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ABSTRACT

Measurements of small-scale turbulent fluctuations in the solar wind find a non-zero right-handed magnetic helic-
ity. This has been interpreted as evidence for ion cyclotron damping. However, theoretical and empirical evidence
suggests that the majority of the energy in solar wind turbulence resides in low-frequency anisotropic kinetic Alfvén
wave fluctuations that are not subject to ion cyclotron damping. We demonstrate that a dissipation range comprised
of kinetic Alfvén waves also produces a net right-handed fluctuating magnetic helicity signature consistent with
observations. Thus, the observed magnetic helicity signature does not necessarily imply that ion cyclotron damping
is energetically important in the solar wind.
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1. INTRODUCTION

The identification of the physical mechanisms responsible
for the dissipation of turbulence in the solar wind, and for the
resulting heating of the solar wind plasma, remains an important
and unsolved problem of heliospheric physics. An important
clue to this problem is the observed non-zero fluctuating
magnetic helicity signature at scales corresponding to the
dissipation range of solar wind turbulence.

Matthaeus et al. (1982) first proposed the “fluctuating” mag-
netic helicity as a diagnostic of solar wind turbulence, defining
the “reduced fluctuating” magnetic helicity spectrum derivable
from observational data (see Section 3). A subsequent study,
corresponding to scales within the inertial range, found values
that fluctuated randomly in sign, and suggested an interpreta-
tion that “a substantial degree of helicity or circular polarization
exists throughout the wavenumber spectrum, but the sense of
polarization or handedness alternates randomly” (Matthaeus &
Goldstein 1982). Based on a study of the fluctuating magnetic
helicity of solutions to the linear Vlasov–Maxwell dispersion
relation, Gary (1986) suggested instead that, at inertial range
scales, all eigenmodes have a very small intrinsic normalized
fluctuating magnetic helicity, eliminating the need to invoke an
ensemble of waves with both left- and right-handed helicity to
explain the observations.

Subsequent higher time-resolution measurements, corre-
sponding to scales in the dissipation range, exhibited a non-
zero net reduced fluctuating magnetic helicity signature, with
the sign apparently correlated with the direction of the mag-
netic sector (Goldstein et al. 1994). Assuming dominantly anti-
sunward propagating waves, the study concluded that these fluc-
tuations had right-handed helicity. The proposed interpretation
was that left-hand polarized Alfvén/ion cyclotron waves were
preferentially damped by cyclotron resonance with the ions,
leaving undamped right-hand polarized fast/whistler waves as
the dominant wave mode in the dissipation range, producing the
measured net reduced fluctuating magnetic helicity. We refer to
this as the cyclotron damping interpretation.

A subsequent analysis of more solar wind intervals confirmed
these findings for the dissipation range (Leamon et al. 1998b).
Leamon et al. (1998a) argued that a comparison of the nor-
malized cross-helicity in the inertial range (as a proxy for the
dominant wave propagation direction in the dissipation range) to

the measured normalized reduced fluctuating magnetic helicity
provides evidence for the importance of ion cyclotron damping,
which would selectively remove the left-hand polarized waves
from the turbulence; using a simple rate balance calculation,
they concluded that the ratio of damping by cyclotron resonant
to non-cyclotron resonant dissipation mechanisms was of order
unity. A recent study performing the same analysis on a much
larger data set concurred with this conclusion (Hamilton et al.
2008).

In this Letter, we demonstrate that a dissipation range com-
prised of kinetic Alfvén waves produces a reduced fluctuating
magnetic helicity signature consistent with observations. A dis-
sipation range of this nature results from an anisotropic cas-
cade to high perpendicular wavenumber with k⊥ � k‖; such a
cascade is consistent with existing theories for low-frequency
plasma turbulence (Goldreich & Sridhar 1995; Boldyrev 2006;
Howes et al. 2008b; Schekochihin et al. 2009), numerical simu-
lations (Cho & Vishniac 2000; Howes et al. 2008a), and obser-
vations in the solar wind (Horbury et al. 2008; Podesta 2009).
Our results imply that no conclusions can be drawn about the
importance of ion cyclotron damping in the solar wind based on
the observed magnetic helicity signature alone.

2. FLUCTUATING MAGNETIC HELICITY

The magnetic helicity is defined as the integral over the
plasma volume Hm ≡ ∫

d3rA · B, where A is the vector
potential which defines the magnetic field via B = ∇ ×
A. This integral is an invariant of ideal magnetohydrody-
namics (MHD) in the absence of a mean magnetic field
(Woltjer 1958a, 1958b). Matthaeus & Goldstein (1982) chose
to set aside the complications associated with the presence of a
mean magnetic field, defining the fluctuating magnetic helicity
by H ′

m = ∫
drδA · δB, where the fluctuating quantities denoted

by δ do not include contributions from the mean field.
Modeling the turbulent magnetic field3 by

B(r, t) = B0ẑ +
∑

k

B(k)ei(k·r−ωt) (1)

3 We assume that turbulent fluctuations are reasonably modeled as a
collection of linear wave modes. Nonlinear interactions, neglected here, will
serve to replenish energy lost from wave modes via damping, so we neglect the
linear wave damping and take only the real frequency.
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in a periodic cube of plasma with volume L3, we obtain H ′
m =

L3 ∑
k H ′

m(k), where the fluctuating magnetic helicity density
for each wavevector k is defined by H ′

m(k) ≡ A(k) ·B∗(k). Here
B(−k) = B∗(k) and ω(−k) = −ω∗(k) are reality conditions
and B∗(k) is the complex conjugate of the Fourier coefficient.
Specifying the Coulomb gauge ∇ · A = 0, we obtain

H ′
m(k) = i

ByB
∗
z − B∗

yBz

kx

= i
BzB

∗
x − B∗

z Bx

ky

= i
BxB

∗
y − B∗

xBy

kz

, (2)

where the components Bj (k) arise from the eigenfunctions of the
linear wave mode. It is easily shown that this result is invariant
to rotation of the wavevector k, along with its corresponding
linear eigenfunction, about the direction of the mean magnetic
field. The normalized fluctuating magnetic helicity density is
defined by

σm(k) ≡ kH ′
m(k)/|B(k)|2, (3)

where k = |k|. This normalized measure has values within
the range [−1, +1], where negative values denote left-handed
helicity and positive values denote right-handed helicity.

We numerically calculate σm(k) over the k⊥–k‖ plane for the
eigenmodes of the linear Vlasov–Maxwell dispersion relation
(Stix 1992) for a proton and electron plasma with an isotropic
Maxwellian equilibrium distribution function for each species
and no drift velocities (see Howes et al. 2006 for a description of
the code). The dispersion relation depends on five parameters,
ω = ωV M (k⊥ρi, k‖ρi, βi, Ti/Te, vthi

/c), for ion Larmor radius
ρi , ion plasma beta βi , ion to electron temperature ratio Ti/Te,
and ion thermal velocity to the speed of light vthi

/c.
We specify plasma parameters characteristic of the solar wind

at 1 AU: βi = 1, Ti/Te = 1, and vthi
/c = 10−4. Figure 1 is a

contour plot of σm(k) obtained by solving for the Alfvén wave
root over the k⊥–k‖ plane, then using the complex eigenfunctions
to determine σm(k). The MHD regime corresponds to the lower
left corner of the plot, k‖ρi 
 1 and k⊥ρi 
 1; here, the Alfvén
wave with k⊥ ∼ k‖ is linearly polarized with σm � 0. As one
moves up vertically on the plot to the regime k‖ � k⊥, the
solution becomes left handed with values of σm → −1. In this
regime of nearly parallel wavevectors, the solution represents
Alfvén waves in the limit k‖ρi 
 √

βi and ion cyclotron
waves in the limit k‖ρi �

√
βi . The linear wave mode becomes

strongly damped via the ion cyclotron resonance at a value of
k‖ρi �

√
βi (Gary & Borovsky 2004). This is precisely the

behavior supporting the cyclotron damping interpretation of the
measured magnetic helicity in the solar wind.

But the Alfvén wave solution does not always produce left-
handed magnetic helicity. If one moves instead from the MHD
regime horizontally to the right, the solution becomes right
handed with σm → +1 as k⊥ρi → 1, a behavior previously
found by Gary (1986). In this regime of nearly perpendicular
wavevectors with k⊥ � k‖, the solution represents Alfvén
waves in the limit k⊥ρi 
 1 and kinetic Alfvén waves in the
limit k⊥ρi � 1. Thus, if the dissipation range is comprised
of kinetic Alfvén waves, as suggested by theories for critically
balanced, low-frequency plasma turbulence (Schekochihin et al.
2009; Howes et al. 2008a), one would expect to observe a
positive normalized fluctuating magnetic helicity signature in
that regime.

Figure 1. Normalized fluctuating magnetic helicity density σm(k) (Equation (3))
for linear Alfvén waves over the k⊥–k‖ plane. The MHD Alfvén wave (MHD
Alfvén), ion cyclotron wave (ICW), and kinetic Alfvén wave (KAW) regimes
are identified. Plasma parameters are representative of the near-Earth solar wind.

3. REDUCED FLUCTUATING MAGNETIC HELICITY

Unfortunately, due to the limitations of single-point satellite
measurements, Equations (2) and (3) cannot be used directly to
calculate the fluctuating magnetic helicity from observations;
approximations must be introduced to define a related measur-
able quantity. In this section, we calculate the reduced fluctu-
ating magnetic helicity density, as defined by Matthaeus et al.
(1982) and used by subsequent authors, for the magnetic field
defined by Equation (1), but without assuming the Taylor hy-
pothesis.

The two-point, two-time magnetic field correlation function
is

Rij (r, t) = 〈
δBi(x, τ )δBj (x + r, τ + t)

〉
, (4)

where the angle brackets specify an ensemble average, defined
here by 〈a(r, t)〉 = L−3

∫
d3xa(x, r, t). We find

Rij (r, t) =
∑

k

B∗
i (k)Bj (k)ei(k·r−ωt), (5)

where the reality conditions ensure that this quantity is real.
We choose to sample this correlation function at a moving

probe with position given by r = −vt ; this corresponds to
satellite measurements of the solar wind, where the probe is
stationary and the solar wind is streaming past the probe at
velocity v. Thus, we may determine the reduced magnetic field
correlation function, Rr

ij (t) = Rij (r, t)
∣∣
r=−vt

, obtaining the
form

Rr
ij (t) =

∑
k

B∗
i (k)Bj (k)e−i(k·v+ω)t . (6)

The reduced frequency spectrum, defined by Sr
ij (ω′) =

(1/2π )
∫

dt ′Rr
ij (t ′)eiω′t ′ , is then given by

Sr
ij (ω′) =

∑
k

B∗
i (k)Bj (k)δ[ω′ − (k · v + ω)]. (7)

This demonstrates that the frequency ω′ of the fluctuations
sampled by the moving probe is the Doppler-shifted frequency
ω′ = k · v + ω. Note that adopting the Taylor hypothesis
(Taylor 1938), as often done in studies of solar wind turbulence,
corresponds to dropping ω in Equation (7).
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The reduced fluctuating magnetic helicity density is defined
by

H
′r
m (k1) = 2Im[Sr

23(k1)]/k1, (8)

where the effective wavenumber is calculated from the measured
frequency using k1 = ω′/v, assuming the Taylor hypothesis is
satisfied (Matthaeus et al. 1982; Matthaeus & Goldstein 1982),
and we have chosen an orthonormal basis with direction 1
along the direction of sampling v̂ = v/|v| and directions 2
and 3 in the plane perpendicular to v̂. The normalized reduced
fluctuating magnetic helicity density is given by σ r

m(k1) =
k1H

′r
m (k1)/|B(k1)|2, where |B(k1)|2 is the trace power.

The relation between the reduced fluctuating magnetic helic-
ity density H

′r
m (k1) and the fluctuating magnetic helicity den-

sity H ′
m(k) can be seen by writing the spectrum in terms of

the Doppler-shifted frequency ω′ instead of k1, H
′r
m (ω′) ≡

2Im[S23(ω′)]/(ω′/v). Using Equation (7) and 2Im[a∗b] =
i(ab∗ − a∗b), the reduced fluctuating magnetic helicity density
can be written as

H
′r
m (ω′) =

∑
k

(
i[B2(k)B∗

3 (k) − B∗
2 (k)B3(k)]

ω′/v

)

× δ[ω′ − (k · v + ω)]. (9)

Equation (9), the experimentally accessible quantity, is in
terms of the magnetic field measurements in a frame defined
by the solar wind velocity v. To write this in terms of the
theoretically calculable H ′

m(k) (Equation (2)), we express the
magnetic field components B2 and B3 in the x, y, z coordi-
nate system. To do so, define the probe velocity in spherical
coordinates about the direction of the mean magnetic field:
v = v sin θ cos φx̂ + v sin θ sin φŷ + v cos θ ẑ. The orthonormal
basis specified with respect to v̂ can be written as

ê1 = v̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ
ê2 = ẑ × v̂/|ẑ × v̂| = − sin φx̂ + cos φŷ
ê3 = ê1 × ê2 = − cos θ cos φx̂ − cos θ sin φŷ + sin θ ẑ.

(10)
Finally, we exploit the fact that the solutions of the Vlasov–

Maxwell dispersion relation depend only on the perpendicular
and parallel components of the wavevector k⊥ and k‖ with
respect to the mean magnetic field, and not on the angle about the
field; thus, the eigenfunction for a wavevector k = k⊥x̂+k‖ẑ can
be rotated by an angle α about the mean magnetic field to yield
the solution for any wavevector k′ = k⊥ cos αx̂+k⊥ sin αŷ+k‖ẑ.
Using the above, the reduced fluctuating magnetic helicity
density Hr

m(ω′) in Equation (9) becomes

H
′r
m (ω′) =

∑
k

H ′
m(k)

k⊥ sin θ cos α + k‖ cos θ

k⊥ sin θ cos α + k‖ cos θ + ω/v

× δ[ω′ − (k′ · v + ω)], (11)

where we have specified the azimuthal angle of the probe
velocity φ = 0 without loss of generality. It is clear from this
equation that all possible wavevectors k′ that give the same
Doppler-shifted frequency ω′ will contribute to the sum for the
reduced fluctuating magnetic helicity density at the frequency
ω′.

4. DISCUSSION

Predicting the values of H
′r
m (ω′) for solar wind turbulence

based on Equation (11) requires understanding three issues: the

scaling of the magnetic fluctuation spectrum with wavenum-
ber, the imbalance of Alfvén wave energy fluxes in opposite
directions along the mean magnetic field, and the variation of
the angle θ between the solar wind velocity v and the mean
magnetic field.

The one-dimensional magnetic energy spectrum in the solar
wind typically scales as k

−5/3
1 in the inertial range and k

p

1 in
the dissipation range, where −2 � p � −4 (Smith et al. 2006)
and the effective wavenumber is k1 = ω′/v. It is clear from
Equation (11) that, when the plasma frame frequency ω is neg-
ligible, the Doppler-shifted observed frequency always results
in an effective wavenumber k1 � k, with equality occurring only
when the velocity v is aligned with the wavevector k. We as-
sume that, for homogeneous turbulence at the dissipation range
scales, turbulent energy at fixed k⊥ and k‖ is uniformly spread
over wavevectors with all possible angles α about the mean mag-
netic field. Because the fluctuation amplitude deceases for larger
effective wavenumbers, the contribution to H

′r
m (ω′) is maximum

at angle α = 0; for angles α yielding a Doppler shift to lower
effective wavenumbers k1 < (k2

⊥ + k2
‖)1/2, the higher amplitude

fluctuations at those lower wavenumbers will contribute more
strongly to H

′r
m (ω′). An accurate calculation of the magnetic he-

licity signature based on Equation (11) must take into account
the scaling of the magnetic energy spectrum.

To compare to σ r
m(k1) derived from observations (for example,

see Figure 1 of Leamon et al. 1998b), we construct the
normalized quantity

σ̂ r
m(k1) =

∑
k H ′

m(k) k′ ·v
k′ ·v+ω

δ[ω′ − (k′ · v + ω)]∑
k[|B(k)|2/k]δ[ω′ − (k′ · v + ω)]

. (12)

In evaluating Equation (12), we assume a model anisotropic one-
dimensional energy spectrum4E(k) = B2(k)/k that fills only the
MHD Alfvén and kinetic Alfvén wave regimes (k⊥ > k‖ and
k‖ρi < 1) and scales as k−5/3 for kρi 
 1 and k−7/3 for kρi � 1,
consistent with theories for critically balanced turbulence
(Goldreich & Sridhar 1995; Howes et al. 2008a; Schekochihin
et al. 2009) and solar wind observations (Smith et al. 2006). In
Figure 2, we plot σ̂ r

m(k1) versus effective wavenumber k1 = ω′/v
for plasma parameters βi = 1, Ti/Te = 1, vthi

/c = 10−4,
θ = 60◦, and v/vA = 10. The contributions to σ̂ r

m(k1) for all
angles α of each wavevector are collected in 120 logarithmi-
cally spaced bins in the Doppler-shifted frequency. The results
are rather insensitive to the scaling of the one-dimensional mag-
netic energy spectrum over the range from k−1 to k−4. The
solid line in Figure 2 corresponds to the model spectrum as-
sumed above, while the dashed line corresponds to a k−1 energy
spectrum. Figure 2 demonstrates that turbulence consisting of
Alfvén and kinetic Alfvén waves produces a positive (right-
handed) magnetic helicity signature in the dissipation range at
k1ρi � 1.

The analysis presented in Figure 2 considers only waves with
k‖ > 0, so all of the waves in the summation in Equation (11)
are traveling in the same direction. If there were an equal
Alfvén wave energy flux in the opposite direction—a case of
balanced energy fluxes, or zero cross helicity—the net σ̂ r

m(k1)
would be zero due to the odd symmetry of H ′

m(k) in k‖. It is
often observed, at scales corresponding to the inertial range,
that the energy flux in the anti-sunward direction dominates,

4 On 150 × 150 logarithmic gridpoints over k⊥ρi, k‖ρi ∈ [10−3, 102],
the model weights B2 as a function of k = (k2

⊥ + k2
‖ )1/2 using B2(k) =

B2
0 {[(kρi )−1/3 + (kρi )4/3]/[1 + (kρi )2]}2.
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Figure 2. Normalized reduced fluctuating magnetic helicity σ̂ r
m(k1) vs. effective

wavenumber k1 due to a turbulent spectrum of kinetic Alfvén waves with
θ = 60◦. The solid line corresponds to the model one-dimensional energy
spectrum, while the dashed line corresponds to a k−1 spectrum.

leading to a large normalized cross helicity (Leamon et al.
1998a). If this imbalance of energy fluxes persists to the smaller
scales associated with the dissipation range, a non-zero value
of σ̂ r

m(k1) is expected. However, theories of imbalanced MHD
turbulence (Chandran 2008, and references therein) predict that
the turbulence is “pinned” to equal values of the oppositely
directed energy fluxes at the dissipation scale. This implies that,
at sufficiently high wavenumber k1, the value of σ̂ r

m(k1) should
asymptote to zero. Thus, σ̂ r

m(k1) in Figure 2 would likely drop
to zero more rapidly than shown, leaving a smaller positive net
σ̂ r

m(k1) around k1ρi ∼ 1, consistent with observations (Goldstein
et al. 1994; Leamon et al. 1998b; Hamilton et al. 2008). We defer
a detailed calculation of the effects of imbalance to a future
paper.

The angle θ between B0 and v is likely to vary during a
measurement; this angle does not typically sample its full range
0 � θ � π , but has some distribution about the Parker spiral
value. Calculations of σ̂ r

m(k1) over 0 � θ � π yield results that
are qualitatively similar to Figure 2, so this averaging will not
significantly change our results.

Taken together, we have demonstrated that a solar wind dis-
sipation range composed of kinetic Alfvén waves produces
a magnetic helicity signature consistent with observations, as
presented in Figure 2. The underlying assumption of the cy-
clotron damping interpretation of magnetic helicity measure-
ments, an interpretation that dominates the solar wind liter-
ature (Goldstein et al. 1994; Leamon et al. 1998a, 1998b;
Hamilton et al. 2008), is the slab model, k = k‖ẑ and k⊥ = 0,
i.e., purely parallel wavevectors. As shown in Figure 1, only
in the limit k‖ � k⊥ does the Alfvén wave root generate a
left-handed helicity σm → −1 as k‖ρi → √

βi ; in the same
limit, the fast/whistler root generates a right-handed helicity
σm → +1 in a quantitatively similar manner (see Figure 9 of
Gary 1986). Strong ion cyclotron damping of the Alfvén/ion
cyclotron waves as k‖ρi → 1 (Gary & Borovsky 2004) would
leave a remaining spectrum of right-handed fast/whistler waves,

as proposed by cyclotron damping interpretation. However, only
if the majority of the turbulent fluctuations have k‖ � k⊥ is the
slab limit applicable, and only if significant energy resides in
slab-like fluctuations are the conclusions drawn about the im-
portance of cyclotron damping valid. There is, on the other hand,
strong theoretical and empirical support for the hypothesis that
the majority of the energy in solar wind turbulence has k⊥ � k‖
(see Howes et al. 2008a, and references therein). In this case,
there is a transition to kinetic Alfvén wave fluctuations at the
scale of the ion Larmor radius. This Letter demonstrates that a
dissipation range comprised of kinetic Alfvén waves produces a
reduced fluctuating magnetic helicity signature consistent with
observations.
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