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ABSTRACT

We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of
local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the
interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via
methods of time—distance helioseismology. Applying identical analysis techniques to observations of the Sun, we
are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We
find that convection at a depth of 7/ Rg = 0.95 with spatial extent £ < 20, where £ is the spherical harmonic degree,
comprises weak flow systems, on the order of 15 m s~ or less. Convective features deeper than /Ry = 0.95 are
more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.
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1. INTRODUCTION AND METHODOLOGY

Constraining the length scales and velocities of solar interior
convection is an important step toward testing and improving
models of astrophysical convection. In this regard, two obser-
vational efforts have received much attention: the detection of
the elusive “giant cells” (e.g., Brown & Gilman 1984; Chi-
ang et al. 1987; Wilson 1987; Beck et al. 1998; Featherstone
et al. 2006) and a study of supergranulation and near-surface
convection (e.g., Zhao & Kosovichev 2003; Woodard 2007).
Despite these numerous investigations, neither have giant cells
been conclusively observed, nor have the flow systems beneath
supergranules been convincingly imaged. In particular, the in-
versions for supergranular flow are highly susceptible to the
systematical issue of cross talk, a situation where different ve-
locity components possess similar signatures in the observed
time shifts. Questions relating to bounds on the degree of de-
tectability of large-scale convection are also not new (e.g., van
Ballegooijen 1986; Swisdak & Zweibel 1999; Hanasoge et al.
2007a).

The Anelastic Spherical Harmonic (ASH) simulations of so-
lar convection in a spherical shell have provided us with a com-
putational picture of the dynamical appearance, evolution, and
disappearance of giant convective cells (Miesch et al. 2000).
These simulations encompass a large fraction of the solar con-
vection zone, spanning 0.7 Rg to 0.98 Ry. Because of the large
disparity of timescales between the upper and lower regions of
the convection zone, Miesch et al. (2000) invoke the anelastic ap-
proximation (Gough 1969) to render the problem computation-
ally tractable and to limit the computational cost. The anelastic
formulation of the Navier—Stokes equations disallows acoustic
waves; since it can only capture the dynamics that are subsonic,
the domain of computation is truncated at 0.98 Ry because
the near-sonic and supersonic fluid motion contained within the
near-photospheric layers of the Sun would not be realistically
captured. In spite of the use of physically unrealistic boundary
conditions (i.e., impenetrable walls at the upper and lower ra-
dial boundaries) and parameters (e.g., Prandtl, Rayleigh, and
Reynolds numbers) that differ markedly from those describing
the Sun, these models provide the best indications at present of
what transpires in the solar convective interior.
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Acoustic waves are our primary source of information about
the optically thick solar interior. Therefore, in order to begin the
task of understanding the influence of convection on the waves,
we insonify the ASH simulations and characterize the impact of
the convective velocities on the wave-field statistics. In order to
accomplish this, we employ the forward modeling techniques
of Hanasoge et al. (2006), who have devised a computational
means of studying the impact of thermal and flow perturbations
on the acoustic wave field. We place a velocity snapshot of
the convection zone from an ASH calculation in a solar-like
stratified background and simulate wave propagation through
this complex medium (cf. Figures 1 and 2 of Miesch et al. 2008).
We apply the method of time—distance helioseismology (Duvall
et al. 1993), which primarily utilizes temporal correlations of
velocity signals at spatially disparate points in order to construct
the statistics of the wave field. In particular, we use the technique
of deep focusing (Duvall et al. 2001), which relies on an elegant
choice of observation points, leveraged in a manner so as to
optimize the imaging capability, as illustrated in Figure 1.
This method allows us to image the three components of the
background velocity field, i.e., the latitudinal, longitudinal, and
radial velocities.

2. CONVECTION SNAPSHOT AND WAVE
CALCULATION

For purposes of discussion, we adopt a spherical coordinate
system, using symbols 7, X, and ¢ to denote radius, latitude,
and longitude, respectively. Slices at three radii corresponding
tor = 0.714Rg, 0.85Rg, 0.979R, are extracted from an ASH
simulation of solar spherical convection (Miesch et al. 2008).
Each slice consists of 2048 x 1024 longitudes and latitudes
respectively, with the highest spherical harmonic degree being
Lasy = 683. Note that the number of latitudes and the maximum
spherical harmonic degree are chosen to satisfy the relation
Ny = 3€asu/2 in order that the simulation be stable against
aliasing instabilities. We linearly interpolate between the three
slices to obtain a smooth velocity field as a function of radius.
The depth variation of the rms variations in the velocity
components is plotted in Figure 2(a). In panel (b), we plot
the maximum wavenumber of 3.5 mHz waves that penetrate
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Figure 1. Pictorial representation of deep-focusing time—distance helioseismology. Numerous waves, denoted here by rays, that intersect at r/ Rg, = 0.95 are utilized
in order to image flows at that depth (shown by the horizontal curved dashed line) and that horizontal location. The signal associated with the waves is measured at

the solar photosphere (depicted by the horizontal curved solid line).
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Figure 2. Velocity magnitude distribution of the three interpolated velocity components derived from the ASH simulation as a function of depth (panel (a)). Longitudinal
averages of the components ((v;.), (vg)) have been subtracted from horizontal velocities, lending the linearly interpolated rms profiles curvature (note: (v,) ~ 0). The
curve ™ (r) in panel (b) is the maximum wavenumber of 3.5 mHz waves that penetrate to that depth; because the imaging resolution is on the order of a wavelength,
we are only able to image features that obey £ < £™**(r); we also have £™*(r) ~ 185 atr/Rg = 0.95.

a given depth (i.e., the inner turning points of the waves); this
is roughly estimated as £™* = wr/c, where w is the angular
frequency (= 2w x 0.0035) of the waves and ¢ = c¢(r) is the
sound speed. Because the imaging resolution is on the order of a
wavelength (e.g., Gizon & Birch 2004), we are unable to detect
convective features of scale £ > £™** at that given depth. In the
discussions that follow, we study the properties of convection at
a depth r/Rg = 0.95, this layer being moderately distant from
the upper boundary of the ASH simulations but not so deep
that helioseismic analyses become noisy. From the curve in
Figure 2(b), we determine that £"*(0.95Rg) ~ 185, implying
that convective features with £ > 185 are not detectable at this
depth. Thus, to moderate the computational cost, we filter the
velocities in the spherical-harmonic domain so as to only retain
wavenumbers £ < 256 and then resample the data on to a grid
of 768 x 384 longitudes and latitudes.

Having thus generated a three-dimensional cube of the con-
vective velocities, we place it in a solar-like stratified spherical
shell that extends from r/Ry = 0.24 to r/Ry = 1.001, and
propagate waves through this medium according to the numer-
ical recipe described in Hanasoge et al. (2006). We solve the
three-dimensional linearized unsteady Euler equations describ-
ing wave propagation in spherical geometry in a temporally
static background medium (in this case, the stratification and
the convective velocities are constant in time). The waves are
generated by deterministically forcing the radial momentum
equation at a depth of approximately 100 km below the photo-
sphere. Subsequently, a time series of the oscillation velocities

are extracted at a height of 200 km above the photosphere and
used as artificial data for helioseismic investigations. We also
apply the technique of noise subtraction (Hanasoge et al. 2007b)
in order to obtain gains in the signal-to-noise ratio (S/N); two
simulations are performed, one being a quiet calculation and the
other with the convective velocity snapshot, both with identical
source functions. The wave statistics of the former are subtracted
from the latter, and the high degree of correlation between the
two data sets results in a gain in the S/N and also a more direct
view of the scattering process. Note that this is a luxury limited
entirely to theoretical calculations and no observational analog
exists (as yet).

3. TIME-DISTANCE ANALYSES AND CAVEATS

Time—distance measurements have primarily been made us-
ing cross-correlations connecting points with a common surface
focus (Duvall et al. 1996). This is most appropriate for studying
near-surface phenomena, although, as Giles (2000) has shown,
it is possible to use that type of geometry to study very deep
axisymmetric perturbations. A second type of geometry using
cross-correlations from pairs of points at opposite sides of a
circle (Duvall 2003) would seem to be more appropriate for
focusing on deep phenomena, although different distances then
have common points at different depths. In a slightly differ-
ent technique, adopted by Rajaguru (2008), averages of signals
over a quadrant of a circle are cross-correlated with the signals
at the opposite quadrant. A possibly superior approach is to
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Figure 3. Comparison of flows at a depth of r/ R = 0.95 and deep-focus travel-time differences (configuration shown in Figure 1). The left column shows the flows
from the simulation: from top to bottom, the radial (v,), north—south (v;), and east-west (v4) components at 1/ Ro = 0.95. Travel-time differences corresponding to
these three components are shown on the right-hand column: from top to bottom, the difference between the ingoing and outgoing travel times (7j,), the north—south
travel-time asymmetry (7y,s), and the east—west travel-time asymmetry (7w ). The correlation coefficients between the flows and travel-time maps are 0.17 for the radial,
0.59 for the north—south, and 0.69 for the east-west cases. The spatial cross-correlations between the travel-time and velocity maps have a FWHM of 9° for both the

north—south and east-west cases.

cross-correlate a number of pairs of points whose connecting
ray paths all converge at a subsurface focus (Duvall 1995). This
method is computationally expensive and although it would ap-
pear to be ideal, it was shown by Duvall et al. (2001) that the
Born sensitivity kernel corresponding to this geometry actually
has a hollow sphere about the “focus” point. This is consistent
with the banana-doughnut nature of the two-point kernel, with
zero sensitivity along the classical ray path (Marquering et al.
1999; Birch & Kosovichev 2000).

In the present study, the latter form of deep focusing is used.
At each point on the map, the input datacube is interpolated onto
a spherical polar coordinate grid with the surface projection of
the focus point placed at the north pole. The grid is computed in
co-latitude from the pole (or focus point) to the largest angular
distance needed for the computation. The resolution in co-
latitude is the same as for the input data. The grid contains
an equal number of longitudinal points at each latitude, making
it easy to compute cross-correlations between pairs of points on
opposite sides of the focus point at different colatitudes. A ray
calculation determines which pairs of points are to be used in

order to focus on the desired subsurface location. The extent in
co-latitude is restricted by requiring that the rays lie within 45°
of the horizontal tangent plane at the focus depth. In effect, this
limits the distance of the antennae from the focal point.

The three travel-time maps obtained subsequently can be in-
terpreted to relate to the flows in the following manner: diver-
gence time shift maps (tj,) correspond to radial flows, north—
south time-shift maps (z,s) correspond to latitudinal velocities
(v5), and the east—west time-shift maps (. ) correspond to lon-
gitudinal velocities (vg). As is seen in Figure 3, there is a signifi-
cant resemblance between the convective velocities at depth and
the associated deep-focusing time shifts. In particular, the cor-
relation between the east-west time shifts and the longitudinal
convective velocities is at the level of 70%; latitudinal velocities
are also strongly correlated with the north—south time shifts, at
the level of 60%. The radial flows, significantly weaker than
the other components, do not register quite so well in the travel
times.

We now calibrate the shifts in travel times directly to the
convective velocities at the focus depth (r/Rg = 0.95) of the
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Figure 4. Measure of the imaging resolution of helioseismic waves. For
example, a convective cell with horizontal velocity amplitude 100 m s~! and
dominant spatial power in £ = 1 will elicit approximately a 3 s shift in the travel
times as measured by this deep-focusing technique. Similar interpretations apply
to convective features at higher £. Finer-scale features at this depth, i.e., those
characterized by £ > 50, register much more weakly in the travel times. Note
that these curves suggest an imaging resolution of £ ~ 30 (defined as the half-
width), far smaller than the largest wavenumber (£™** ~ 185) that propagates
at this depth (r/Rp = 0.95).

waves. We transform the velocities and time shifts into spherical
harmonic space and perform a linear fit between the real and
imaginary harmonic coefficients of the velocities and time shifts
as a function of the bandpass (or spherical harmonic degree, £).
We graph this sensitivity in Figure 4. This calibration allows
us to determine the induced time shift by a convective-cell-like
feature at depth; thus, the observationally derived time shifts
may be “inverted” in order to determine the convective velocity.
A notable aspect of Figure 4 is that the imaging resolution
(defined as the half-width) as indicated by the curves is £ ~ 30,
far smaller than £™* ~ 185 at this depth (r/Rg = 0.95).

Caution must be exercised when interpreting this calibration
process, primarily because the convection model we employ
is greatly simplified and is likely not very comparable to the
complex solar medium. In particular, we must keep in mind that
(1) the sensitivity model of the waves has not been carefully
investigated; thus, despite using this intricate focusing geometry,
we possibly still retain considerable sensitivity to the near-
surface layers (e.g., Figure 4.13 of Birch 2002); (2) we do
not model the action of the near-surface convection on the
waves, thereby not incorporating a significant source of wave
scattering; (3) we linearly interpolate the convective velocity
data in depth between the three available slices, thereby further
reducing the complexity of the interior convection model; and
(4) the solid-wall upper boundary condition applied in the ASH
convection simulation leads to unrealistic convective velocity
profiles, especially around r/Rg = 0.979.

4. OBSERVATIONS AND CONCLUSIONS

Deep-focusing analyses of individual days of quiet Sun
Michelson Doppler Imager observations (MDI; Scherrer et al.
1995) show no indication of the presence of larger-scale con-
vective features. The time shifts are dominated by noise. Fur-
thermore, the correlation coefficient between time-shift maps
of 1 day and the next (corrected for rotation) is too small to be
regarded statistically significant. Similar to the work of Braun &
Birch (2008), we utilize this non-detection to constrain the mag-
nitudes of the convective velocities from above. We first obtain
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Figure 5. Upper bounds on the velocity magnitude spectrum of interior
convection (with differential rotation and meridional circulation removed). Error
bars are identical for both components, but for more clarity these are only
shown for the longitudinal velocity. The average level of the travel-time noise
in single day MDI medium-¢ quiet Sun data is converted to velocity using
the calibration curve in Figure 4. Based on the non-detection of convection,
these form upper bounds on the velocities of convective cells. Giant cells with
¢ <20atr/Rg = 0.95, if they exist, must therefore be of velocity magnitudes
on the order of 15 m s~! or less, making them very difficult to detect. Also
plotted are spectra obtained from a 62 day average of the longitudinal and
latitudinal convective velocities at r/Ry = 0.92 (Figures 13(b) and (c) of
Miesch et al. 2008). Note that the velocity magnitude increases as a monotonic
function of r/Rg, implying that the ASH velocity magnitudes are even higher
at r/Ro = 0.95. Note that the seeming asymmetry in the error bars has to do
with using a log scale.

estimates of the mean level of noise present in the travel times
as a function of spherical harmonic degree. MDI medium-¢ data
from the two-year quiet period 2007 October—2009 October are
analyzed and 28 synoptic charts of the travel times correspond-
ing to as many Carrington rotation periods are constructed. Over
a rotation period, a given heliocentric longitude is visible for 7
days; thus, the expectation noise level associated with the chart
is +/7 times the value derived from 1 day’s analysis. We multi-
ply the chart by this number in order to restore the noise to the
1 day level. The spherical harmonic spectra of these charts are
then averaged, and a mean distribution of noise as a function of
spherical harmonic degree is recovered. Lastly, these expecta-
tion values for the noise are divided by the calibration function
of Figure 4 to obtain an upper-bound estimate for the convective
velocities (Figure 5).

In other words, the noise-dominated time shifts are converted
to velocities, with the implication that the magnitude of the
interior solar convective velocity spectrum can be no greater
than indicated by the curve in Figure 5, failing which large-scale
convective cells become detectable within this observational
window. As seen in the figure, the constraints place tight
restrictions on the convective velocities, especially at low
spherical harmonic degree. Giant cells at depth, if they exist,
have small velocity magnitudes, on the order of 15 m s~!
or less, underscoring the remarkable challenge in actually
detecting them. Also plotted is the longitudinal convective
velocity spectrum obtained from a 62 day average of the ASH
simulations; these velocities are seen to be of much greater
magnitude than suggested by the observations. The 1o error
bars in Figure 5 are estimated by propagating the errors on
the sensitivities (Figure 4) and the variance in the 1 day noise
level. At each spherical harmonic degree £, we average the noise
associated with 2¢ + 1 modes (i.e., |[m| < £). Because very few
modes are averaged at low £, the primary source of uncertainty
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in estimating the convective velocities is the (relatively) high
degree of variance in the 1 day noise level. At higher spherical
harmonic degrees, the sensitivity starts to fall and the associated
uncertainties dominate.
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