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ABSTRACT

Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We
examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs
toward equilibrium radii with zero torque. These radii themselves migrate inwards because of viscous accretion and
photoevaporation. We show that as the surface density and temperature fall the planet orbital migration and disk
depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet.
When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density
is already too low to drive substantial further migration. A higher mass planet, of 10 M⊕, can open a gap during the
late evolution of the disk, and stops migrating. Low-mass planets, with 1 or 0.1 M⊕, released beyond 1 AU in our
models avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent
planet population synthesis models.

Key words: accretion, accretion disks – hydrodynamics – methods: numerical – planet–disk interactions –
protoplanetary disks – radiation mechanisms: general

1. INTRODUCTION

The origin of planetary systems remains a major challenge
to astrophysical theory. Aside from the quandary of planet
formation, planet survival is also a problem. Planet formation
occurs when the gas disk is still present, and by exchanging
angular momentum with the gas, planets start to migrate. This
occurs as the planet excites perturbations in the disk that, in
turn, exert torques on the planet. The asymmetry of these
perturbations on either side of the planet determines the strength
of the torques, and thus the direction of migration.

The main components of the excited perturbations are the
one-armed spirals launched at the Lindblad resonances and the
librating material on horseshoe orbits in the planet’s corotation
region. For low-mass planets, with weak wakes, both the shape
of the spiral wake and the resulting Lindblad torque can be
treated by linear analysis under some assumptions, particularly
of local isothermality. The analytical prediction (Goldreich &
Tremaine 1979; Ward 1997; Tanaka et al. 2002), confirmed by
numerical simulations (Nelson et al. 2000; D’Angelo et al. 2002;
Bate et al. 2003), is that the inner Lindblad resonances lead to
positive torques, whereas the outer ones lead to negative torques.
The outer Lindblad resonances lie closer to the planet, and thus
produce stronger torques, so the planet migrates inwards. This
migration mode, referred to as Type I migration, occurs on
timescales between 104 and 105 yr. This is a serious problem for
planet formation since these timescales are much shorter than
the lifetimes of disks (106–107 yr). Halting or slowing Type I
migration is imperative if planets are to survive at all. Indeed,
planet population synthesis models (e.g., Alibert et al. 2004;
Mordasini et al. 2009) have to assume a reduction factor for
Type I migration of 30–1000 in order to match the observed
distribution of planetary semimajor axes.

Paardekooper & Mellema (2006) made a major step toward
the solution of this problem. They found that when the locally
isothermal approximation usually assumed in the literature was

relaxed, the planets migrated outwards. This behavior was
explained by Baruteau & Masset (2008) and Paardekooper &
Papaloizou (2008) as resulting from an entropy-related torque
exerted by material on horseshoe orbits in the corotation region.
This mechanism operates in regions of the disk that have
a negative entropy gradient and inefficient radiative cooling,
where sustenance of the torque requires some viscous and
thermal diffusion (Paardekooper & Papaloizou 2008). Kley
& Crida (2008) and Kley et al. (2009) showed that outward
migration indeed occurs in disks with realistic heating and
cooling.

This outward migration remains rapid. Planets migrate toward
the outer disk, reach an equilibrium radius of zero torque, and
stay put thereafter. As emphasized by Paardekooper et al. (2010),
slow inward migration then occurs as disk evolution shifts the
equilibrium radius inwards. The situation becomes similar to
that of gap-opening planets (Type II migration), with the planet
migrating in lockstep with the gas as the gas accretes.

This scenario poses a subtle problem that we examine in this
Letter. If the planet is moving together with the gas as the disk
depletes, at some point in the evolution the disk may reach
a thermodynamic state such that inward migration resumes.
This brings the problem back to square one, because, if the
planet is to survive, the remaining disk lifetime must be shorter
than the Type I migration timescale in that evolutionary state.
We examine this possibility using one-dimensional evolutionary
models of protoplanetary disks including heating and cooling.
We describe the model in the following section, present our
results in Section 3, and give concluding remarks in Section 4.

2. THE MODEL

2.1. Gas Evolution

We consider non-irradiated disks evolving by viscous diffu-
sion and photoevaporation (Lynden-Bell & Pringle 1974; Lin &
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Papaloizou 1979),
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where Σ is the surface density, r is the radius, and ν is the
effective viscosity. We take the photoevaporation rate to be
(Veras & Armitage 2004; Mordasini et al. 2009)

Σ̇w =
{

0, for r < Rg

Ṁw/[2π (rext − Rg)r], for r � Rg,
(2)

which is valid for external irradiation.
For temperature evolution, we use a model without shock

heating (Nakamoto & Nakagawa 1994)
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where T and Tb are the midplane and background tempera-
tures, respectively, Ω is the Keplerian frequency, and σ is the
Stefan–Boltzmann constant. We take the effective optical depth
at the midplane (Hubeny 1990; Kley & Crida 2008):

τeff = 3τ
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+

√
3

4
+

1

4τ
. (4)

Equation (3) states that the emerging flux is the result of an
equilibrium between viscous heating, background radiation,
and radiative cooling. The optical depth is τ = κΣ/2, and
the opacities κ are taken from Bell et al. (1997). We assume
that although dust growth and planet formation lock away
refractory material, fragmentation efficiently replenishes small
grains, keeping the disks opaque during their evolution (Birnstiel
et al. 2009).

2.2. Planet Evolution

The planet’s orbital radius evolves as

drp

dt
= 2Γ

mprpΩp

, (5)

where mp is the planet’s mass and Γ is the torque from the gas.
We assume a circular orbit and constant planet mass. We only
consider low-mass planets, and so can ignore the back reaction
of the planet onto the gas (Alexander et al. 2006). The torques
are modeled with analytical fits valid for the fully unsaturated
case (Paardekooper et al. 2010). Using b/h = 0.4, where h is
the disk’s aspect ratio and b is the gravitational softening of
the planet’s potential (necessary in models with less than three
dimensions), the torques are

Γiso/Γ0 = − 0.85 − α − 0.9β, (6)

γ Γad/Γ0 = − 0.85 − α − 1.7β + 7.9ξ/γ (7)

for the locally isothermal and adiabatic equations of state,
respectively. The adiabatic index γ = 1.4, and α, β, and ξ
are the negative of the local density, temperature, and entropy
gradients:

α = −∂ln Σ

∂ln r
; β = −∂ln T

∂ln r
; ξ = β − (γ − 1)α.

(8)

The torques are normalized by

Γ0 = (q/h)2Σpr4
pΩ2

p, (9)

where q is the ratio of planetary to stellar mass and Σp is the
surface density at the position of the planet. We interpolate
between the two torque regimes to get

Γ = ΓadΘ
2 + Γiso

(Θ + 1)2
. (10)

Here, Θ = trad/tdyn, where trad and tdyn are the radiative
and dynamical timescales. If Θ � 1, radiative processes can
restore the temperature quickly compared to the horseshoe
turnover time, leading to isothermal horseshoe turns. It was
shown in Paardekooper & Papaloizou (2009) that the timescale
to establish the full horseshoe drag (tdrag) is a fraction of
the libration timescale (typically 10 tdyn for a 5 M⊕ planet).
However, as long as trad > tdyn, the torque is affected by
nonlinear effects, and since the nonlinear torque is so much
stronger than its linear counterpart (Paardekooper et al. 2010),
the parameter governing linearity (and therefore isothermality)
is Θ rather than trad/tdrag.

Since tdrag depends on q, using tdrag would lead to different
migration behavior for different planet masses. In practice,
the transition between isothermal and adiabatic regions occurs
on such a small length scale that this would not change the
qualitative outcome of the models. Mass segregation is more
likely to come from effects of saturation, which we do not
consider in this Letter, since it is as yet poorly understood
for non-barotropic disks. We note, however, that for viscously
heated, optically thick disks close to thermal equilibrium,
radiative thermal diffusion will approach the viscous heating
rate. Therefore, even in the very optically thick inner regions
of the disk, a sizeable fraction of the unsaturated torque can be
sustained as long as the disk remains viscous.

To calculate Θ , we consider trad = E/Ė, where E is the
internal energy. The cooling Ė = ∇ · F, where F is the flux.
Using E = c

V
ρT , ρ = Σ/2H , and |F| = σT 4

eff , we have

trad = c
V
Στeff

6σT 3
. (11)

The dynamical time tdyn = 2π/Ω , so

Θ = c
V
ΣΩτeff

12πσT 3
. (12)

2.3. Simulation Parameters

We use a one-dimensional linear grid covering 0.1–30 AU
with 200 points. The surface density is specified by the ini-
tial mass accretion rate Ṁ0, and the viscosity parameter αSS
(Shakura & Sunyaev 1973), following the analytical fits of
Papaloizou & Terquem (1999) for Σ–ν relations. We use
Ṁ0 = 10−7 M� yr−1 and αSS = 10−2. The wind is modeled
with Ṁw = 10−8 M� yr−1 and Rg = 5 AU. For a given surface
density, Equation (3) specifies the temperature, with Tb = 10 K.
Because the optical depth depends on temperature, we solve
Equation (3) with a Newton–Raphson root-finding algorithm
(using 0.01 K precision). We examine planets of mass 0.1, 1,
and 10 M⊕. Planet–planet interactions are ignored. Boundary
conditions are taken as outflow. We compute the derivatives as
in the Pencil Code,3 with sixth-order spatial derivatives and a
third-order Runge–Kutta time integrator.

3 See http://www.nordita.org/software/pencil-code

http://www.nordita.org/software/pencil-code
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Figure 1. Evolution of (a) surface density, (b) midplane temperature, (c) optical depth, and (d) Θ , the ratio of radiative to dynamical timescales. The disk is drained
after 4.8 Myr, with mass dropping below M⊕. The temperature shows a plateau at ≈130 K, produced by the opacity transition when ice grains sublimate that moves
inward as the disk cools. Through most of the evolution, Θ > 1, so torques are adiabatic.

3. RESULTS

Figure 1 shows the evolution of our fiducial disk model.
The changes in density slope initially located at ∼0.4 and
21 AU correspond to opacity transitions (Papaloizou & Terquem
1999). The constant temperature plateau initially at 4–5 AU
corresponds to the opacity transition at ∼130 K where ice grains
sublimate (see Figure 1(c)). Initially, the ratio of radiative to
dynamical timescales Θ > 1 through most of the disk (Θ < 1
only at r > 70 AU, beyond the model grid). Thus, the torque
in Equation (10) is mostly adiabatic, and largely independent of
the interpolation procedure.

Total disk mass and accretion rate decay nearly linearly with
time. A disk of 0.08 M� initially accreting at 10−7 M� yr−1 gets
depleted in 4.8 Myr. At that time, the total disk mass is < 1 M⊕,
and we terminate the simulation. The model gives a power-law
decline of the density. An inner hole (Clarke et al. 2001) never
forms, because of the shallow radial slope of unity for the wind
driven by external photoevaporation.

As the surface density drops, so does the viscous heating
rate (Equation (3)), and the temperature falls accordingly, down
to T = Tb. During the evolution, the isothermal plateau shifts
inwards from 4 AU to 1 AU by 4.5 Myr. The optical depth only
drops to unity at 10 AU after 4 Myr, and at 5 AU after 4.4 Myr,
so the planet formation region is optically thick through most
of the disk evolution. To check our method, we also ran models
with Equation (3), and models where the temperature was
derived using (1+1)-dimensional models, following Papaloizou
& Terquem (1999). The differences were minor, consisting of a
slightly larger isothermal plateau (extending to 6 AU instead of
5 AU), and an outer disk ∼10 K hotter.

To understand our results for planet migration in evolving
disks, we first examine the behavior of planets in stationary

1 10
r (AU)

−20

−10

0

10

(Σ
/T

)
Γ

t=0.0 Myr
2.0
4.0
4.7
4.8

Figure 2. Radial distribution of torque over time (Equation (10)). Positive
torques drive outward migration. The equilibrium radii of zero torque shift
inwards as the disk evolves. The isothermal plateau corresponds to the well
of negative torques initially at 4–5 AU. Discontinuities correspond to opacity
jumps. Torques are scaled by Σ/T to aid visualization.

models. In Figure 2, we show the torque as a function of
radius. Migration halts at stable equilibrium radii where Γ = 0
and dΓ/dr < 0, that is, where the torque is positive within
(corresponding to outward migration) and negative outside
(inward migration). Two such equilibrium radii occur, at 4 AU
and 21 AU, corresponding to the inner boundaries of the
isothermal plateau and the outer isothermal region, where
T = Tb. (There is also a thin region around an equilibrium
radius at 0.6 AU that we do not consider here.) A negative
torque acts on planets migrating from rp > 21 AU, bringing



No. 2, 2010 OUTWARD MIGRATION IN EVOLUTIONARY MODELS L71

0 1 2 3 4 5 6
t (Myr)

1

10

r p
 (

A
U

)

mp/MEarth=0.1

=1.0

=10.

0 1 2 3 4 5 6
t (Myr)

1

10

r p
 (

A
U

)

Mp=0.1 MEarth

1 2 3 4 5 6
t (Myr)

1

10

r p
 (

A
U

)

Mp=1 MEarth

1 2 3 4 5 6
t (Myr)

1

10

r p
 (

A
U

)
Mp=10 MEarth

0 1 2 3 4 5 6
t (Myr)

1

10

r p
 (

A
U

)

(a)

(c) (d) (e)

(b)

Figure 3. (a) Orbital migration in stationary disks. Planets migrate at mass-dependent rates toward equilibrium radii of zero torque (see Figure 2). (b) Orbital migration
in evolving disks. Equilibrium radii migrate inwards on the accretion timescale, but the planets eventually migrate too slowly to remain in equilibrium. In the lower
panels (c)–(e) we show the same as in panel (b) but separated by planet mass. The tracks of the equilibrium radii (dotted lines) are shown for comparison.

them to that radius, while a positive torque acts on planets with
4 < rp/AU < 21, also bringing them to that radius. Planets
with rp < 4 AU migrate to the inner equilibrium radius.

We released planets of varying mass at several radii in the
disk, and see precisely this behavior (Figure 3(a)). The migration
time to the equilibrium radius is inversely proportional to the
planet mass, because the torque depends quadratically on mass
(Equation (9)), so ṙp ∝ 1/mp (Equation (5)). Planets of 10 M⊕
reach the equilibrium radii in � 0.1 Myr. In the isothermal case,
planets migrate inwards at comparable speeds.

In Figure 3(b), we show trajectories of planet migration in
an evolving disk. Now the radii of zero torque shift inwards
as the disk evolves. The planets migrate to these radii on
the Type I timescale of 105 yr, and then couple to disk
evolution. Subsequently, they migrate inwards on the slow
accretion timescale of 106 yr, comparable to Type II migration,
as predicted by Paardekooper et al. (2010).

Figure 3(b) has some intriguing features that give pause.
There is a clear effect of mass on the later evolution of the
planets. In the stationary case, the only effect of mass is to
determine the speed of migration to the equilibrium radii. In the
evolving case, the mass also helps determine the final location
of the planet. To show this, we separately plot the tracks of
planets of different masses in Figures 3(c)–(e), as well as the
trajectories of the equilibrium radii. The planets follow these
equilibrium radii until late times, when they decouple.

We can understand the process of decoupling by comparing
the viscous accretion timescale to the migration timescale. As
the disk thins, the surface density reaches a value so low that the
gas cannot transfer sufficient angular momentum to the planet

for its orbital radius to evolve as fast the equilibrium radius.
Another way of understanding this is that a perturbation of the
planet away from the equilibrium radius will only be corrected
if the torque is sufficiently strong to return the planet before the
radius moves a substantial distance. As the torque is a function
of planet mass, the time and radius when decoupling occurs are
also functions of the planet mass.

We can estimate this time and radius by comparing the
migration timescale (tmig = rp/|ṙp|) to the disk accretion
timescale (tν = Σ/|Σ̇ |). As long as tmig < tν , the planet
can keep up with the evolution of the disk. When this is no
longer true, decoupling occurs, releasing the planet. We plot
the quantity tmig/tν in Figure 4, for the planet of 1 M⊕ at
different times. The structure in the plot comes from the radial
derivatives of Σν that define the mass accretion flow, and from
the torques Γ that define the migration rate. The spikes in the
figure correspond to the equilibrium locations, where Γ = 0 (and
therefore formally tmig/tν = ∞). The decoupling in Figure 3(d)
starts to occur at ≈4.0 Myr. In Figure 4, we see that it roughly
corresponds to the time when the vicinity of the equilibrium
radius crosses the line of tmig/tν = 1.

Evolution after decoupling proceeds as follows. The inner
equilibrium radius corresponds to the inner edge of the isother-
mal plateau. Once the planet decouples, it is released inside the
plateau, itself a region of inward migration since the tempera-
ture gradient vanishes. As disk evolution continues, the decou-
pled planet soon finds itself at the outer edge of the isothermal
plateau, and starts migrating outwards. For planets of 1 M⊕, de-
coupling occurs at rp = 1 AU at 4.5 Myr (Figure 3(b)). The
planet then rapidly descends the temperature gradient until it
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Figure 4. Comparison of the timescales of planet migration (tmig) and disk
accretion (tν ) for a planet of 1 M⊕.

reaches the outer equilibrium radius. However, this radius too
moves inward faster than the planet can migrate, so the planet
enters the isothermal outer disk (where T � Tb), another region
of slow inward migration. At this stage, a planet of 1 M⊕ still
has time to migrate from rp = 2.0 AU to rp = 1.5 AU before the
density drops too low to drive further migration (Figure 3(d)).

The planet of 10 M⊕ is strongly coupled and would follow
the outer equilibrium radius until it hit the inner boundary of our
model at 0.1 AU. The halt at 2 AU seen in Figure 3(e) represents
an artificial termination of the simulation. At that point, two
criteria had been fulfilled. First, the scale height had become
smaller than the Hill radius of the planet, so gap formation
should have occurred. This is not sufficient to terminate the
simulation, because the inward motion of the equilibrium radius
itself occurs at the timescale of Type II migration. However, the
second criterion was that the mass parameter determining Type
II migration, Σr2 (Mordasini et al. 2009), had become smaller
than the planet’s mass. At this stage, Type II migration becomes
planet dominated and we consider that it comes to a halt. The
smaller planets never carve gaps.

We investigate migration in disks with different values of Ṁw
and Ṁ0, yet constrained by a lifetime of 1–10 Myr, without find-
ing qualitative differences. A change in migration behavior is
only seen for hotter disks. For αSS = 0.1, the disks show Θ ≈ 1
throughout. Migration then shows a mix of isothermal and adia-
batic behavior, being mostly inwards yet with equilibrium points
present. The torque only becomes isothermally dominated for
αSS �1, which yields an unrealistically high accretion rate.

4. CONCLUSIONS

In this Letter, we examine the trajectories of planets undergo-
ing Type I migration in evolving, radiative disks with initially
nearly adiabatic midplanes, where outward migration can oc-
cur. Planets migrate toward equilibrium radii, where the torque
acting on them vanishes. These radii correspond to opacity
jumps and to the transition, in the outer disk, to an isothermal
state. Because of viscous accretion and photoevaporation, these
equilibrium radii themselves move inwards on disk accretion
timescales.

As long as the torques are strong enough to keep the planets
coupled to disk evolution, the planets migrate in lockstep
with the gas at the accretion timescale. However, as the disk
surface density drops, the timescales of orbital migration and
disk accretion eventually become comparable. At this stage, if

the planet is perturbed from an inner equilibrium radius, the
equilibrium radius moves inward faster than the torques can
return the planet, so it decouples.

If the continuing migration is outwards, the planet encounters
another equilibrium radius, and the same process of locking and
decoupling occurs. The outermost equilibrium radius lies where
the disk reaches the background temperature, and from there the
planet can only migrate inwards. However, by the time that the
planet decouples even from that equilibrium radius, the disk is
already so severely depleted that the ensuing inward migration
is feeble, and soon comes to a halt, as the remaining disk mass
cannot exert a substantial torque. In no case did a planet released
beyond 1 AU migrate all the way to the star.

We stress that we only use a single model for the opacities,
which may change as planet formation progresses. The dust size
distribution must depend on the balance between coagulation
and fragmentation, which remains poorly understood. We also
neglect stellar irradiation, which will become important in the
late stages of the disk evolution. Irradiation will maintain high
temperatures in the inner disk (≈100 K; Chambers 2009),
preventing gap formation for 10 M⊕ planets. On the other hand,
irradiation should lead to a hole-forming photoevaporating wind
(Clarke et al. 2001; Alexander et al. 2006), which quickly
depletes the disk, thus possibly bringing migration to an even
earlier halt. Future work should self-consistently address these
issues.

As a consequence of the independence of equilibrium radii on
planet mass, all planets migrate to these equilibrium locations.
Ensembles of planets reaching them may become violently
unstable due to N-body interactions. Nevertheless, even if
scattered away, migration will invariably drive the planets
back toward these radii. The final outcome may well be
collisions driving further planet growth, aiding rapid giant planet
formation or forming planets in 1:1 resonance.

If this is the case, however, it raises the question of why
the solar system has a set of neatly spaced planets as opposed
to only two, as the two equilibrium radii of the model might
naively suggest. One possible solution is that Γ (and thus
any equilibrium radius) shows a dependence on the planet-to-
star mass ratio q at the verge of gap opening when q ≈ h3

(Masset et al. 2006). Another is that we only consider the
fully unsaturated torque, whereas saturation depends on the
width of the horseshoe region and therefore on the planet’s
mass. However, the level of saturation in radiative disks is not
fully understood at present, and we cannot easily add it to our
study. Future models should include effects of saturation to
study possible mass segregation. Finally, in view of the long
migration timescales for M � 0.1 M⊕, such planets may just
not have the time to migrate back to the equilibrium location
before the disk vanishes if scattered far enough. This scattered
population of small planets could provide the initial conditions
for the terrestrial planets of our own solar system.

Our results provide qualitative and quantitative justification
for the reduction of Type I migration rates assumed in planetary
population synthesis models (e.g., Alibert et al. 2004; Ida & Lin
2008; Mordasini et al. 2009). Instead of migrating on the fast,
mass-dependent, timescale tmig, we find that planets spend their
first Myr near equilibrium radii that change only on the slow
accretion timescale tν . We show in Figure 4 that tmig/tν ∼ 0.1
for a 1 M⊕ planet during most of the evolution of the disk.
Examining the same figure for different masses shows a linear
dependence on mass, tmig/tν ∼ 0.1(M/ M⊕), consistent with
the population synthesis assumptions.
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