence, since such models are often
based on the conserved quantities E±, E, Hc, which do not
contain information about the residual energy. In this work,
we present the analytic derivation of the residual energy in the
case of weak MHD turbulence. We demonstrate that residual
energy is spontaneously generated by interacting Alfvén waves
even if it is absent initially, plays a fundamental role in the
turbulent dynamics, and provides a qualitative explanation for
the breakdown of magnetic and kinetic equipartition observed
in the solar wind.

2. THE ORIGIN OF THE RESIDUAL ENERGY

We concentrate on turbulence of shear-Alfvén waves whose
polarizations are normal to the guide field, z± ⊥ B0. We assume
that the guide field is strong; its strength with respect to the
magnetic and velocity fluctuations is characterized by a small
parameter ε ∼ z±/vA  1. We also assume that the turbulence
is weak, that is, the wave spectrum in the field-parallel direction
is broad enough to ensure that the nonlinear terms are small,
k‖vA � k⊥z±, where k‖ and k⊥ are typical wavenumbers
characterizing the spectral width in the field-parallel and field-
perpendicular directions and z± are typical (rms) values of the
fluctuations. The Elsasser Fourier energies are given by the
correlation functions

〈z±(k, t) · z±(k′, t)〉 = ε2v2
Aq±(k‖, k⊥, t)δ(k + k′), (2)

while the residual energy is related to

〈z+(k, t) · z−(k′, t)〉 = ε2v2
AQ0(k‖, k⊥; t)δ(k + k′). (3)

In these formulas we assume spatial homogeneity and average
over a statistical ensemble. The Elsasser energies are real,
while the residual correlation function satisfies Q0(k‖, k⊥)∗ =
Q0(−k‖, k⊥). Its real part is then the residual energy er (k) =
ReQ0. In practical applications one also uses the phase-
volume-compensated residual energy defined as Er (k) =
ε2v2

Aer (k)2πk⊥. In previous treatments (Galtier et al. 2000,
2002), the residual energy was assumed to be zero as it would
be the case for independent z+ and z− waves. In the present
study we do not make such an assumption; rather, we derive the
equation for the residual energy.

The derivation is performed perturbatively in ε, following
the standard procedure (e.g., Galtier et al. 2002). When the

nonlinear terms in Equation (1) are neglected, both z±(k)
oscillate in time and so does the residual energy, Q0(k, t) =
q0(k) exp(2ik‖vAt). When the nonlinear interaction is taken into
account, q0 acquires small corrections that one finds, to the first
non-vanishing order, by integrating the equation

∂tq
0(k, t) = −e−2ik‖vAt ε2

∫
Rk,pq{q+(q)[q−(p) − q−(k)]

+ q−(q)[q+(p) − q+(k)]}δ̃(q‖)δ(k − p − q)d3p d3q, (4)

where Rk,pq = (πvA/2)(k⊥×q⊥)2(k⊥·p⊥)(k⊥·q⊥)/(k2
⊥p2

⊥q2
⊥),

and we introduce a “smeared” delta-function δ̃(k‖) = (1 −
exp(−2ik‖vAt))/(iπk‖), which approaches δ(k‖)+(i/π )P(1/k‖)
at large t. Since we are interested in spontaneous generation
of the residual energy, we assume that it is absent initially;
therefore, in the right-hand side of Equation (4) we neglected
the terms proportional to q0. The derivation of Equation (4) is
standard although lengthy, and it will be presented elsewhere. In
what follows we discuss the main consequences of the obtained
result.

3. THE SPECTRUM OF THE RESIDUAL ENERGY

First, we notice that the integral in the right-hand side
of Equation (4) is essentially nonzero. It therefore describes
the generation of the residual energy by Alfvén waves. The
important conclusion is that the residual energy is generated by
nonlinear interactions even if it is zero initially. Moreover, one
can directly verify that for all the spectra of interest, the integral
in the right-hand side of Equation (4) is positive. As we shall see
below, this means that the generated residual energy is negative,
that is, the magnetic energy exceeds the kinetic one.4

A simple evaluation of the integral in Equation (4) can be
performed for the case of balanced MHD turbulence, that is,
for q+ = q−. In this case, the Elsasser energy spectra have
the well-known scaling (e.g., Ng & Bhattacharjee 1996; Galtier
et al. 2000) q+ = q− = f (k‖)k−3

⊥ , where f (k‖) is arbitrary, and
we assume that it is smooth at least initially. For the reasons
that will be clear momentarily, we estimate the integral in the
right-hand side of Equation (4) at k‖ = 0:

∫
Rk,pq{. . .}δ̃(q‖)δ(k − p − q)d3p d3q = αk−2

⊥ vA, (5)

where the numerical factor is α ∼ f 2(0).5 Non-vanishing of this
term at k‖ = 0 implies that Equation (4) has a solution diverging
in time, which is unphysical. The reason is that when q0 becomes
large one cannot neglect the nonlinear terms containing q0 in
Equation (4). As we shall see, in order to obtain the convergent
result, it is enough to retain the terms linear in q0, which are
proportional to q±q0. Those terms describe relaxation of the
residual energy due to its interaction with the Elsasser energies.
Their structure can be found from a simple estimate, if one
notices that these terms should have the same dimensional
structure as the right-hand side term in Equation (4) if one
replaces one of q± by q0. The corresponding relaxation term
can thus be added to the right-hand side of Equation (4) in the

4 This result is a statistical effect of many independent collisions of Alfvén
waves. It does not imply that a particular collision of two Alfvén wave packets
necessarily produces negative residual energy.
5 A more precise numerical integration gives α ≈ 0.065πf 2(0); however, our
discussion of scaling properties of the residual energy does not require the
knowledge of numerical coefficients with such precision.

2



The Astrophysical Journal Letters, 740:L36 (4pp), 2011 October 20 Wang, Boldyrev, & Perez

Figure 1. Field-parallel spectra of magnetic (solid line) and kinetic (dashed line)
energies at k⊥ = 6 for weak balanced MHD turbulence. The magnetic energy
exceeds the kinetic one at small k‖. Note the logarithmic scale on the vertical
axis.

form γ q0, with the relaxation rate γ ∼ −ε2vAk4
⊥q±(k). The

estimate of the relaxation rate at k‖ = 0 gives

γ (0, k⊥) = −βε2k⊥vA, (6)

where β ∼ f (0).6

Collecting results (5) and (6), we rewrite Equation (4) in the
form

∂tq
0(k, t) = −ε2βk⊥vAq0(k, t) − ε2αk−2

⊥ vAe−2ik‖vAt , (7)

which has to be solved together with the initial condition q0 = 0.
The solution is given by

q0(k, t) = − αε2k−2
⊥

βε2k⊥ − 2ik‖
e−2ik‖vAt , (8)

and the residual energy is found as

er (k‖, k⊥) = ReQ0 = − αβε4k−1
⊥

β2ε4k2
⊥ + 4k2

‖
. (9)

The residual energy can be rewritten as

er (k‖, k⊥) = −απε2k−2
⊥ Δ(2k‖), (10)

where the Δ function has support inside a narrow wedge-shaped
domain:

k‖ � βε2k⊥/2. (11)

According to the result limε→0 ε/(x2 +ε2) = πδ(x), the function
Δ would turn into the δ-function in the limit ε → 0. This explains
why the region around k‖ = 0 was relevant in our estimates (5)
and (6). We will refer to such a spectrum as “condensate.” It
is also convenient to define the field-perpendicular spectrum of
the residual energy,

Er (k⊥) =
∫

ε2v2
Aer (k‖, k⊥)2πk⊥dk‖ = −απ2ε4v2

Ak−1
⊥ . (12)

Expressions (9)–(12) are the main results of the present work.

4. NUMERICAL RESULTS

In this section, we test our analytic predictions in numerical
simulations. In the presence of a strong guide field, the universal
properties of MHD turbulence can be studied in the framework
of reduced MHD, which can be effectively used in numerical

6 It is easy to see that γ coincides with the inverse time of nonlinear spectral
energy transfer in weak MHD turbulence (e.g., Ng & Bhattacharjee 1996;
Galtier et al. 2000).

Figure 2. Upper panel: the (normalized) residual energy Er (k‖, k⊥)/Er (0, k⊥)
plotted as a function of k‖ and k⊥ for the weak balanced MHD turbulence.
Lower panel: the field-perpendicular spectrum of the residual energy for weak
balanced MHD turbulence compensated by k⊥. At small k⊥ the deviations are
strong due to proximity to the forcing region (not shown).

(A color version of this figure is available in the online journal.)

simulations of both strong and weak turbulence (e.g., Dmitruk
et al. 2003; Oughton et al. 2004; Galtier & Chandran 2006;
Perez & Boldyrev 2008; Rappazzo et al. 2010). In our numerical
setup, the z+ and z− fields are independently driven by Gaussian-
distributed random, short-time correlated forces with zero mean
and prescribed variances, so that no residual energy is supplied
by the driving routine. The forces are applied at k‖ = 1, . . . , 16
and k⊥ = 1, 2 in the Fourier space. The box is elongated in
the field-parallel direction according to L‖/L⊥ = B0/brms. We
employ a fully dealiased pseudo-spectral method; the run has a
resolution of 5123, the Reynolds number Re = 2400, and it is
averaged over 41 large-scale eddy turnover times. We choose
viscosity equal to magnetic diffusivity. The details on the code
and the numerical setup can be found in Perez & Boldyrev
(2010).

We find that the residual-energy condensate is indeed
generated in weak balanced MHD turbulence, as shown in
Figure (1). The condensate is negative and its broadening with
k⊥ shown in Figure (2) is consistent with the linear law predicted
in Equation (11). The scaling behavior of the field-perpendicular
spectrum of the residual energy is also consistent with the an-
alytic prediction in Equation (12); see Figure (2). When we
repeated the computation for the imbalanced case, that is, the
case when q+ �= q− (not presented here), we did not detect
essential changes in the structure and scaling of the condensate.

5. DISCUSSION

In this Letter, we demonstrated that residual energy is sponta-
neously generated by nonlinearly interacting Alfvén waves and
it accumulates in a narrow region of phase space (11). This ex-
plains the phenomenon of “condensate” of the residual energy
numerically observed in Boldyrev & Perez (2009). Although
the total (phase-space integrated) residual energy is small, its
presence is crucial for turbulent dynamics for the following rea-
son. Inside region (11), that is, for k‖ ≈ 0, the residual energy is
comparable to the Elsasser energies and it follows the same scal-
ing, er (0, k⊥) ∼ q±(0, k⊥) ∝ k−3

⊥ . Since the turbulent cascade
of Alfvén waves crucially depends on the modes with k‖ ≈ 0

3



The Astrophysical Journal Letters, 740:L36 (4pp), 2011 October 20 Wang, Boldyrev, & Perez

(e.g., Montgomery & Turner 1981; Sridhar & Goldreich 1994;
Ng & Bhattacharjee 1996; Galtier et al. 2000, 2002), the residual
energy crucially affects the dynamics of the Elsasser modes.

More formally, this is expressed in the fact that one of the
Elsasser energies enters the kinetic equations in the combination
q±(k‖, k⊥)δ̃(k‖), where δ̃(k‖) are concentrated in region (11),
see, e.g., Equation (4). In previous treatments of weak MHD
turbulence (Galtier et al. 2000, 2002), it was assumed that
q±(k‖, k⊥) are smooth functions of k‖, that is, their dynamically
important components with k‖ = 0 have the same k⊥-scaling
as the components with k‖ �= 0. Such an assumption would be
self-consistent if the residual energy were absent. However, as
we have demonstrated, the residual energy is spontaneously
generated by interacting Alfvén waves. One can argue that
the presence of the residual energy modifies the spectra of
the Elsasser energies that, together with their smooth parts,
q± = f ±(k‖)k−3

⊥ , now acquire their own singular parts δq± =
α±ε2Δ±(k‖)k−2

⊥ , where Δ±(k‖) are concentrated in region (11).
When multiplied by δ̃(k‖) and integrated over k‖, both the
smooth and the singular parts provide comparable contributions
to the integrals.

We established that the spontaneously generated residual
energy is always negative. Although this result is obtained
in the framework of weak MHD turbulence, it provides the
first analytic explanation for the observational and numerical
findings that magnetic energy exceeds kinetic energy in the
inertial interval of MHD turbulence (e.g., Müller & Grappin
2005; Podesta et al. 2007; Boldyrev & Perez 2009).

We derived that the residual energy has the field-
perpendicular spectrum Er (k⊥) ∝ k−1

⊥ (12). This relatively
shallow spectrum holds in the inertial interval and breaks down
at sufficiently large k⊥ when the nonlinear broadening of the
residual energy spectrum in the field-parallel direction (11)
becomes comparable to the width of the field-parallel energy
spectra of the Alfvén waves, q±(k‖). It is easy to see, however,
that this is precisely the scale beyond which the weak interac-
tion approximation breaks down, and the turbulence becomes
strong. In our future work we will extend our analysis of residual
energy to the case of strong MHD turbulence.
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