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ABSTRACT

The current dynamo paradigm for the Sun and Sun-like stars places the generation site for strong toroidal magnetic
structures deep in the solar interior. Sunspots and starspots on Sun-like stars are believed to arise when sections of
these magnetic structures become buoyantly unstable and rise from the deep interior to the photosphere. Here, we
present the first three-dimensional global magnetohydrodynamic (MHD) simulation in which turbulent convection,
stratification, and rotation combine to yield a dynamo that self-consistently generates buoyant magnetic loops.
We simulate stellar convection and dynamo action in a spherical shell with solar stratification, but rotating three
times faster than the current solar rate. Strong wreaths of toroidal magnetic field are realized by dynamo action
in the convection zone. By turning to a dynamic Smagorinsky model for subgrid-scale turbulence, we here attain
considerably reduced diffusion in our simulation. This permits the regions of strongest magnetic field in these
wreaths to rise toward the top of the convection zone via a combination of magnetic buoyancy instabilities and
advection by convective giant cells. Such a global simulation yielding buoyant loops represents a significant step
forward in combining numerical models of dynamo action and flux emergence.
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1. CONVECTION, ROTATION, AND MAGNETISM

The clearest signature of the global solar dynamo is the
emergence of sunspots at the photosphere. Creating these co-
herent magnetic structures likely requires several dynamical
processes operating at various locations in the solar interior.
A single three-dimensional numerical simulation of solar mag-
netism that extends from the deep interior through the Sun’s
upper atmosphere, while resolving all relevant scales, is in-
tractable with current computational resources. This leads to
three main classes of simulations that address elements of solar-
like dynamo processes (see reviews Fan 2009; Charbonneau
2010). One approach to study how loops may emerge is to in-
sert a compact magnetic field structure into a spherical domain
and track its buoyant rise (e.g., Caligari et al. 1995; Fan 2008;
Jouve & Brun 2009; Weber et al. 2011). Another approach
uses local planar models with mechanical forcing to generate
large-scale shear that drives dynamo action and creates buoyant
magnetic loops (e.g., Cline et al. 2003; Vasil & Brummell 2008;
Guerrero & Käpylä 2011). Planar models have also been used
to study three-dimensional buoyancy instabilities in a magne-
tized layer that can lead to rising elements (e.g., Kersale et al.
2007). The third approach uses global convective MHD models.
These incorporate the rotating spherical-shell geometry needed
to self-consistently generate differential rotation and meridional
circulation through Reynolds stresses (see review Miesch 2005).
Such models have captured the formation of magnetic structures
and cycles in solar (Ghizaru et al. 2010; Racine et al. 2011) and
rapidly rotating Sun-like stellar models (Brown et al. 2010,
2011; hereinafter B10 and B11, respectively), yielding differ-
ential rotation, dynamo action, and large-scale magnetic fields,
but not buoyant magnetic loops that rise toward the top of the
convective layer.

Here, we report on a global convective dynamo simulation
of a Sun-like star rotating at three times the mean solar angular
velocity (3Ω�), such as our Sun did when it was younger and
as do many solar analogues (Petit et al. 2008). This simulation
(1) attains a differential rotation profile created by the interplay
of convection, rotation, and stratification (e.g., Brun & Toomre
2002; Miesch & Toomre 2009), (2) forms global-scale toroidal
magnetic structures that undergo cycles of magnetic activity and
reversals of global polarity, and (3) achieves buoyant magnetic
loops from the strongest portions of the toroidal structures which
rise from the base of the convection zone. This work extends the
work of B10 and B11 in which simulations of rapidly rotating
suns with moderate levels of diffusion were able to accomplish
(1) and (2). The formation of buoyant loops is facilitated in our
current work by adopting a dynamic Smagorinsky subgrid-scale
(SGS) model (Germano et al. 1991), which serves to minimize
the diffusion of well-resolved structures.

2. SIMULATION PARAMETERS AND PROPERTIES

We have conducted three-dimensional MHD simulations of
turbulent convection and dynamo action in a spherical shell
spanning the bulk of the convection zone from 0.72 R� to
0.97 R� involving a density contrast of 25 and rotating at 3Ω�
(1240 nHz, once every 9.3 days). We use the anelastic spherical
harmonic (ASH) code (e.g., Brun et al. 2004). The anelastic
treatment lets us follow the subsonic flows in the deep con-
vection zone. Within this nearly adiabatically stratified region,
we expect that magnetic buoyancy instabilities captured by our
anelastic treatment differ from fully compressible treatments
by no more than a few percent in either growth rate or scale
(Berkoff et al. 2010). ASH is a large-eddy simulation (LES)
code that resolves the largest scales of motion and uses a SGS
model to parameterize the effects of unresolved, small-scale
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Figure 1. Snapshots of flows and fields in case S3 when a buoyant loop begins to rise at time tb. (a) Radial velocity vr in global Mollweide projection (equator is
dashed) near the top of the computational domain, showing fast, narrow downflows (dark tones) and broad, slower upflows (light tones). (b) Companion view of
toroidal magnetic field Bφ at the mid-convection zone. Effects of turbulent convection contribute to the ragged nature of the wreaths. Several buoyant magnetic loops
(see Figure 3) are generated in the negative-polarity wreath segment just above the equator and right of the image center. (c) Time and zonal average of rotation profile
〈Ω〉, possessing an equatorial region with fast rotation and slower rotation at higher latitudes. (d) Longitudinally averaged toroidal magnetic field 〈Bφ〉 revealing a
prominent axisymmetric field component.

(A color version of this figure is available in the online journal.)

turbulence. The dynamo simulations of B10 and B11 used an
SGS model where the turbulent magnetic diffusivity ηt was
constant on spherical shells and in time and varied only slowly
with depth as the inverse square root of the background density.
B10 examined a simulation (case D3, at 3Ω�) which exhibited
persistent toroidal magnetic structures, whereas B11 studied a
simulation that achieved cycles of magnetic activity and global
polarity reversals (case D5, at 5Ω�). These simulations had
ηt = 2.64 × 1012 and 1.88 × 1012 cm2 s−1, respectively, at the
mid-convection zone.

Here we consider a new ASH simulation, case S3, which
achieves much lower levels of diffusion through the use of a dy-
namic Smagorinksy (DSMAG) SGS model. This assumes self-
similar behavior in the resolved portion of the inertial range of
scales in a turbulent flow in order to extrapolate the effects of un-
resolved small-scale motions on the resolved scales. The result-
ing viscosity νS is determined by the properties of the grid and
the flows, and varies by orders of magnitude in all three spatial
dimensions and in time. To determine the thermal and magnetic
diffusion coefficients we assume constant thermal and magnetic
Prandtl numbers. In cases D3, D5, and S3 these are set to 0.25
and 0.5, respectively. We reserve further discussion of the prop-
erties of ASH simulations using the DSMAG SGS model for a
forthcoming paper. In case S3, the DSMAG SGS model allows a
simulation (with 1024 longitudinal, 512 latitudinal, and 193 ra-
dial grid points) to achieve a mean magnetic diffusion coefficient
at the mid-convection zone of η̄t = 4.8 × 1010 cm2 s−1. This
reduction in diffusion by a factor of about 40 from case D3 is
critical for the formation and coherent rise of buoyant magnetic
loops.

Case S3 exhibits turbulent convective patterns shown in
Figure 1(a) which are largely vortical at high latitudes and
aligned with the rotation axis near the equator. The convec-
tion builds and maintains a strong differential rotation that is
prograde at the equator and retrograde at mid to high lati-
tudes (Figure 1(c)). This organized shear drives the creation of
toroidal magnetic structures at low latitudes in each hemisphere,
as demonstrated in B10. Here the increased level of turbulence
enhances the power in smaller-scale components of the toroidal
field Bφ (Figure 1(b)), while still retaining a substantial zonally
averaged toroidal field 〈Bφ〉 (Figure 1(d)).

In addition to creating strong magnetic structures near the
base of the convective region, case S3 also undergoes cycles
of magnetic activity and reversals of global magnetic polarity
similar to those described in case D5 in B11. This is consistent
with results from parameter surveys with ASH simulations,

Figure 2. Field reversals with time. (a) Hemispherical volume-averaged toroidal
magnetic field [Bφ ] of progenitor case D3b over nearly 6000 days, displaying
irregular magnetic activity cycles. Case S3 branched from case D3b at time ts
(dotted line). (b) [Bφ ] for case S3 over about 800 days. Case S3 continues the
cyclic behavior of D3b, but additionally produces buoyant loops. The creation
of loops which pass 0.90 R� is indicated by tick marks in the lower panel.
Detailed information on the buoyant loop at time tb = ts + 683 days (dotted
line) is shown in Figures 1 and 3.

(A color version of this figure is available in the online journal.)

which indicate that decreasing both ν and Ω can yield cyclic
behavior seen at 5Ω� at lower rotation rates (Brown 2011).
Because of the large computational cost of the DSMAG SGS
model, case S3 was started using a less diffusive descendant of
case D3 in B10, which we label case D3b, as initial conditions
(see Nelson et al. 2010). Figure 2(a) shows the temporal
evolution of the hemispherical volume average of toroidal
magnetic field, [Bφ], in the progenitor case over approximately
5000 days, demonstrating the irregular cycles this model yields.
Case S3 continues this behavior over about 1300 simulated days
starting from time ts. The temporal evolution of [Bφ] in case S3 is
shown in Figure 2(b), revealing two reversals of global magnetic
polarity.

Some caution should be used in interpreting any LES dynamo
simulation, given the potential sensitivity of dynamo action to
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Figure 3. Analyzing a rising loop. (a) Two-dimensional cuts in longitude at successive times (tracking in longitude at the local rotation rate of the loop) showing
toroidal magnetic field over radius and latitude. The rising magnetic loop A is seen in the cross section starting at 0.81 R� at t = tb and rising to 0.91 R� after roughly
15 days. Proto-loop B is also seen rising starting at 8.6 days, but the top of loop B never rises above 0.88 R�. (b) Three-dimensional visualization of magnetic field
lines in the core of a wreath which produces four loops (two shown here, one of which is loop A) at tb + 14.6 days. Perspective is looking down along the rotation
axis toward the equatorial plane. Coloring indicates field magnitude. Dashed lines indicate radial position. Dotted line shows the cutting plane used in the leftmost
panel above. (c) Radial location of the top of a buoyant loop as a function of time since tb, along with movement attributable to magnetic buoyancy (red lines) or to
advection by convective upflows (blue lines).

(A color version of this figure is available in the online journal.)

magnetic dissipation and the nonlinear, nonlocal nature of tur-
bulent magnetic induction, which makes reliable SGS modeling
difficult. However, we believe that the essential large-scale dy-
namics exhibited in this simulation are robust and are largely
insensitive to the SGS model. Indeed convective dynamo sim-
ulations with differing prescriptions for SGS diffusion exhibit
similar large-scale magnetic structures (B10; B11; Ghizaru et al.
2010; Racine et al. 2011).

Here we will discuss buoyant magnetic structures which
coherently rise above 0.90 R� while remaining connected to
the large-scale toroidal wreaths. Using these criteria, we have
identified nine buoyant magnetic loops, indicated by hash marks
in Figure 2(b). Eight loops are seen in the northern hemisphere
and one in the southern hemisphere. We expect that the apparent
asymmetry is simply the result of having studied only two
magnetic cycles.

3. BUOYANT MAGNETIC LOOPS

Buoyant magnetic loops arise from the cores of toroidal
magnetic wreaths near the base of the simulated domain. These
wreaths have significant 〈Bφ〉 components that peak around 5 kG
while also having strong non-axisymmetric fields. Figure 1(b)
shows a typical Bφ configuration involving a negative polarity
wreath in the northern hemisphere spanning 95◦ in longitude and
a positive polarity wreath in the southern hemisphere extending
over 270◦ in longitude. As demonstrated in cases D3 (B10) and
D5 (B11), these magnetic wreaths are highly nonuniform and
display significant internal variation as well as a high degree of

connectivity with the rest of the domain. In case S3 portions of
the wreaths can have coherent cores in which Bφ can regularly
exceed 25 kG and have peak values as high as 54 kG. In these
cores, bundles of magnetic field lines show very little local
connectivity with the rest of the domain or even the other
portions of the wreath. A single wreath of a given polarity may
not form a coherent core at all or may have more than one core,
and a single core may produce multiple buoyant loops. Of the
nine buoyant loops investigated here to rise past 0.90 R�, one
coherent core produces four buoyant loops, another produces
three, and two more cores each yield a single buoyant loop.

Some of the coherent wreath cores can become buoyant
magnetic loop progenitors or proto-loops. In these proto-loops
the strong Lorentz forces result in highly suppressed convective
motions. If we examine extended regions in the cores of wreaths
with a local ratio of magnetic to kinetic energy above a fiducial
value of 100, we identify at least 35 proto-loops at the times
where the nine buoyant loops arise. Thus the large majority of
proto-loops do not evolve into mature buoyant loops, generally
due to unfavorable interactions with convective flows. When
magnetic field strengths exceed 35 kG the proto-loops become
significantly underdense as magnetic pressure displaces fluid,
causing buoyant acceleration. With some rise a proto-loop can
enter a region of less suppressed giant cell convection. These
flows will advect portions of the proto-loop downward at cell
edges and upward in the core of the giant cells. The rise of the
top of a magnetic loop is shown in the cross section by sampling
Bφ roughly every two days in Figure 3(a). Not all proto-loops
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become buoyant loops by our criteria. For example, loop B in
Figures 3(a) and (c) begins to rise but is prevented from passing
0.88 R� when the top of the loop encounters a strong downflow.

One way to track these buoyant loops is to use three-
dimensional tracings of magnetic field lines using the VAPOR
software package (Clyne et al. 2007). In our simulations with
finite resistivity, individual field lines do not maintain their
identity in time. However, one can achieve some measure of
consistency as the structure moves and evolves by tracking field
line ensembles. We track the very strong fields at the bottom
of the loops near the base of the domain and we randomly
seed large numbers of field lines (here 1000) in those highly
magnetized footpoints at each time step. Figure 3(b) shows
a three-dimensional rendering of magnetic field lines for two
sample loops near the peak of their rise. Similar field line
tracings have been studied at various times during the rise of
these loops.

At maximum rise, the sample magnetic loop A extends from
0.73 R� to 0.93 R�. The magnetic fields exceed 40 kG at the
base of the loop but become much weaker near the top of
the loop, with field strengths as low as 2 kG. Such loops are
embedded in the much larger wreaths which have an average
cross-sectional area of 13800 Mm2. The cross-sectional area of
loop A is 120 Mm2 at 0.795 R� and 520 Mm2 at its peak radial
position of 0.923 R�. Accounting for the continued expansion
that would likely occur if this loop were able to rise further,
the cross-sectional area is reasonable compared with the typical
area of a large sunspot at the solar surface, which is roughly
2500 Mm2 (Zwaan 1987). If the loop were rising adiabatically
over the same interval, the cross-sectional area should change in
inverse proportion to the change in background pressure, which
decreases here by a factor of 17.1, rather than the observed
expansion by a factor of 4.3. The top of the loop must then have
a net outflow of heat or material in order to avoid expanding
adiabatically. The loops show a measurable deficit in density
and thermodynamic pressure relative to their surroundings, but
they do not possess any detectable signature in temperature
or entropy. This indicates that they are thermally “leaky” and
able to equilibrate quickly compared to the timescale for radial
motion. A simple estimate of the thermal diffusion time across
one of these structures at the mid-convection zone is on the order
of 50 days, implying that there is likely also a divergent flow at
the top of the loop, moving fluid along field lines. We see some
evidence for such flows with roughly 1 m s−1 speeds.

Once a loop has begun to rise, its radial motion is dominated
by advection and magnetic buoyancy. Figure 3(c) illustrates
the motion of loop A which begins to rise buoyantly at tb,
while also indicating the components of the motion due to
advection and magnetic buoyancy. To compare motion due to
magnetic buoyancy, we define a magnetic buoyancy velocity
vmb at the times sampled in Figure 3(c). Magnetic buoyancy
acceleration is here the fractional density deficit in the loop
compared to the average density of the surrounding fluid times
the local gravitational acceleration. For a magnetic structure in
local thermal equilibrium, this reduces to the ratio of magnetic
pressure inside the loop to thermodynamic pressure in the
surrounding fluid times gravitational acceleration. To compute
vmb we integrate the magnetic buoyancy acceleration over the
intervals between times plotted in Figure 3(c) (roughly two
days), which likely provides a lower bound on this velocity. The
advective velocity vad is the volume-averaged velocity of the
surrounding fluid. The pressure and velocity of the surrounding
fluid are calculated by taking averages over the convective

updraft while excluding regions with field magnitude greater
than 4 kG. Initially the sample proto-loop experiences an upward
vmb = 46.1 m s−1. After three days of movement dominated
by magnetic buoyancy, the loop gets caught in a convective
updraft and vad becomes greater than vmb. Even though advective
motions dominate, magnetic buoyancy continues to drive an
average upward motion at 32.3 m s−1 relative to the surrounding
fluid. Continued buoyant acceleration of the loop as the magnetic
pressure weakens is achieved because its density perturbation
decreases at roughly the same rate as does the background
density stratification. Once the top of the loop has entered the
main convective upflow it experiences advection at an average
velocity of 53.1 m s−1. The presence of magnetic buoyancy
forces allow this loop to rise in 14.6 days, while the average
upflow traverses the same distance in 21.7 days and magnetic
buoyancy alone would require 30.6 days.

Additional accelerations are present but not shown, including
thermal buoyancy, which is significant early in the rise of
the loop, and magnetic tension, which is of the same order
of magnitude as the advective motion near maximum radial
extent at 14.6 days and helps tether the loop to that height.
Thermal buoyancy is distinguished from magnetic buoyancy
by averaging over the convective updraft but excluding regions
with magnetic fields above 4 kG. An additional apparent motion
at early times is produced as the toroidal magnetic field
used to track the loop is converted to radial magnetic field
in the sides of the loop. Because advection plays a crucial
role in the transport of these magnetic loops, their size scale
is set by the size of the convective giant cells. The nine loops
studied here have an average extent of 15.◦4 in longitude when
measuring across the bottom of the loop, whereas the average
distance between convective downflows in the equatorial region
is 16.◦4 in longitude.

4. REFLECTIONS

In this paper, we have presented a three-dimensional MHD
simulation that combines turbulent convection, rotation, and
stratification to produce solar-like differential rotation and
wreaths of large-scale toroidal magnetic field at the base of the
convection zone. These undergo cycles of magnetic activity and
reversals of global magnetic polarity. Most notably the wreaths
also exhibit buoyant magnetic loops capable of coherently
traversing much of the convective layer. Such loops can only
be realized when the field amplitude in a portion of a wreath
exceeds 35 kG, the diffusion timescale across the proto-loop
(here 50 days) is much longer than the timescale for rise due to
magnetic buoyancy, and the interactions between rising loops
and convective flows are favorable. These buoyant loops which
appear at cycle maximum can have toroidal field strengths of
45 kG at their base and 5 kG at their top. Their size scales are
set by the size of the convective giant cells and they have cross-
sectional areas at 0.90 R� that are reasonable compared to the
area of a large sunspot.

We must be cautious in suggesting that these rising magnetic
loops can make it through to the surface of the star. Our global
simulations here only extend to 0.97 R� and currently place
an impenetrable boundary there, for we cannot cope with the
intense small scales of convection seen as supergranulation
and granulation near the surface. The presence of the domain
boundary deflects all flows, leading to some uncertainty about
the fate of the rising loops that could only be resolved by linking
flows and magnetism in the upper reaches of ASH to another
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high-resolution compressible domain closer to the surface. This
is a task we are now pursuing in parallel with global modeling.

It is noteworthy that within this simulation convection gen-
erates differential rotation which in turn generates toroidal flux
which then buoyantly destabilizes and rises. Each link in this
chain is physically well established. Our primary accomplish-
ment here is to capture all these processes self-consistently
within a single simulation. This represents an essential step
toward unifying numerical models of global-scale convective
dynamos and surface flux emergence.
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Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., & Smolarkiewicz, P. K.

2011, ApJ, 735, 46
Vasil, G. M., & Brummell, N. H. 2008, ApJ, 686, 709
Weber, M. A., Fan, Y., & Miesch, M. S. 2011, ApJ, in press
Zwaan, C. 1987, ARA&A, 25, 83

5

http://dx.doi.org/10.1080/03091929.2010.521747
http://dx.doi.org/10.1080/03091929.2010.521747
http://adsabs.harvard.edu/abs/2010GApFD.104..545B
http://adsabs.harvard.edu/abs/2010GApFD.104..545B
http://dx.doi.org/10.1088/1742-6596/271/1/012064
http://adsabs.harvard.edu/abs/2011JPhCS.271a2064B
http://adsabs.harvard.edu/abs/2011JPhCS.271a2064B
http://dx.doi.org/10.1088/0004-637X/711/1/424
http://adsabs.harvard.edu/abs/2010ApJ...711..424B
http://adsabs.harvard.edu/abs/2010ApJ...711..424B
http://dx.doi.org/10.1088/0004-637X/731/1/69
http://adsabs.harvard.edu/abs/2011ApJ...731...69B
http://adsabs.harvard.edu/abs/2011ApJ...731...69B
http://dx.doi.org/10.1086/423835
http://adsabs.harvard.edu/abs/2004ApJ...614.1073B
http://adsabs.harvard.edu/abs/2004ApJ...614.1073B
http://dx.doi.org/10.1086/339228
http://adsabs.harvard.edu/abs/2002ApJ...570..865B
http://adsabs.harvard.edu/abs/2002ApJ...570..865B
http://dx.doi.org/10.1086/175410
http://adsabs.harvard.edu/abs/1995ApJ...441..886C
http://adsabs.harvard.edu/abs/1995ApJ...441..886C
http://adsabs.harvard.edu/abs/2010LRSP....7....3C
http://adsabs.harvard.edu/abs/2010LRSP....7....3C
http://dx.doi.org/10.1086/373894
http://adsabs.harvard.edu/abs/2003ApJ...588..630C
http://adsabs.harvard.edu/abs/2003ApJ...588..630C
http://dx.doi.org/10.1088/1367-2630/9/8/301
http://adsabs.harvard.edu/abs/2007NJPh....9..301C
http://adsabs.harvard.edu/abs/2007NJPh....9..301C
http://dx.doi.org/10.1086/527317
http://adsabs.harvard.edu/abs/2008ApJ...676..680F
http://adsabs.harvard.edu/abs/2008ApJ...676..680F
http://adsabs.harvard.edu/abs/2009LRSP....6....4F
http://adsabs.harvard.edu/abs/2009LRSP....6....4F
http://dx.doi.org/10.1088/2041-8205/715/2/L133
http://adsabs.harvard.edu/abs/2010ApJ...715L.133G
http://adsabs.harvard.edu/abs/2010ApJ...715L.133G
http://dx.doi.org/10.1051/0004-6361/201116749
http://adsabs.harvard.edu/abs/2011A&A...533A..40G
http://adsabs.harvard.edu/abs/2011A&A...533A..40G
http://dx.doi.org/10.1088/0004-637X/701/2/1300
http://adsabs.harvard.edu/abs/2009ApJ...701.1300J
http://adsabs.harvard.edu/abs/2009ApJ...701.1300J
http://dx.doi.org/10.1086/520339
http://adsabs.harvard.edu/abs/2007ApJ...663L.113K
http://adsabs.harvard.edu/abs/2007ApJ...663L.113K
http://adsabs.harvard.edu/abs/2005LRSP....2....1M
http://adsabs.harvard.edu/abs/2005LRSP....2....1M
http://dx.doi.org/10.1146/annurev.fluid.010908.165215
http://adsabs.harvard.edu/abs/2009AnRFM..41..317M
http://adsabs.harvard.edu/abs/2009AnRFM..41..317M
http://dx.doi.org/10.1111/j.1365-2966.2008.13411.x
http://adsabs.harvard.edu/abs/2008MNRAS.388...80P
http://adsabs.harvard.edu/abs/2008MNRAS.388...80P
http://dx.doi.org/10.1088/0004-637X/735/1/46
http://adsabs.harvard.edu/abs/2011ApJ...735...46R
http://adsabs.harvard.edu/abs/2011ApJ...735...46R
http://dx.doi.org/10.1086/591144
http://adsabs.harvard.edu/abs/2008ApJ...686..709V
http://adsabs.harvard.edu/abs/2008ApJ...686..709V
http://dx.doi.org/10.1146/annurev.aa.25.090187.000503
http://adsabs.harvard.edu/abs/1987ARA&A..25...83Z
http://adsabs.harvard.edu/abs/1987ARA&A..25...83Z

	1. CONVECTION, ROTATION, AND MAGNETISM
	2. SIMULATION PARAMETERS AND PROPERTIES
	3. BUOYANT MAGNETIC LOOPS
	4. REFLECTIONS
	REFERENCES

