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ABSTRACT

The core–cusp problem remains as one of the unsolved discrepancies between observations and theories predicted
by the standard paradigm of cold dark matter (CDM) cosmology. To solve this problem, we perform N-body
simulations to study the nonlinear response of CDM halos to the variance of the gravitational potential induced
by gas removal from galaxy centers. In this study, we focus on the timescale of the gas ejection, which is strongly
correlated with stellar activities, and demonstrate that it is one of the key factors in determining the dynamical
response of CDM halos. The results of simulations show that the power-law index of the mass–density profile of
the dark matter (DM) halo is correlated with the timescale of the mass loss and it is flatter when the mass loss
occurs over a short time than when it occurs over a long time. However, it is still larger than typical observational
values; in other words, the central cusp remains in the simulations for any mass-loss model. Moreover, for the slow
mass-loss case, the final density profile of the DM halo recovers the universal density profiles predicted by the
CDM cosmology. Therefore, the mass loss driven by stellar feedback may not be an effective mechanism to flatten
the central cusp.
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1. INTRODUCTION

Cold dark matter (CDM) cosmology is the standard paradigm
of structure formation in the universe. However, it has sev-
eral serious unsolved problems. Recent observations of nearby
dwarf galaxies and low surface brightness galaxies have re-
vealed that the density profile of the dark matter (DM) halo
is constant at the center of such galaxies (e.g., Moore 1994;
Burkert 1995; de Blok et al. 2001; Swaters et al. 2003; Gentile
et al. 2004; Spekkens et al. 2005). In contrast, cosmological
N-body simulations based on collisionless CDM have always
predicted a steep power-law mass–density distribution at the
center of CDM halos (e.g., Navarro et al. 1997; Fukushige &
Makino 1997; Moore et al. 1998). This discrepancy is the well-
known core–cusp problem of the CDM scenario. To solve this
problem, so far, numerical simulations and analytical methods
are used to study the dynamical response of DM halos to the
variance of the gravitational potential. Supernova feedback to
the interstellar medium plays a significant role in forming less
massive galaxies because such galaxies have a shallower gravi-
tational potential than giant galaxies. The effects of stellar feed-
back differ substantially from one galaxy to another depending
on the gravitational potential (Mori et al. 1999; MacLow &
Ferrara 1999). In low-mass dwarf galaxies, supernovae blow
gas out from the galaxy centers. This mass loss makes the grav-
itational potential around the center of the DM halos shallower,
and the mass–density distribution has a flat core (Navarro et al.
1996b; Read & Gilmore 2005). These previous works have
always assumed that mass loss from the center of DM halos
occurs instantaneously or within a fixed period (see also Gnedin
& Zhao 2002). However, the timescale of mass loss may also
be a key factor in determining the dynamical response of DM
halos. Furthermore, each dwarf galaxy in the local group has a
unique star formation history (Mateo 1998; Weisz et al. 2011).
De Souza et al. (2011) analytically demonstrated that the en-
ergy gain of particles flattens the central cusp; however, they
assumed that each particle receives an equal amount of energy.

This assumption must be verified by numerical simulations with
sufficient accuracy. Therefore, in this Letter, we run collisionless
N-body simulations that focus on the dependence of the dynam-
ical response of DM halos on the timescale of gravitational
potential variance. In other words, we study how the dynamics
of DM halos depend on star formation activities. We demon-
strate that the timescale of mass loss is one of the important
factors in determining the dynamical response of DM halos.
Finally, we discuss the surprising result: the mass loss of the
baryon is not an effective mechanism for flattening the central
cusp.

The structure of this Letter is as follows. In Section 2, we
describe the numerical simulations. In Section 3, we show the
simulation results. Finally, we discuss the results in Section 4.

2. NUMERICAL MODELS

2.1. The DM Halo Model

The density distribution of a DM halo obtained from N-body
simulations based on CDM cosmology is well fitted by the
following:

ρDM(r) = ρ0R
3
DM

rα(r + RDM)3−α
, (1)

where r is the distance from the center of a DM halo, α is
a power-law index, and ρ0 and RDM are the scale density
and scale length of the DM halo, respectively. The density
distribution changes from ρ ∝ r−α in the center of a DM
halo (r < RDM) to ρ ∝ r−3 on its outskirts (r > RDM).
Here, α = 1.0 corresponds to the Navarro–Frenk–White (NFW)
model (Navarro et al. 1996a; Navarro et al. 1997) and α = 1.5
corresponds to the Fukushige–Makino–Moore (FMM) model
(Fukushige & Makino 1997; Moore et al. 1999). To generate
equilibrium N-body systems, we use the fitting formulation of
the distribution function (DF) proposed by Widrow (2000). In
this case, the DF only depends on energy, and the velocity
dispersion of the system is isotropic.
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Table 1
Summary of Simulation Runs

ID DM Halo N Trel Mass Loss (Tout) Fitted α

UP1 FMM 1,048,576 495 td . . .

UP2 FMM 16,384 7.74 td . . .

UP3 NFW 1,048,576 148 td . . .

UP4 NFW 16,384 2.32 td . . .

ML1 FMM 1,048,576 495 td Instantaneous 0.85
ML2 FMM 1,048,576 495 td 1 td 1.20
ML3 FMM 1,048,576 495 td 10 td 1.44
ML4 FMM 1,048,576 495 td 50 td 1.46
ML5 NFW 1,048,576 148 td Instantaneous 0.42
ML6 NFW 1,048,576 148 td 50 td 0.89

Notes. ML indicates mass-loss runs, and UP indicates unperturbed runs to
examine the stability of the N-body system and the effects of two-body
relaxation. Trel is a two-body relaxation time within 0.2 kpc.

2.2. The Baryon Model

Hernquist model (Hernquist 1990) is frequently used to de-
scribe bulges or elliptical galaxies because its surface brightness
profile matches de Vaucouleurs law (de Vaucouleurs 1948).
Therefore, we adopt the Hernquist potential to describe the
baryon potential around the center of DM halos. The external
potential is given by

Φb(r) = − GMb

r + Rb
, (2)

where G is the gravitational constant, and Mb and Rb are
the baryon mass and scale length of the external potential,
respectively. To generate the initial condition, we relax the
equilibrium N-body system quoted above in the external baryon
potential for ∼30td, where td(r) is the dynamical time defined
by

td(r) =
√

3π

32Gρ̄(< rd)
, (3)

where ρ̄(< r) is the average density of a DM halo within a radius
r = 0.2 kpc throughout this Letter. Then, to represent baryon
ejection from the center of galaxies, we change the baryon mass
Mb = Mb,tot(1 − t/Tout), where Mb,tot and Tout are the total
baryon mass and the timescale of mass loss, respectively. For
the instantaneous mass-loss model, we simply set Mb = 0.

2.3. Description of Runs

In this Letter, we simulate the dynamical response of a DM
halo with the virial mass Mvir = 109 M�, the virial radius
Rvir = 10 kpc, and the scale length RDM = 2 kpc. In this
case, the mean dynamical time within 200 pc is td = 4 Myr
for the FMM model and 10 Myr for the NFW model. The total
baryon mass is Mb,tot = 1.7 × 108 M� and the scale length of
the baryon potential is Rb = 0.04 kpc. Here, we assume that
the total baryon mass included in the dwarf galaxies is initially
17% of the halo mass. This fraction matches the cosmic baryon
fraction fb obtained from Wilkinson Microwave Anisotropy
Probe observations (Spergel et al. 2007; Komatsu et al. 2009).
The adopted parameters for each of our simulations are given
in Table 1. Throughout this Letter, the opening parameter of the
Barnes–Hut tree algorithm (Barnes & Hut 1986) is θ = 0.8 and
the softening parameter is ε = 0.008 kpc.
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Figure 1. Evolution of the density profiles of a DM halo for the instantaneous
mass-loss model (ML1; left panels) and the adiabatic mass-loss model (ML4;
right panels). The top panel (a) shows the density profile of the quasi-equilibrium
state after adding the external potential on the initial FMM model. The other
panels show the density profiles of a DM halo at 15 td (b and f), 30 td (c and g),
50 td (d and h), and 110 td (e and i), respectively. The dashed line represents the
FMM initial condition.

3. SIMULATION RESULTS

In this section, we present the simulation results showing the
evolutionary processes in the instantaneous and quasi-adiabatic
mass-loss models.

3.1. Dynamical Evolution of DM Halos

We show how the density profile of a DM halo evolves after
mass loss for the instantaneous mass-loss case with the FMM
initial condition (ML1) in the left panels in Figure 1. During
the first ∼30 td (see Figure 1(b)), the system expands and the
central cusp is flattened to the core. In this phase, the bulk of
particles in the center of DM halo moves outward, and then
the self-gravity of the DM halo slows the particles. After 30 td,
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Figure 2. Upper left panel shows the density profile of a DM halo for the unperturbed (UP) model (solid lines) with the FMM initial condition (long-dashed line).
The thick-solid line represents N = 1,048,576 (UP1) and the thin-solid line represents N = 16,384 (UP2). The middle left (right) panel shows the quasi-equilibrium
density profile of a DM halo for the FMM (NFW) model with the mass loss. The thick-solid line represents the instantaneous mass-loss model (ML1 and ML5) and
the thin-solid line corresponds Tout = 50 td (ML4 and ML6). The lower left (right) panel shows the variance of the total energy of the system for the FMM model
(NFW model). Thick-solid line corresponds the instantaneous mass-loss model and thin-solid line corresponds Tout = 50 td, where E0 and E are the total energies of
DM halos at the initial and given times, respectively.

the particles lose their radial velocity and fall back into the
center. In Figures 1(c) and (d), these particles assemble at
the center of the halo, and the cusp is regenerated. This cusp
regenerating process occurs from the center outward, and finally,
the system reaches the quasi-equilibrium state (see Figure 1(e)).
We emphasize that the central cusp has been regenerated, but
the power-law index of density at the center α = 0.85 is smaller
than the initial condition α = 1.5. A similar phenomenon
occurs for the instantaneous mass-loss case with the NFW initial
condition (ML5): the density at the center is α = 0.42 for
the initial condition α = 1.0. Therefore, instantaneous mass
loss flattens the central cusp in the density distribution to some
degree.

In the right panels of Figure 1, we show how the density
profile of a DM halo evolves during and after mass loss for
the slow (quasi-adiabatic) mass-loss case with the FMM initial
condition (ML4). Before the mass-loss operation, the DM halo

has a high central density because of the baryon potential; this
density decreases with decreasing baryon mass. Slow mass loss
does not significantly flatten the central cusp in the density
distribution. Moreover, the system always keeps the virial state
for the slow mass-loss process, and the final density profile
of the DM halo recovers the FMM initial condition. A similar
phenomenon occurs for the adiabatic mass-loss case with the
NFW initial condition (ML6).

3.2. Final States of DM Halos

Figure 2 shows the results of simulations for the FMM model
(left panels) and the NFW model (right panels). The upper left
(right) panel shows the density profile of a DM halo for the
unperturbed model with the FMM (NFW) initial condition,
respectively. The thick-solid line corresponds to the high-
resolution run (UP1 and UP3) and the thin-solid line corresponds
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to the low-resolution run (UP2 and UP4). In unperturbed runs
with only a small number of particles, even though no external
potential exists, a cusp-to-core transition caused by two-body
relaxation occurs. Previous studies could not rule out this effect
because they did not use a sufficient number of particles in the
central region. However, two of the unperturbed runs clearly
show that we have a sufficient number of particles to suppress
the effect of two-body relaxation and the system remains stable
at least several 100 dynamical times.

The middle panels in Figure 2 show that the density profile
of a DM halo has reached the quasi-equilibrium state after
mass loss in ML runs. The thick-solid lines represent the
instantaneous mass-loss model (ML1 and ML5) and the thin-
solid line corresponds Tout = 50td (ML4 and ML6). We fit
the quasi-equilibrium density profiles for all of ML runs using
the least-squares method, and we find the following values
for the parameter α. For the FMM model, α is 0.85 for the
instantaneous mass loss (ML1), 1.20 for Tout = td (ML2), 1.44
for Tout = 10 td (ML3), and 1.46 for Tout = 50 td (ML4). In
Table 1, we summarize the resultant α included for the NFW
model. It is clear that mass loss occurs in a short timescale; in
other words, intense stellar activities cause the density profiles
of DM halos to become shallower. In the slow mass-loss
cases (ML3, ML4, and ML6; Tout � 10td), α is approximately
conserved. Therefore, flattening of the central cusp requires
intense stellar activity; however, even for cases ML1 and ML5
that have such intense stellar activity, α is still larger than the
typical observational values of α ∼ 0.2–0.3 (Spekkens et al.
2005).

The lower panels of Figure 2 show the amount of energy
gained from the external baryon potential. While the baryon
potential is added into DM halos, particles in the system acquire
kinetic energy to balance the potential energy; conversely,
during mass loss, particles lose kinetic energy. After mass-
loss operation has finished, the total energy is conserved. The
lower panels of Figure 1 demonstrate that after mass loss in
the instantaneous mass-loss cases (ML1 and ML5; thick-solid
lines), DM halos gain more energy than that gained in the slower
mass-loss cases (ML2 and ML6; thin-solid lines). Therefore,
the shorter the timescale of mass loss, the farther the DM halos
expand and the flatter they become.

4. DISCUSSION

Previous numerical attempts to solve the core–cusp problem
of the CDM scenario (Navarro et al. 1996b; Read & Gilmore
2005) have been limited by two factors: (1) they did not consider
the timescale of mass loss and (2) they could not remove the
effects of the two-body relaxation because they did not use the
sufficient number of particles in the center of the DM halos.
Our current numerical study overcomes these limitations by
considering the timescale of mass loss and including a larger
number of particles in the center of DM halos. We find that the
timescale of mass loss is an important factor affecting DM halo
dynamics.

Our study determines the dynamical response of DM halos to
changes in the gravitational potential induced by stellar activities
that remove the baryons. We especially focus on the timescale
of gravitational variance. We find that the central cusp of the
DM halo is flatter when mass loss occurs over a short time
than when it occurs over a long time; this result is consistent
with the analytical insight of Hills (1980). However, the power-
law index of the central cusp α is still larger than typical
observational values; in other words, the central cusp remains

Figure 3. Distribution function of DM halos on the normalized particle energy.
This energy is normalized by multiplying by the normalization factor A. Shown
are the initial conditions for the FMM model (thick-dashed line; A = −0.70),
the quasi-equilibrium state before the mass-loss operation (thin-dashed line;
A = −0.095), the quasi-equilibrium state for the instantaneous mass-loss
model ML1 (thick-solid line; A = −2.0), and the quasi-adiabatic mass-loss
model ML4 (thin-solid line; A = −1.05).

even for instantaneous mass-loss models. Therefore, mass loss
may not be an effective mechanism to flatten the central cusp,
at least in spherical systems. This suggests that DM halos may
be stable to mass loss.

Figure 3 shows the DF for the FMM initial condition, the
quasi-equilibrium state with the external baryon potential, ML1
and ML4. The shape of the DFs after mass loss is similar to the
initial condition, suggesting that DM halos return to the initial
condition not only in spatial space but also in phase space;
therefore, DM halos are stable to mass loss.

In this study, we find that a temporal cusp-to-core transition
occurs for instantaneous mass loss. After a few dozen dynamical
times, the cusp regenerates from the center. However, this cusp
has a smaller α than the initial conditions, suggesting that the
cusp has been somewhat flattened by mass loss. In addition,
we find that not only the density profile but also the energy
distribution almost returns to the initial condition for adiabatic
mass loss. The physical mechanism of this cusp regeneration
has not been revealed, but it may aid in understanding the
formation of the universal density profiles of CDM halos. Only
in the linear perturbation regime, the Doremus–Feix–Baumann
theorem (Doremus et al. 1971; Binney & Tremaine 2008) states
that collisionless N-body systems with DF f (E), df (E)/dE < 0
are stable to radial perturbation. However, it is open question in
the nonlinear regime. In the series of subsequent studies, we will
elucidate the detailed mechanism of the recovering cusp, and
examine more realistic model including non-spherical analysis
and gas dynamics.
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