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ABSTRACT

In this Letter, we propose a new and model-independent cosmological test for the distance–duality (DD) relation, η =
DL(z)(1 + z)−2/DA(z) = 1, where DL and DA are, respectively, the luminosity and angular diameter distances. For
DL we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas DA distances
are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining
Sunyaev–Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully
chosen to coincide with the ones of the associated galaxy cluster sample (Δz < 0.005), thereby allowing a direct test
of the DD relation. Since for very low redshifts, DA(z) � DL(z), we have tested the DD relation by assuming that η
is a function of the redshift parameterized by two different expressions: η(z) = 1 + η0z and η(z) = 1 + η0z/(1 + z),
where η0 is a constant parameter quantifying a possible departure from the strict validity of the reciprocity
relation (η0 = 0). In the best scenario (linear parameterization), we obtain η0 = −0.28+0.44

−0.44 (2σ , statistical +
systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible
with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is η0 =
−0.42+0.34

−0.34 (3σ , statistical + systematic errors), which is clearly incompatible with the duality–distance relation.
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1. INTRODUCTION

Etherington’s reciprocity relation (Etherington 1933) is of
fundamental importance in cosmology. Its most useful version
in the astronomical context, sometimes referred to as the
distance–duality (DD) relation, relates the luminosity distance
DL with the angular diameter distance DA by means of the
following expression:

DL

DA

(1 + z)−2 = 1. (1)

This equation is completely general, valid for all cosmological
models based on the Riemannian geometry, being dependent
neither on Einstein field equations nor on the nature of the
matter-energy content. It only requires that source and observer
be connected by null geodesics in a Riemannian spacetime and
that the number of photons be conserved. Therefore, it is valid
for spatially homogeneous and isotropic (anisotropic) cosmolo-
gies, as well as for inhomogeneous cosmological models (Ellis
2007).

The DD relation plays an essential role in modern cosmol-
ogy, ranging from gravitational-lensing studies (Schneider et al.
1999) to analyses from galaxy cluster observations (Cunha et al.
2007; Mantz et al. 2010), as well as the plethora of cosmic conse-
quences from primary and secondary temperature anisotropies
of the cosmic microwave blackbody radiation (CMBR) observa-
tions (Komatsu et al. 2010). Even the temperature shift equation
To = Te/(1 + z), where To is the observed temperature and Te
is the emitted temperature, a key result for analyzing CMBR
observations and the optical theorem that surface brightness of
an extended source does not depend on the angular diameter dis-
tance (ADD) of the observer from the source (an important result
for understanding lensing brightness) are both consequences of
Etherington’s reciprocity relation (Ellis 1971, 2007).

The Etherington law, as it is also sometimes called, has so far
been taken for granted by virtually all analyses of cosmological
observations. Despite this, the DD relation is in principle testable
by means of astronomical observations. If one is able to find
cosmological sources whose intrinsic luminosities are known
(standard candles) as well as their intrinsic sizes (standard
rulers), one can determine both DL and DA, and after measuring
the common redshifts, to test directly Etherington’s result. Note
that ideally both quantities must be measured in a way that
does not utilize any relationship coming from a cosmological
model, that is, they must be determined by means of intrinsic
astrophysically measured quantities.

The method described above for testing the reciprocity law
is very difficult to carry out in practice due to limitations in
our current understanding of galaxy evolution and, hence, one
must still rely on less-than-ideal methods for seeking observa-
tional falsification of the reciprocity law. These less-than-ideal
methods usually assume a cosmological model suggested by a
set of observations, apply this model in the context of some
astrophysical effect, and attempt to see if the reciprocity rela-
tion remains valid. In this way, Uzan et al. (2004) showed that
observations from Sunyaev–Zeldovich effect (SZE) and X-ray
surface brightness from galaxy clusters offer a test for the DD
relation. It was argued that the SZE+X-ray technique for mea-
suring the ADDs (Sunyaev & Zel’dovich 1972; Cavaliere &
Fusco-Fermiano 1978) is strongly dependent on the validity of
this relation. When the relation does not hold, the ADD de-
termined from observations is Dcluster

A (z) = DA(z)η2 (actually,
multiplied by η−2 in their notation). Such a quantity reduces
to the ADD only when the reciprocity relation is strictly valid,
i.e., when η = 1. They considered 18 ADD galaxy clusters
from the Reese et al. (2002) sample for which a spherically
symmetric cluster geometry has been assumed. Their analy-
sis, which is carried out in a ΛCDM model (Spergel et al.
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2003), shows that no violation of the DD is only marginally
consistent.

Later on, De Bernardis et al. (2006) also searched for de-
viations from the DD relation by using the ADD from galaxy
clusters provided by the sample of Bonamente et al. (2006).
They obtained a non-violation of the DD in the framework of
the cosmic concordance ΛCDM model. Recently, Avgoustidis
et al. (2010) used the distance relation, dL = dA(1 + z)2+ε ,
in a flat ΛCDM model for constraining the cosmic opacity
by combining recent Type Ia supernova (SN Ia) data compi-
lation (Kowalski et al. 2008) with the latest measurements of
the Hubble expansion at redshifts on the range 0 < z < 2
(Stern et al. 2010). They found ε = −0.04+0.08

−0.07 (2σ ). How-
ever, what was really being tested in the quoted works was
the consistency between the assumed cosmological model
and some results provided by a chosen set of astrophysical
phenomena.

Following another route, Holanda et al. (2010) discussed the
consistency between the strict validity of the DD relation and
the assumptions about the geometry, elliptical, and spherical β
models, which is used to describe the galaxy clusters. They
used the function η(z) parameterized in two distinct forms,
η = 1 + η0z and η = 1 + η0z/(1 + z), thereby recovering
the equality between distances only for very low redshifts, in
order to test possible deviations. By comparing the De Filippis
et al. (2005, elliptical β model) and Bonamente et al. (2006,
spherical β model) samples with theoretical DTh

A obtained
from ΛCDM (Komatsu et al. 2010), they showed that the
elliptical geometry is more consistent (η0 = 0 in 1σ ) with
no violation of the DD relation in the context of ΛCDM
(WMAP7).

The possibility of testing new physics based on the validity
of DD relation was first discussed by Basset & Kunz (2004).
They used current SNe Ia data as measurements of DL and
estimated DA from FRIIb radio galaxies (Daly & Djorgovski
2003) and ultra compact radio sources (Gurvitz 1994, 1999;
Lima & Alcaniz 2000, 2002; Santos & Lima 2008). A moderate
violation (2σ ) caused by the brightening excess of SNe Ia
at z > 0.5 was found. In the same vein, De Bernardis
et al. (2006) also compared the ADD from galaxy clusters
with luminosity distance data from supernovae to obtain a
model-independent test. In order to compare the data sets they
considered the weighted average of the data in seven bins and
found that η = 1 is consistent in the 68% confidence level
(1σ ). However, one needs to be careful when using the SZE+
X-ray technique for measuring ADDs to test the DD relation
because such a technique is also dependent on its validity. In
fact, when the relation does not hold, the ADD determined
from observations is in general Dcluster

A (z) = DA(z)η2, which
reduces to DA only if η = 1. So, their work did not test
the DD relation, at least not in a consistent way. In addition,
both authors binned their data, and, as such, their results
may have been influenced by the particular choice of redshift
binning.

In this context, the aim of this Letter is to propose a consistent
cosmological-model-independent test for Equation (1) by using
two sub-samples of SNe Ia chosen from Constitution data
(Hicken et al. 2009) and two ADD samples from galaxy clusters
obtained through SZE effect and X-ray measurements with
different assumptions concerning the geometry used to describe
the clusters: the elliptical β model and the spherical β model.
Following Holanda et al. (2010), our analysis here will be
based on two parametric representations for a possible redshift

dependence of the DD expression, namely,

DL

DA

(1 + z)−2 = η(z), (2)

where
(I) η(z) = 1 + η0z,

(II) η(z) = 1 + η0z/(1 + z).

For a given pair of data set (SNe Ia, galaxy clusters), one should
expect a likelihood of η0 peaked at η0 = 0, in order to satisfy
the DD relation. It is also worth noticing that in our approach
the data do not need to be binned as assumed in some analyses
involving the DD relation. As we shall see, for the Bonamente
et al. (2006) sample, where a spherical geometry was assumed,
our results show a strong violation (>3σ ) DD relation when the
SNe Ia and galaxy clusters data are confronted. However, when
the elliptical geometry is assumed (De Filippis et al. 2005),
the results are marginally compatible within 2σ with the DD
relation.

2. SAMPLES

In order to constrain the possible values of η0 let us now
consider two samples of ADD from galaxy clusters obtained by
combining their SZE and X-ray surface brightness observations.
The first one is formed by 25 galaxy clusters from the De Filippis
et al. (2005) sample. Since Chandra and XMM observations
of clusters in the past few years have shown that in general
clusters exhibit elliptical surface brightness maps, De Filippis
et al. (2005) studied and corrected, using an isothermal elliptical
β model to describe the clusters, the DA measurements of two
samples for which combined X-ray and SZE analysis has already
been reported using an isothermal spherical β model. One of
the samples, compiled by Reese et al. (2002), is a selection
of 18 galaxy clusters distributed over the redshift interval
0.14 < z < 0.8. The other one, the sample of Mason et al.
(2001), has seven clusters from the X-ray-limited flux sample
of Ebeling et al. (1996). The second is defined by the 38 ADD
galaxy clusters from the Bonamente et al. (2006) sample, where
the cluster plasma and dark matter distributions were analyzed
assuming the hydrostatic equilibrium model and spherical
symmetry, thereby accounting for radial variations in density,
temperature, and abundance. This sample consists of clusters
that have both X-ray data from the Chandra Observatory and
SZE data from the BIMA/OVRO SZE imaging project, which
uses the Berkeley–Illinois–Maryland Association (BIMA) and
Owens Valley radio observatory (OVRO) interferometers to
image the SZE. For the luminosity distances, we choose two
sub-samples of SNe Ia from Constitution SNe Ia data set whose
redshifts coincide with the ones appearing in the galaxy cluster
samples. In Figure 1(a), we plot DA multiplied by (1 + z)2 from
the galaxy cluster’s sample compiled by De Filippis et al. (2005)
(the error bars contain statistical and systematic contributions)
and DL from our first SNe Ia sub-sample. In Figure 1(b), we
plot the subtraction of redshift between clusters and SNe Ia.
We see that the biggest difference is Δz ≈ 0.01 for 3 clusters
(open squares) while for the remaining 22 clusters we have
Δz < 0.005. In order to avoid the corresponding bias, the three
clusters will be removed from all the analyses presented here so
that Δz < 0.005 for all pairs.

Similarly, in Figure 2(a) we plot DA multiplied by (1 + z)2,
but now for the Bonamente et al. (2006) sample (error bars also
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(a) (b)

Figure 1. (a) Galaxy clusters and SNe Ia data. The open (blue) and filled (red) circles with the associated error bars stand, respectively, for the De Filippis et al. (2005)
and SNe Ia samples. (b) The redshift subtraction for the same pair of cluster-SNe Ia samples. The open squares represent the pairs of points for which Δz ≈ 0.01.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 2. (a) Galaxy clusters and SNe Ia data. The open (blue) and filled (red) circles with the associated error bars stand, respectively, for the Bonamente et al. (2006)
and SNe Ia samples. (b) The redshift subtraction for the same pair of cluster-SNe Ia samples. As in Figure 1(b), the open squares represent the pairs of points with the
biggest difference in redshifts (Δz ≈ 0.01).

(A color version of this figure is available in the online journal.)

include statistical and systematic contributions) and DL from
our second SNe Ia sub-sample. In Figure 2(b), we display the
redshift subtraction between clusters and SNe Ia. Again, we
see that for 35 clusters Δz < 0.005. The biggest difference is
Δz ≈ 0.01 also for the three clusters, and, for consistency, they
will also be removed from our analysis (the next section).

3. ANALYSIS AND RESULTS

Let us now estimate the η0 parameter for each sample in both
parameterizations for η(z) = DL(z)(1 + z)−2/DA(z), namely,
η(z) = 1 + η0z and η(z) = 1 + η0z/(1 + z). It should be stressed
that in general the SZE + X-ray surface brightness observations
technique does not give DA(z), but Dcluster

A (z) = DA(z)η2. So, if
one wishes to test Equation (1) with SZE + X-ray observations
from galaxy clusters, the angular diameter distance DA(z) must
be replaced by Dcluster

A (z)η−2 in Equation (2). In this way, we
have access to η(z) = Dcluster

A (z)(1 + z)2/DL(z).
Following standard lines, the likelihood estimator is deter-

mined by χ2 statistics

χ2 =
∑

z

[η(z) − ηobs(z)]2

σ 2
ηobs

, (3)

where ηobs(z) = (1 + z)2Dcluster
A (z)/DL(z) and σ 2

ηobs
are the

errors associated with the observational techniques. For the
galaxy cluster samples the common statistical contributions
are SZE point sources ±8%, X-ray background ±2%, Galactic
NH � ±1%, ±15% for cluster asphericity, ±8% kinetic SZ, and
for CMB anisotropy � ±2%. Estimates for systematic effects
are as follows: SZ calibration ±8%, X-ray flux calibration ±5%,
radio halos +3%, and X-ray temperature calibration ±7.5%.
We stress that typical statistical errors amount for nearly 20%
in agreement with other works (Mason et al. 2001; Reese
et al. 2002, Reese 2004), while for systematics we also find
typical errors around + 12.4% and − 12% (see also Table 3
in Bonamente et al. 2006). In the present analysis, we have
combined the statistical and systematic errors in quadrature for
the ADD from galaxy clusters (D’Agostini 2004).

On the other hand, after nearly 500 SNe Ia discovered, the
constraints on the cosmic parameters from luminosity distance
are now limited by systematics rather than by statistical errors. In
principle, there are two main sources of systematic uncertainty
in supernovae (SNe) cosmology which are closely related
to photometry and possible corrections for light-curve shape
(Hicken et al. 2009). However, at the moment the method to
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(a) (b)

Figure 3. (a) Likelihood distribution functions for the De Filippis et al. sample for both parameterizations. (b) Likelihood distribution functions for the Bonamente
et al. sample. Note that the elliptical model is compatible with the Etherington theorem at 2σ while the spherical model is not compatible.

(A color version of this figure is available in the online journal.)

estimate the overall systematic effects for this kind of standard
candle is not very neat (Komatsu et al. 2010), and, therefore, we
will neglect them in the following analysis. The basic reason is
that systematic effects from galaxy clusters seem to be larger
than the ones of SNe observations, but their inclusion does not
appreciably affect the results concerning the validity of the DD
relation.

In Figures 3(a) and (b), we plot the likelihood distribution
function for each sample. For De Filippis et al., we obtain η0 =
−0.28+0.44

−0.44 (χ2
dof = 1.02) and η0 = −0.43+0.6

−0.6 (χ2
dof = 1.03)

in 2σ (statistical + systematic errors). For Bonamente et al.,
we obtain η0 = −0.42+0.34

−0.34 (χ2
dof = 0.88) and η0 = −0.66+0.5

−0.5

(χ2
dof = 0.86) in 3σ (statistical + systematic errors). We can

see that the confrontation between the ADD from the former
sample with SNe Ia data, points to a moderate violation of the
reciprocity relation (the DD relation is marginally satisfied in
2σ ). This result remains valid even when only clusters with
z > 0.1 are considered. In this case, we obtain η0 = −0.29+0.34

−0.34

(χ2
dof = 0.91) within 2σ (statistical + systematic errors).

However, for the Bonamente et al. sample, where a spherical
β model was assumed to describe the clusters, we see that the
DD relation is not obeyed even at 3σ .

4. CONCLUSIONS

In this Letter, we have discussed a new and model-
independent cosmological test for the DD relation, η(z) =
DL(1 + z)−2/DA. The basic idea of our statistical test is very
simple. We consider the angular diameter distances from galaxy
clusters (two samples) which are obtained by using SZE and
X-ray surface brightness together with the luminosity distances
given by two sub-samples of SNe Ia taken from the Constitution
data. The key aspect is that the SNe Ia sub-samples were care-
fully chosen in order to have the same redshifts of the galaxy
clusters (Δz < 0.005). For the sake of generality, the η(z) pa-
rameter was also parameterized in two distinct forms, namely,
η = 1 + η0z and η = 1 + η0z/(1 + z), thereby recovering the
equality between distances only for very low redshifts. It should
be noticed that in our method the data do not need to be binned.
Interestingly, although independent of any cosmological sce-
nario, our analysis depends on the starting physical hypotheses
describing the galaxy clusters.

By comparing the De Filippis et al. (2005, elliptical β model)
and Bonamente et al. (2006, spherical β model) samples with
two sub-samples of SNe Ia, we show that the elliptical geometry
is more consistent with no violation of the DD relation. In the
case of the De Filippis et al. (2005) sample (see Figure 3(a)),
we find η0 = −0.28+0.44

−0.44 and η0 = −0.43+0.6
−0.6 for linear

and nonlinear parameterizations in 2σ (statistical + systematic
errors), respectively. On the other hand, the spherical β model
(see Figure 3(b)) is not compatible with the validity of the
DD relation. For this case, we obtain η0 = −0.42+0.34

−0.34 and
η0 = −0.66+0.5

−0.5 for linear and nonlinear parameterizations in
3σ (statistical + systematic errors), respectively.

Finally, it is also interesting to compare the present results
with the ones of Holanda et al. (2010). Their analysis revealed
that the isothermal elliptical β model is compatible with the
Etherington theorem at 1σ moduli of the ΛCDM model while the
non-isothermal spherical model is only marginally compatible
at 3σ . Here as there, the sphericity assumption for the cluster
geometry resulted in a larger incompatibility with the validity
of the duality relation in comparison with an isothermal non-
spherical cluster geometry.
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