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ABSTRACT

We present the first three-dimensional simulations of fingering convection performed at parameter values
approaching those relevant for astrophysics. Our simulations reveal the existence of simple asymptotic scaling laws
for turbulent heat and compositional transport, which can be straightforwardly extrapolated from our numerically
tractable values to the true astrophysical regime. Our investigation also indicates that thermo-compositional
“staircases,” a key consequence of fingering convection in the ocean, cannot form spontaneously in the fingering
regime in stellar interiors. Our proposed empirically determined transport laws thus provide simple prescriptions
for mixing by fingering convection in a variety of astrophysical situations, and should, from here on, be used
preferentially over older and less accurate parameterizations. They also establish that fingering convection does not
provide sufficient extra-mixing to explain observed chemical abundances in red giant branch stars.
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1. INTRODUCTION

Recent years have seen rapidly growing interest in astrophys-
ical applications of fingering convection (often referred to as
“thermohaline convection”), a process by which the unequal
diffusion rates of thermal and compositional fields can drive
a double-diffusive instability and lead to significant turbulent
transport across stably stratified regions. In Earth’s oceans this
process has been well studied as “salt fingering” (see Stern
1960, or a recent review in Kunze 2003). In stellar contexts,
by contrast, its exact form and contribution to vertical mixing
is much less clear. Nevertheless, fingering convection has been
invoked in various scenarios. It is thought to explain the lack
of observed metallicity signatures from the infall of planets
onto their host star (Vauclair 2004; Garaud 2011). It may also
explain the presence of extra-mixing in the radiative zones of
red giant branch (RGB) stars needed to fit abundance observa-
tions (Charbonnel & Zahn 2007; Stancliffe 2010; Denissenkov
2010).

While field, laboratory, and numerical measurements abound
for salt fingering, data are much more scarce for the astrophys-
ical regime. Transport by fingering convection in astrophysics
has until now been modeled through mixing-length theory, com-
monly used parameterizations being those of Ulrich (1972) and
Kippenhahn et al. (1980). In these works, turbulent composi-
tional transport depends sensitively on the finger aspect ratio. As
recently shown by Denissenkov (2010), however, there is a fun-
damental contradiction between the large aspect ratio required
to explain abundance observations of RGB stars using these
prescriptions (Charbonnel & Zahn 2007; Cantiello & Langer
2010), and the near-unit aspect ratio of the “fingers” actually
measured in his own two-dimensional simulations.

Three possibilities emerge to resolve this problem. First, the
Kippenhahn et al. (1980) and Ulrich (1972) parameterizations
may not adequately model transport by fingering convection.
Second, two-dimensional simulations may not correctly capture
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the dynamics of this inherently three-dimensional system.
Finally, thermo-compositional layers may form in the objects
studied, in which case transport could be strongly enhanced
above the level of homogeneous fingering convection. Indeed,
“staircases” of convectively mixed layers separated by thin fin-
gering interfaces are ubiquitous in the ocean. In their presence,
vertical mixing increases by as much as an order of magnitude
above the already enhanced mixing due to fingering (Schmitt
et al. 2005; Veronis 2007). Whether such staircases form in
astrophysics has never been established.

In this Letter, we consider all three possibilities and present
the first three-dimensional simulations to address directly the
question of thermal and compositional transport by fingering
convection in astrophysics. Using a high-performance algo-
rithm designed to study fingering convection, we are able to
run simulations at moderately low values of the Prandtl num-
ber (Pr = ν/κT ) and diffusivity ratio (τ = κμ/κT ), where ν is
viscosity, and κT and κμ are the thermal and compositional diffu-
sivities, respectively. We find, in Section 3.1, asymptotic scaling
laws for transport which are applicable to the stellar parameter
regime (Pr � 1, τ � 1). These provide a parameter-free, em-
pirically motivated prescription for mixing by homogeneous
fingering convection. The compositional turbulent diffusivity
derived is, as expected (Stern et al. 2001), a few times larger
than that obtained by Denissenkov (2010) for the same param-
eters, but remains too small to account for RGB abundance
observations.

Since the presence of thermo-compositional staircases is
known to increase transport in the ocean, we next address
the question of whether such staircases are likely to form
spontaneously in the astrophysical context in Section 3.2.
Applying a recently validated theory for staircase formation
(Radko 2003; Stellmach et al. 2010), we find that they are
in fact not expected to appear in this case. We conclude in
Section 4 that our small-scale flux laws can reliably be used
to estimate heat and compositional transport for a variety of
astrophysical fingering systems and concur with Denissenkov’s
view that fingering convection is not sufficient to explain the
required extra-mixing in RGB stars.
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2. MODEL DESCRIPTION AND NUMERICAL
ALGORITHM

The dynamics of double-diffusive systems depend on the
fluid properties (ν, κT , κμ), as well as its local stratification,
measured by ∇ − ∇ad (where ∇ = d ln T/d ln p and ∇ad =
(d ln T/d ln p)ad is the adiabatic gradient) and ∇μ (where
∇μ = d ln μ/d ln p). Here, T is temperature, p is pressure,
and μ is the mean molecular weight. The fingering instability
occurs in thermally stably stratified systems (∇ − ∇ad < 0)
destabilized by an adverse compositional gradient (∇μ < 0). In
most regimes of interest the main governing parameter is the
density ratio, defined in astrophysics as (Ulrich 1972)

R∗
0 = ∇ − ∇ad

∇μ

. (1)

This linear instability is well understood, thanks to early work
in the oceanic context (Stern 1960; Baines & Gill 1969), later
extended in astrophysics by Ulrich (1972) and Schmitt (1983). A
system is Ledoux-unstable when R∗

0 < 1 and fingering-unstable
when R∗

0 ∈ [1, 1/τ ]. Unfortunately, as discussed in Section 1,
the nonlinear saturation of this instability, or in other words its
turbulent properties, remains poorly understood.

We approach the problem from a numerical point of view
and model a fingering-unstable region using a local Cartesian
frame (x, y, z) with gravity g = −gez. We run our numeri-
cal experiments using a high-performance spectral code, which
was recently used to model three-dimensional fingering con-
vection at oceanic parameters (Traxler et al. 2010), as well
as thermohaline staircase formation (Stellmach et al. 2010).
As a consequence of its original purpose, our code uses the
Boussinesq approximation, which relates the density perturba-
tions ρ̃ to the temperature and compositional perturbations T̃
and μ̃ via

ρ̃

ρ0
= −αT̃ + βμ̃, (2)

where ρ0 is a reference density, α = −ρ−1
0 ∂ρ/∂T , and β =

ρ−1
0 ∂ρ/∂μ. Fingering convection is driven by constant large-

scale temperature and compositional gradients T0z > 0 and
μ0z > 0, with a stable density gradient ρ0z = −ρ0αT0z +
ρ0βμ0z < 0. These approximations, which greatly simplify the
governing equations, are nevertheless justified since fingers are
typically much smaller than a pressure or density scale height
(see below), and velocities are small compared with the sound
speed. As first shown by Ulrich (1972), results in the Boussinesq
case can straightforwardly be extended to the astrophysical case
by replacing the Boussinesq density ratio R0 = αT0z/βμ0z with
the true density ratio R∗

0 defined in Equation (1).
We now describe the governing equations in more detail. We

express the velocity, temperature, and composition fields as the
linear background stratification plus perturbations,

T (x, y, z, t) = T0(z) + T̃ (x, y, z, t), (3)

μ(x, y, z, t) = μ0(z) + μ̃(x, y, z, t), (4)

u(x, y, z, t) = ũ(x, y, z, t), (5)

where T0(z) = T0zz and μ0(z) = μ0zz. We non-dimensionalize
the system noting that an appropriate length scale is pro-
vided by the anticipated finger width (Stern 1960), [l] =

d = (κT ν/gαT0z)1/4. At typical RGB parameters (Denissenkov
2010), d ∼ 40 m. With structures thus many orders of mag-
nitude smaller than the density scale height, the Boussinesq
approximation discussed by Spiegel & Veronis (1960) provides
excellent accuracy.

We scale time using d2/κT , temperature with T0zd, and
composition with (α/β)T0zd. The non-dimensional governing
equations are

1

Pr

(
∂ũ
∂t

+ ũ · ∇ũ
)

= − ∇p̃ + (T̃ − μ̃)ez + ∇2ũ, (6)

∇ · ũ = 0, (7)

∂T̃

∂t
+ w̃ + ũ · ∇T̃ = ∇2T̃ , (8)

∂μ̃

∂t
+

1

R0
w̃ + ũ · ∇μ̃ = τ∇2μ̃. (9)

Note that the Rayleigh number Ra then depends only on the
computational domain height Lz:

Ra = αgT0zL
4
z

κT ν
=

(
Lz

d

)4

. (10)

We solve Equations (6–9) in a triply periodic box of size
(Lx,Ly, Lz), so that

T̃ (x, y, z, t) = T̃ (x + Lx, y, z, t) = T̃ (x, y + Ly, z, t)

= T̃ (x, y, z + Lz, t), (11)

and similarly for p̃, μ̃, and ũ.4

3. RESULTS

3.1. Small-scale Fluxes

Six sets of simulations were conducted at decreasing values
of Pr and τ , for a range of density ratios listed in Table 1 span-
ning each instability range R0 ∈ [1, 1/τ ]. The computational
domains were chosen to allow enough fingers for accurate statis-
tics (for details on the protocol for box sizes, see the Appendix
of Traxler et al. 2010). Near R0 = 1, where the system dynamics
are most turbulent, one additional simulation with doubled ver-
tical resolution (192 or 384 points vertically) was run for each
set. The measured fluxes in the more fully resolved runs dif-
fered by no more than a few percent from the lower-resolution
runs, confirming that the spatial resolution used was sufficient
to extract accurate fluxes. Sample snapshots of two simulations
are shown in Figure 1. As an important note, we also find that,
except when R0 → 1/τ , the finger aspect ratio is close to unity
(Denissenkov 2010).

We define non-dimensional heat and compositional fluxes
through the Nusselt numbers NuT and Nuμ, ratios of the total
flux to the diffusive flux of the field considered. Equivalently,
NuT ,μ − 1 represents the ratio of the turbulent diffusivity to the
microscopic diffusivity. We measure NuT and Nuμ from each
simulation once the system has settled into a statistically steady
state. The results are summarized in Figure 2.

4 Because the length scale of the convective motions is set by the diffusive
scales in the fingering problem, it does not suffer from the known pathology of
triply periodic thermal convection, i.e., the homogeneous Rayleigh–Bénard
problem (Calzavarini et al. 2006).
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Figure 1. Compositional perturbations, in units of the compositional contrast
across the height of the domain, of two simulations at Pr = τ = 1/10, at
density ratio R0 = 1.45 (left) and R0 = 9.1 (right). Fingering convection is
more laminar, and the fingers are taller, as R0 → 1/τ (as the background
stratification becomes more stable). However, as Pr and τ decrease, secondary
instabilities enforce shorter fingers even at high density ratio.

Table 1
Summary of Governing Parameters for all Simulation Sets

Set Pr τ R0

1 1/3 1/3 1.025, 1.075, 1.1, 1.1a, 1.1b,

1.125, 1.2, 1.3, 1.5, 2, 2.4,
2.8, 2.9a,c

2 1/3 1/10 1.5, 1.5b, 4, 7, 9.5a,c

3 1/10 1/3 1.1, 1.1a, 1.7, 2.3, 2.8a,c

2.9a,c

4 1/10 1/10 1.1, 1.45, 1.45a, 2, 2.8, 3,
3.3, 5, 7, 9.1a,c

5 1/10 1/30 11d,e, 11d,f , 20d,e

6 1/30 1/10 4d,e, 7d,e

Notes. Relevant parameters include values of Pr and τ , of the density ratio
R0 ∈ [1, 1/τ ], domain size, and resolution. Unless otherwise specified (see
footnotes), simulations were run at domain sizes of 67d × 67d × 107.2d and
resolution of 963 grid points.
a resolution: 96 × 96 × 192.
b resolution: 192 × 192 × 384.
c domain size: 83.75d × 83.75d × 268d.
d domain size: 67d × 67d × 67d.
e resolution: 192 × 192 × 192.
f resolution: 384 × 384 × 384.

For ease of comparison between different simulation sets, we
define the rescaled density ratio as r = (R0 − 1)/(τ−1 − 1) so
that the instability range is r ∈ [0, 1] in all cases. We find that
all simulation sets collapse onto a single universal profile for
the turbulent fluxes NuT (r) − 1 and Nuμ(r) − 1 as Pr and τ
decrease, profiles which can be expressed as

NuT (r) − 1 = τ 3/2
√

Prf (r), (12)

Nuμ(r) − 1 =
√

Pr

τ
g(r), (13)

where the functions f (r) and g(r) are adequately fitted to the
data with a Levenberg–Marquardt algorithm using

g(r), f (r) ∼ ae−br (1 − r)c. (14)

This functional form was chosen as the simplest that captures
both the near-exponential decay of fluxes as r increases from the
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Figure 2. Turbulent heat and compositional fluxes as a function of rescaled
density ratio r. Dividing the turbulent heat flux by τ 3/2Pr1/2 and compositional
flux by

√
Pr/τ reveals the universal scaling laws (Equations (12) and (13)). Also

shown are f (r) and g(r) fitted to the data (solid lines).

point of marginal convective instability, and the sharp drop off of
transport as r approaches 1. Additionally, the non-dimensional
turbulent flux ratio γ = 〈w̃T̃ 〉/〈w̃μ̃〉 approaches unity as
r → 1 (Radko 2003), and so turbulent transport of heat and
composition must drop to zero at the same rate in this limit. To
ensure that this condition is met, we first fit c in g(r), then use
that coefficient for f (r).

For f (r) the data suggest that a = 264 ± 1, b = 4.7 ± 0.2,
c = 1.1 ± 0.1, and for g(r) we find a = 101 ± 1, b =
3.6 ± 0.3, c = 1.1 ± 0.1. Figure 2 shows these fits with the
rescaled Nusselt numbers. The physical interpretation of these
scalings with τ and Pr is the following: for ν, κμ � κT ,
the instability is driven by the compositional field and the
dependence of compositional transport on κT must drop out.
The turbulent compositional diffusivity Dμ = (Nuμ − 1)κμ is
then proportional to the geometric mean of ν and κμ. The scaling
for the temperature Nusselt number follows by assuming γ is
always O(1) (Radko 2003; Rosenblum et al. 2010).

Our simulations were conducted at Pr, τ ∼ O(10−2), while
the true astrophysical parameters are O(10−6). However, the
clear asymptotic progression of our results provides the best
empirical estimate to date of fingering fluxes at more extreme
parameters. The simplicity of the system considered (in par-
ticular, the lack of boundary layers) also suggests that these
laws can reliably be extrapolated to the astrophysical regime
(while Pr is of order τ ). From this we draw two critical obser-
vations. As found by Denissenkov (2010), the contribution of
fingering convection to heat transport at stellar parameter values
(Pr, τ ∼ 10−6) is negligible. It therefore does not affect the ther-
mal structure of the object in any way. Compositional transport,
on the other hand, is significantly enhanced above molecular
diffusion, by about two orders of magnitude depending on the
ratio Pr/τ = ν/κμ.

We now compare our flux laws with the parameterization of
Ulrich (1972) and Kippenhahn et al. (1980) as summarized in
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Figure 3. Comparison between our empirically determined compositional
turbulent diffusivity and the parameterizations of Kippenhahn et al. (1980)
and Ulrich (1972; where the coefficient Cp serves as a free parameter). Since we
find L/W ∼ 1, Cp ∼ O(10) for both prescriptions, and they overestimate Dμ

as R0 → 1 and R0 → 1/τ . Our results show that turbulent mixing by fingering
convection is not sufficient to explain observations, for which Cp ∼ 1000 is
required (see the text for detail). The compositional diffusivity is κμ = 2 × 102

as in Denissenkov (2010).

Charbonnel & Zahn (2007). Both have Nuμ − 1 = Cp/τR∗
0 ,

with model constant Cp = 12 for Kippenhahn et al. (1980) and
Cp = 8π2α2/3 for Ulrich (1972), where α = L/W is the aspect
ratio of the fingers (length divided by width). Figure 3 compares
Dμ as a function of density ratio, at the fluid parameters used by
Denissenkov (2010), Pr = 4 × 10−6 and τ = 2 × 10−6. Given
that the numerically determined finger aspect ratio is close to one
for all simulations as τ � 1, Pr � 1, both prescriptions vastly
overestimate mixing near R∗

0 = 1 (where the system is closest
to Ledoux instability) and R∗

0 = 1/τ , close to linear stability.
Crucially, our results show that the diffusivity obtained is not
sufficient to explain RGB abundance observations for which
a value of Cp ≈ 1000 is needed (Charbonnel & Zahn 2007;
Cantiello & Langer 2010; Denissenkov 2010).

3.2. Layer Formation

The small-scale flux laws presented above are accurate mea-
surements of transport by homogeneous fingering convection.
However, they may not appropriately describe transport in the
presence of the kind of large-scale thermo-compositional stair-
cases which are known to form in oceanic thermohaline convec-
tion (e.g., Schmitt et al. 2005). The origin of such staircases has
recently been discovered by Radko (2003), who demonstrated
the existence of a positive feedback mechanism that can drive
the growth of horizontally invariant perturbations in the tem-
perature and salinity fields; large-scale variations of the density
ratio lead to convergences and divergences of fingering fluxes
that reinforce the original perturbation, producing a growing
disturbance that ultimately overturns into regular “steps.” This
mechanism relies fundamentally on the variation of the flux ra-
tio γ = FT /FS (where FT is the turbulent heat flux and FS is the
turbulent salt flux) with density ratio and was therefore called the
γ -instability. The γ -instability mechanism accurately predicts
the growth rate of large-scale perturbations, and subsequent
overturning into layers, in both two-dimensional simulations
(Radko 2003) and three-dimensional simulations of staircase
formation (Traxler et al. 2010; Stellmach et al. 2010). The in-
stability requires that γ decreases as R0 increases, a condition
which must be experimentally determined from the fluxes for
each set of fluid parameters Pr and τ .

In Radko’s original formulation for oceanic staircases, the
systems of interest were dominated by turbulent fluxes. Diffu-
sive contributions to the total fluxes were neglected for con-
venience and simplicity. However, as shown in Section 3.1,
turbulent heat transport is negligible in the astrophysical case,
so the γ -instability theory is re-derived here including all dif-
fusive terms for accuracy and completeness. We begin with the
equations of Section 2 and average them over many fingers:

1

Pr

(
∂u
∂t

+ u · ∇u
)

= − ∇p + (T − μ)ez + ∇2u − 1

Pr
∇ · R,

(15)

∂T

∂t
+ w + u · ∇T = ∇2T − ∇ · FT , (16)

∂μ

∂t
+

1

R0
w + u · ∇μ = τ∇2μ − ∇ · Fμ, (17)

where u, T, and μ now represent averaged large-scale fields.
On the right-hand sides appear the usual Reynolds stress term,

Rij = ũi ũj , and the turbulent fluxes, FT = ũT̃ , Fμ = ũμ̃.
The γ -instability involves only the temperature and compo-

sitional fields, so we consider only zero-velocity perturbations
and discard the momentum equation. We then define the total
fluxes as well as their ratio:

F tot
T = FT − (1 + ∂T /∂z), (18)

F tot
μ = Fμ − τ (1/R0 + ∂μ/∂z), (19)

γ tot = F tot
T

F tot
μ

, (20)

so that the thermal and compositional Nusselt numbers are

NuT = F tot
T

−(1 + ∂T /∂z)
Nuμ = F tot

μ

−τ
(
R−1

0 + ∂μ/∂z
) .

The final assumption is that NuT , Nuμ, and γ tot depend only
on the local value of the density ratio Rρ . Note that Rρ = R0
and may vary with z. We now linearize Equations (16) and (17)
around a state of homogeneous turbulent convection in which
T = 0 + T ′, μ = 0 + μ′, and Rρ = R0 + R′. For example,
linearizing the density ratio Rρ , we have

Rρ = αT0z(1 + ∂T ′/∂z)

βμ0z

[
1 +

(
αT0z

βμ0z

)
∂μ′/∂z

] ,

≈ R0(1 + ∂T ′/∂z − R0∂μ′/∂z). (21)

The temperature equation yields

∂T ′

∂t
= − ∂F tot

T

∂z
,

= ∂NuT

∂z
+ NuT

∂2T ′

∂z2
,

= ∂NuT

∂Rρ

∣∣∣∣
R0

∂Rρ

∂z
+ NuT (R0)

∂2T ′

∂z2
,

= ∂NuT

∂Rρ

∣∣∣∣
R0

R0

(
∂2T ′

∂z2
− R0

∂2μ′

∂z2

)
+ NuT (R0)

∂2T ′

∂z2
,

(22)
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Figure 4. Total flux ratio γ tot = F tot
T /F tot

μ for various systems. As the
density stratification becomes more stable (r → 1), the fluxes of heat and
composition are dominated by diffusive contributions and their ratio approaches
the limiting value R0/τ . The flux ratio increases monotonically with r,
indicating that staircases will not form spontaneously in this parameter regime
(Pr � 1, τ � 1).

and similarly for Equation (17). Assuming normal modes of
the form T ′, μ′ ∼ eikz+λt , Equations (22) and the equivalent
linearization of Equation (17) combine into the quadratic

λ2+λk2

[
Nu0(1 − A1R0) + A2

(
1 − R0

γ tot
0

)]
−k4A1Nu2

0R0 = 0,

(23)
where we use the following notation for simplicity:

A1 = R0
d(1/γ tot)

dRρ

∣∣∣
R0

, A2 = R0
dNuT

dRρ

∣∣∣
R0

,

Nu0 = NuT (R0), γ tot
0 = γ tot(R0).

Note that this is identical to the quadratic of Radko (2003)
simply replacing the turbulent flux ratio γ by the total flux
ratio γ tot.

As discussed by Radko (2003), a sufficient condition for the
instability is that γ tot is a decreasing function of density ratio.
Indeed, when this is the case, the coefficient A1 is positive,
and the Equation (23) has two real roots, one positive and one
negative. In order to determine whether the γ -instability occurs
and therefore whether staircases may spontaneously form at low
Pr, low τ , we simply need to calculate γ tot from our previous
measurements. The results are shown in Figure 4. We find that
the flux ratio always increases with density ratio. Crucially, this
suggests that thermo-compositional layers are not expected to
form spontaneously in astrophysical fingering convection. In the
absence of such “staircases,” the fluxes are accurately supplied
by our flux laws (Equations (12) and (13)).

4. CONCLUSION

Our results can be summarized in a few key points. Using
high-performance three-dimensional numerical simulations we

find that turbulent compositional transport by fingering convec-
tion follows the simple law:

Dμ = κμ(Nuμ − 1) = 101
√

κμνe−3.6r (1 − r)1.1, (24)

where r = (R∗
0 − 1)/(τ−1 − 1). Meanwhile, the turbulent heat

flux is negligibly small at stellar parameters (see Denissenkov
2010). We also find that large-scale thermo-compositional stair-
cases are not expected to form spontaneously for Pr, τ � 1 in
fingering convection, so that the turbulent diffusivity proposed
above may and should be used as given. It is interesting to
note that by contrast, staircases do form in the opposite double-
diffusive regime (semi-convection) (see Rosenblum et al.
2010).

Applying these findings to the problem of RGB stars, we
concur with Denissenkov’s conclusion that mixing by finger-
ing convection alone cannot explain the observed RGB abun-
dances, and that additional mechanisms should be investigated
instead (e.g., gyroscopic pumping; see Garaud & Bodenheimer
2010). A second example of application to the planetary pol-
lution problem is presented in a companion paper (Garaud
2011).

A.T. and P.G. are supported by the National Science Foun-
dation, NSF-0933759. S.S. was supported by grants from
the NASA Solar and Heliospheric Program (NNG05GG69G,
NNG06GD44G, NNX07A2749).

Figure 1 was rendered using VAPOR (Clyne et al. 2007; Clyne
& Rast 2005), a product of the National Center for Atmospheric
Research.
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